Search results for: green nano zero valent iron
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4005

Search results for: green nano zero valent iron

3765 Cytotoxicity of Nano β–Tricalcium Phosphate (β-TCP) on Human Osteoblast (hFOB1.19)

Authors: Jer Ping Ooi, Shah Rizal Bin Kasim, Nor Aini Saidin

Abstract:

The objective of this study was to synthesize nano-sized β-tricalcium phosphate (β-TCP) powder and assess its cytotoxic effects on human osteoblast (hFOB1.19) by using four cytotoxicity assays, namely, lactose dehydrogenase (LDHe), tetrazolium hydroxide (XTT), neutral red (NR), and sulforhodamine B (SRB) assays. β-tricalcium phosphate (β-TCP) is a calcium phosphate compound commonly used as an implant material. To date, bulk-sized β-TCP is reported to be readily tolerated by the osteogenic cells and body based on in vitro, in vivo experiments and clinical studies. However, to what extent of nano-sized β-TCP will react in models as compared to bulk β-TCP is yet to be investigated. Thus, in this project, the cells were treated with nano β-TCP powder within a range of concentrations from 0 to 1000 μg/mL for 24, 48, and 72 h. The cytotoxicity tests showed that loss of cell viability ( > 50%) was high for hFOB1.19 cells in all assays. Cell cycle and apoptosis analysis of hFOB1.19 cells revealed that 50 μg/mL of the compound led to 30.5% of cells being apoptotic after 72 h of incubation, and the percentage was increased to 58.6% when the concentration was increased to 200 μg/mL. When the incubation time was increased from 24 to 72 h, the percentage of apoptotic cells increased from 17.3% to 58.6% when the hFOB1.19 were exposed with 200 μg/mL of nano β-TCP powder. Thus, both concentration and exposure duration affected the cytotoxicity effects of the nano β-TCP powder on hFOB1.19. We hypothesize that these cytotoxic effects on hFOB1.19 are related to the nano-scale size of the β-TCP.

Keywords: β-tricalcium phosphate, hFOB1.19, adipose-derived mesenchymal stem cells, cytotoxicity

Procedia PDF Downloads 309
3764 Incidence of Iron Deficiency Anemia Among the Children with Febrile Seizures

Authors: Samina Nazli, Nadia Qamar, Quratulain, Akasha, Saman Jamal

Abstract:

Objective: The objective is to determine the frequency of iron deficiency anemia among children having febrile seizures. A descriptive Cross-Sectional Study was done in the Pediatric Unit of Allama Iqbal Memorial Teaching Hospital Sialkot from September 2020 to February 2021. Material & Methods: A total of 70 children were studied aged six months to 10 years, with either gender presenting with febrile seizures. All data of the patients was documented, including demographic data like age, gender, residential area, educational status, socioeconomic status and clinical findings at the time of presentation like fever, fits and duration of symptoms etc. Blood hemoglobin and ferritin levels were tested for each patient to evaluate iron deficiency anemia. Results: There were 65.7% male and 34.3% female cases in this study. The age range of the patients was 6 months to 10 years, with a mean age of 4.36 ± 2.71 years. Most of the children (60%) were below three years of age. Most children belonged to low and middle socioeconomic status with a frequency of 42.8% and 45.7%, respectively. Iron deficiency anemia was found in 38.6% of cases. The majority of the mothers were illiterate (65%). There were 44.3% cases from rural areas and 55.7% from urban areas. Conclusion: Iron deficiency anemia is a common problem among children with febrile seizures, younger than 03 years and belonging to rural areas. Illiterate mothers are an important risk factor for iron deficiency anemia in their children.

Keywords: febrile seizure, iron deficiency anemia, illetrate mother, low scioeconomic status, febrile siezure

Procedia PDF Downloads 63
3763 Simulating Lean and Green Correlation in Supply Chain Context

Authors: Rachid Benmoussa, Fatima Ezzahra Essaber, Roland De Guio, Fatima Zahra Ben Moussa

Abstract:

Implementing green practices in supply chain management is a complex task mainly because ecological, economical and operational goals are usually in conflict. Green practices might thus face companies’ reluctance because managers can consider its implementation obviously as a performance lean degradation. To implement lean and green practices successfully, companies need relevant decision-making tools to highlight the correlation between them. To contribute to this issue, this work tries to answer the following research question: How to use simulation to assess correlation (antagonism or convergence) between lean and green goals? To answer this question, we propose in this paper a based simulation process that measures correlation generally between two variables. So as to prove its relevance, a logistics academic case study is used to illustrate all its stages. It shows, as for example, that Lean goal 'Stock' and Green goal 'CO₂ emission' are not conceptually correlated (linearly).

Keywords: simulation, lean, green, supply chain

Procedia PDF Downloads 487
3762 A Sensitivity Analysis on the Production of Potable Water, Green Hydrogen and Derivatives from South-West African Seawater

Authors: Shane David van Zyl, A. J. Burger

Abstract:

The global green energy shift has placed significant value on the production of green hydrogen and its derivatives. The study examines the impact on capital expenditure (CAPEX), operational expenditure (OPEX), levelized cost, and environmental impact, depending on the relationship between various production capacities of potable water, green hydrogen, and green ammonia. A model-based sensitivity analysis approach was used to determine the relevance of various process parameters in the production of potable water combined with green hydrogen or green ammonia production. The effects of changes on CAPEX, OPEX and levelized costs of the products were determined. Furthermore, a qualitative environmental impact analysis was done to determine the effect on the environment. The findings indicated the individual process unit contribution to the overall CAPEX and OPEX while also determining the major contributors to changes in the levelized costs of products. The results emphasize the difference in costs associated with potable water, green hydrogen, and green ammonia production, indicating the extent to which potable water production costs become insignificant in the complete process, which, therefore, can have a large social benefit through increased potable water production resulting in decreased water scarcity in the south-west African region.

Keywords: CAPEX and OPEX, desalination, green hydrogen and green ammonia, sensitivity analysis

Procedia PDF Downloads 25
3761 Green Hospitality Industry: An Experience Study with Game Theory in China

Authors: Min Wei

Abstract:

The green hotel provides the products/services consistent with the full utilization of resources, protecting the ecological environment conducive to customers’ requirements and health. In order to better develop the green hospitality industry, this paper applies the game theory to analyze the intrinsic relationship and balanced interests among the stakeholders including government, hotels, and tourists during green hospitality development. Based on the hypothesis in game theory, this paper tries to construct a linkage mechanism in stakeholders, by which a theoretical basis for the interests’ balance can be realized. By using game theory and constructing a game model including tourists, hotels and government, this paper analyzes the relationship of the various stakeholders involved in the green hospitality development, and subsequently proposes the development model of green hospitality industry. On the one hand, this paper applies game theory to construct a green hotel development model and provides a theoretical basis for the interest balance of stakeholders based on theoretical perspective. On the other hand, the current development of green hospitality industry is still in initial phase, and the outcome of this research tries to guide tourists to form a green awareness and to establish the concept of green consumption for hotel development, so that green hotel products/services are provided. In addition, this paper provides a basis for decision making in the relevant government departments so that the interests of all stakeholders are promoted and cooperative game between stakeholders is established, for which the sustainable development of green hotels is achieved. The findings indicate that the process of achieving green hospitality industry development is to maximize the whole interests of stakeholders.

Keywords: green hospitality, game theory, stakeholders, development model

Procedia PDF Downloads 127
3760 Nano Sol Based Solar Responsive Smart Window for Aircraft

Authors: K. A. D. D. Kuruppu, R. M. De Silva, K. M. N. De Silva

Abstract:

This research work was based on developing a solar responsive aircraft window panel which can be used as a self-cleaning surface and also a surface which degrade Volatile Organic compounds (VOC) available in the aircraft cabin areas. Further, this surface has the potential of harvesting energy from Solar. The transparent inorganic nano sol solution was prepared. The obtained sol solution was characterized using X-ray diffraction, Particle size analyzer and FT-IR. The existing nano material which shows the similar characteristics was also used to compare the efficiencies with the newly prepared nano sol. Nano sol solution was coated on cleaned four aircraft window pieces separately using a spin coater machine. The existing nano material was dissolved and prepared a solution having the similar concentration as nano sol solution. Pre-cleaned four aircraft window pieces were coated with this solution and the rest cleaned four aircraft window pieces were considered as control samples. The control samples were uncoated from anything. All the window pieces were allowed to dry at room temperature. All the twelve aircraft window pieces were uniform in all the factors other than the type of coating. The surface morphologies of the samples were analyzed using SEM. The photocatalytic degradation of VOC was determined after incorporating gas of Toluene to each sample followed by the analysis done by UV-VIS spectroscopy. The self- cleaning capabilities were analyzed after adding of several types of stains on the window pieces. The self-cleaning property of each sample was analyzed using UV-VIS spectroscopy. The highest photocatalytic degradation of Volatile Organic compound and the highest photocatalytic degradation of stains were obtained for the samples which were coated by the nano sol solution. Therefore, the experimental results clearly show that there is a potential of using this nano sol in aircraft window pieces which favors the self-cleaning property as well as efficient photocatalytic degradation of VOC gases. This will ensure safer environment inside aircraft cabins.

Keywords: aircraft, nano, smart windows, solar

Procedia PDF Downloads 247
3759 Enhancement of the Corrosion Resistance of Fastening System of Ballasted ‎Railway in Sandy Desert by Using Nano-Coating

Authors: Milad Alizadeh Galdiani, Navid Sabet, Mohamad Ali Mohit, Fatemeh Palizdar

Abstract:

Railway as one of the most important transportation modes, passes through ‎various areas with different conditions ‎inevitably, and in many countries such as ‎China, United States, Australia, and Iran, it passes through sandy ‎desert areas. One ‎of the main problems in these areas is the movement of sand, causing various ‎damages ‎to ballasted railway track such as corrosion in the railway fastening system. ‎The soil composition of some desert areas like Fahraj in Iran consists of sand ‎and ‎salt. Due to the movement of sand and corrosive ions of salt, the fastening system ‎of the railway is ‎corroded, which, in turn, reduces the thickness of the components ‎and their life span.‎ In this research, the Nano-coating for fastening system of ‎the railway is ‎introduced, and its performance has been investigated in both ‎laboratory and field tests. The Nano-coating of ‎the fastening system consists of zinc-rich, epoxy, polyurethane, and additive, which is produced through ‎Nano ‎technology. This layer covers the surface of the fastening system and ‎prohibits the chemical reactions, which result in ‎corrosion. The results of ‎Electrochemical Impedance Spectroscopy (EIS) ‎indicate that corrosion resistance ‎increases 315 times by using nano-coating, salt spray test results demonstrate that ‎nano-coated components remained intact after 1000 hours.‎

Keywords: ballasted railway, Nano-coating, railway fastening system, sandy desert

Procedia PDF Downloads 119
3758 Speciation, Preconcentration, and Determination of Iron(II) and (III) Using 1,10-Phenanthroline Immobilized on Alumina-Coated Magnetite Nanoparticles as a Solid Phase Extraction Sorbent in Pharmaceutical Products

Authors: Hossein Tavallali, Mohammad Ali Karimi, Gohar Deilamy-Rad

Abstract:

The proposed method for speciation, preconcentration and determination of Fe(II) and Fe(III) in pharmaceutical products was developed using of alumina-coated magnetite nanoparticles (Fe3O4/Al2O3 NPs) as solid phase extraction (SPE) sorbent in magnetic mixed hemimicell solid phase extraction (MMHSPE) technique followed by flame atomic absorption spectrometry analysis. The procedure is based on complexation of Fe(II) with 1, 10-phenanthroline (OP) as complexing reagent for Fe(II) that immobilized on the modified Fe3O4/Al2O3 NPs. The extraction and concentration process for pharmaceutical sample was carried out in a single step by mixing the extraction solvent, magnetic adsorbents under ultrasonic action. Then, the adsorbents were isolated from the complicated matrix easily with an external magnetic field. Fe(III) ions determined after facility reduced to Fe(II) by added a proper reduction agent to sample solutions. Compared with traditional methods, the MMHSPE method simplified the operation procedure and reduced the analysis time. Various influencing parameters on the speciation and preconcentration of trace iron, such as pH, sample volume, amount of sorbent, type and concentration of eluent, were studied. Under the optimized operating conditions, the preconcentration factor of the modified nano magnetite for Fe(II) 167 sample was obtained. The detection limits and linear range of this method for iron were 1.0 and 9.0 - 175 ng.mL−1, respectively. Also the relative standard deviation for five replicate determinations of 30.00 ng.mL-1 Fe2+ was 2.3%.

Keywords: Alumina-Coated magnetite nanoparticles, Magnetic Mixed Hemimicell Solid-Phase Extraction, Fe(ΙΙ) and Fe(ΙΙΙ), pharmaceutical sample

Procedia PDF Downloads 285
3757 Shock Compressibility of Iron Alloys Calculated in the Framework of Quantum-Statistical Models

Authors: Maxim A. Kadatskiy, Konstantin V. Khishchenko

Abstract:

Iron alloys are widespread components in various types of structural materials which are exposed to intensive thermal and mechanical loads. Various quantum-statistical cell models with the approximation of self-consistent field can be used for the prediction of the behavior of these materials under extreme conditions. The application of these models is even more valid, the higher the temperature and the density of matter. Results of Hugoniot calculation for iron alloys in the framework of three quantum-statistical (the Thomas–Fermi, the Thomas–Fermi with quantum and exchange corrections and the Hartree–Fock–Slater) models are presented. Results of quantum-statistical calculations are compared with results from other reliable models and available experimental data. It is revealed a good agreement between results of calculation and experimental data for terra pascal pressures. Advantages and disadvantages of this approach are shown.

Keywords: alloy, Hugoniot, iron, terapascal pressure

Procedia PDF Downloads 335
3756 Synthesis and Characterization of Akermanite Nanoparticles (AMN) as a Bio-Ceramic Nano Powder by Sol-Gel Method for Use in Biomedical

Authors: Seyedmahdi Mousavihashemi

Abstract:

Natural Akermanite (NAM) has been successfully prepared by a modified sol-gel method. Optimization in calcination temperature and mechanical ball milling resulted in a pure and nano-sized powder which characterized by means of scanning electron microscopy (SEM), X-ray diffraction (XRD), transmission electron microscopy (TEM) and Fourier transform infrared Spectroscopy (FT–IR). We hypothesized that nano-sized Akermanite (AM) would mimic more efficiently the nanocrystal structure and function of natural bone apatite, owing to the higher surface area, compare to conventional micron-size Akermanite (AM). Accordingly, we used the unique advantage of nanotechnology to improve novel nano akermanite particles as a potential candidate for bone tissue regeneration whether as a per implant filling powder or in combination with other biomaterials as a composite scaffold. Pure Akermanite (PAM) powders were successfully obtained via a simple sol-gel method followed by calcination at 1250 °C. Mechanical grinding in a ceramic ball mill for 7 hours resulted in akermanite (AM) nanoparticles in the range of about 30- 45 nm.

Keywords: biomedical engineering, nano composite, SEM, TEM

Procedia PDF Downloads 231
3755 Disturbed Cellular Iron Metabolism Genes in Neurodevelopmental Disorders is Different from Neurodegenerative Disorders

Authors: O. H. Gebril, N. A. Meguid

Abstract:

Background: Iron had been a focus of interest recently as a main exaggerating factor for oxidative stresses in the central nervous system and a link to various neurological disorders is suspected. Many studies with various techniques showed evidence of disturbed iron-related proteins in the cell in human and animal models of neurodegenerative disorders. Also, linkage to significant pathological changes had been evidenced e.g. apoptosis and cell signaling. On the other hand, the role of iron in neurodevelopmental disorders is still unclear. With increasing prevalence of autism worldwide, some changes in iron parameters and its stores were documented in many studies. This study includes Haemochromatosis HFE gene polymorphisms (p.H63D and p.C282Y) and ferroportin gene (SLC40A1) Q248H polymorphism in autism and control children. Materials and Methods: Whole genome DNA was extracted; p.H63D and p.C282Y genotyping was studied using specific sequence amplification followed by restriction enzyme digestion on a sample of autism patients (25 cases) and twenty controls. Results: The p.H63D is seen more than the C282Y among both autism and control samples, with no significant association of p.H63D or p.C282Y polymorphism and autism was revealed. Also, no association with Q248H polymorphism was evidenced. Conclusion: The study results do not prove the role of cellular iron genes polymorphisms as risk factors for neurodevelopmental disorders, and in turn highlights the specificity of cellular iron related pathways in neurodegeneration. These results demand further gene expression studies to elucidate the main pathophysiological pathways that are disturbed in autism and other neurodevelopmental disorders.

Keywords: iron, neurodevelopmental, oxidative stress, haemohromatosis, ferroportin, genes

Procedia PDF Downloads 357
3754 Investigating the Effect of Artificial Intelligence on the Improvement of Green Supply Chain in Industry

Authors: Sepinoud Hamedi

Abstract:

Over the past few decades, companies have appeared developing concerns in connection to the natural affect of their fabricating exercises. Green supply chain administration has been considered by the producers as a attainable choice to decrease the natural affect of operations whereas at the same time moving forward their operational execution. Contemporaneously the coming of digitalization and globalization within the supply chain space has driven to a developing acknowledgment of the importance of data preparing methodologies, such as enormous information analytics and fake insights innovations, in improving and optimizing supply chain execution. Also, supply chain collaboration in part intervenes the relationship between manufactured innovation and supply chain execution Ponders appear that the use of BDA-AI advances includes a significant impact on natural handle integration and green supply chain collaboration conjointly underlines that both natural handle integration and green supply chain collaboration have a critical affect on natural execution. Correspondingly savvy supply chain contributes to green execution through overseeing green connections and setting up green operations.

Keywords: green supply chain, artificial intelligence, manufacturers, technology, environmental

Procedia PDF Downloads 63
3753 Behavior of Fibre Reinforced Polymer Composite with Nano-Ceramic Particle under Ballistic Impact and Quasi-Static Punch-Shear Loading

Authors: K. Rajalakshmi, A. Vasudevan

Abstract:

The performance of Fibre Reinforced Polymer composite with the nano-ceramic particle as function of time and thickness of laminate which is subjected to ballistic impact and quasi-static punch-shear loading is investigated. The material investigated is made up of several layers of Kevlar fibres which are fabricated with nano-ceramic particles and epoxy resin by compression moulding. The ballistic impact and quasi-static punch-shear loading are studied experimentally and numerically. The failure mechanism is observed using scanning electron microscope (SEM). The result obtained in the experiment and numerical studies are compared. Due to nano size of the ceramic particle, the strength to weight ratio and penetrating resistance will improve in Fibre Reinforced Polymer composite which will have better impact property compared to ceramic plates.

Keywords: ballistic impact, Kevlar, nano ceramic, penetration, polymer composite, shear plug

Procedia PDF Downloads 281
3752 Dynamic Response of Nano Spherical Shell Subjected to Termo-Mechanical Shock Using Nonlocal Elasticity Theory

Authors: J. Ranjbarn, A. Alibeigloo

Abstract:

In this paper, we present an analytical method for analysis of nano-scale spherical shell subjected to thermo-mechanical shocks based on nonlocal elasticity theory. Thermo-mechanical properties of nano shpere is assumed to be temperature dependent. Governing partial differential equation of motion is solved analytically by using Laplace transform for time domain and power series for spacial domain. The results in Laplace domain is transferred to time domain by employing the fast inverse Laplace transform (FLIT) method. Accuracy of present approach is assessed by comparing the the numerical results with the results of published work in literature. Furtheremore, the effects of non-local parameter and wall thickness on the dynamic characteristics of the nano-sphere are studied.

Keywords: nano-scale spherical shell, nonlocal elasticity theory, thermomechanical shock, dynamic response

Procedia PDF Downloads 365
3751 Nitrogen, Phosphorus, Potassium (NPK) Hydroxyapatite Nano-Hybrid Slow Release Fertilizer

Authors: Tinomuvonga Manenji Zhou, Eubert Mahofa, Tatenda Crispen Madzokere

Abstract:

The nanostructured formulation can increase fertilizer efficacy and uptake ratio of the soil nutrients in agriculture production and save fertilizer resources. Controlled release modes have properties of both release rate and release pattern of nutrients, for fertilizers that are soluble in water might be correctly controlled. Nanoparticles can reduce the rate at which fertilizer nutrients are in the soil by leaching. A slow release NPK-hydroxyapatite nano hybrid fertilizer was synthesized using exfoliated bentonite as filler material. A simple, scalable method was used to synthesize the nitrogen-phosphorus hydroxyapatite nano fertilizer, where calcium hydroxide, phosphoric acid, and urea were used as precursor material, followed by the incorporation of potassium through a liquid grinding method. The product obtained was an NPK-hydroxyapatite nano hybrid fertilizer. A quantitative analysis was done to determine the percentage of nitrogen, phosphorus, and potassium in the hybrid fertilizer. AAS was used to determine the percentage of potassium in the fertilizer. An accelerated water test was conducted to compare the nutrient release behavior of nutrients between the synthesized NPK-hydroxyapatite nano hybrid fertilizer and commercial NPK fertilizer. The rate of release of Nitrogen, phosphorus, and potassium was significantly lower in the synthesized NPK hydroxyapatite nano hybrid fertilizer than in the convectional NPK fertilizer. The synthesized fertilizer was characterized using XRD. NPK hydroxyapatite nano hybrid fertilizer encapsulated in exfoliated bentonite thus prepared can be used as an environmentally friendly fertilizer formulation which could be extended to solve one of the major problems faced in the global fertilization of low nitrogen, phosphorus, and potassium use efficiency in agriculture.

Keywords: NPK hydroxyapatite nano hybrid fertilizer, bentonite, encapsulation, low release

Procedia PDF Downloads 89
3750 Wadi Halfa Oolitic Ironstone Formation, Wadi Halfa and Argein Areas, North Sudan

Authors: Mutwakil Nafi, Abed Elaziz El Amein, Muna El Dawi, Khalafala Salih, Osma Elbahi, Abed Elhalim Abou

Abstract:

Recently a large deposit of oolitic iron ore of Late Carboniferous-Permotriassic-Lower Jurassic age was discovered in Wadi Halfa and Argein areas, North Sudan. It seems that the iron ore mineralization exists in the west and east bank of the River Nile of the study area that are found on the Egyptian-Sudanese border. The Carboniferous-Lower Jurassic age strata were covered by 67 sections and each section has been examined and carefully described. The iron-ore in Wadi Halfa occurs as oolitic ironstone and contained two horizons: (A) horizon and (B) horizon. Only horizon (A) was observed in southern Argein area. The texture of the ore is variable depending on the volume of the component. In thin sections the average of the ooids were ranged between 90% - 80%. The matrix varies between 10%-20% by volume and detritus quartz in other component my reach up to 30% by volume in sandy massive ore. Ooids size ranges from 0.2mm-1.00 mm on average in very coarse ooids may attend up to 1 mm in size. The matrix around the ooids is dominated by iron hydroxide, carbonate, fine and amorphous silica. The probable ore reserve estimate of 1.234 billion at a head grade of 41.29% Fe for the Wadi Halfa Oolitic Ironstone Formation. The iron ore shows higher content of phosphorus ranges from 6.15% to 0.16%, with mean 1.45%. The new technology Hatch–Ironstone Chloride Segregation (HICS) can be used to produce commercial-quality of iron and reduce phosphorus and silica to acceptable levels for steel industry. The development of infra structures and presence huge quantity of iron ore would make exploitation of the iron ore economic.

Keywords: HICS, Late Carboniferous age, oolitic iron ore, phosphorus

Procedia PDF Downloads 640
3749 Synthesis of Size-Tunable and Stable Iron Nanoparticles for Cancer Treatment

Authors: Ambika Selvaraj

Abstract:

Magnetic iron oxide nanoparticles (IO) of < 20nm (superparamagnetic) become promising tool in cancer therapy, and integrated nanodevices for cancer detection and screening. The obstacles include particle heterogeneity and cost. It can be overcome by developing monodispersed nanoparticles in economical approach. We have successfully synthesized < 7 nm IO by low temperature controlled technique, in which Fe0 is sandwiched between stabilizer and Fe2+. Size analysis showed the excellent size control from 31 nm at 33°C to 6.8 nm at 10°C. Resultant monodispersed IO were found to be stable for > 50 reuses, proved its applicability in biomedical applications.

Keywords: low temperature synthesis, hybrid iron nanoparticles, cancer therapy, biomedical applications

Procedia PDF Downloads 331
3748 Evaluation of the Impact of Green Infrastructure on Dispersion and Deposition of Particulate Matter in Near-Roadway Areas

Authors: Deeksha Chauhan, Kamal Jain

Abstract:

Pollutant concentration is high in near-road environments, and vegetation is an effective measure to mitigate urban air quality problems. This paper presents the influence of roadside green infrastructure in dispersion and Deposition of Particulate matter (PM) by the ENVI-met Simulations. Six green infrastructure configurations were specified (i) hedges only, (ii) trees only, (iii) a mix of trees and shrubs (iv) green barrier (v) green wall, and (vi) no tree buffer were placed on both sides of the road. The changes in concentrations at all six scenarios were estimated to identify the best barrier to reduce the dispersion and deposition of PM10 and PM2.5 in an urban environment.

Keywords: barrier, concentration, dispersion, deposition, Particulate matter, pollutant

Procedia PDF Downloads 139
3747 The Preparation of Titanate Nano-Materials Removing Efficiently Cs-137 from Waste Water in Nuclear Power Plants

Authors: Liu De-jun, Fu Jing, Zhang Rong, Luo Tian, Ma Ning

Abstract:

Cs-137, the radioactive fission products of uranium, can be easily dissolved in water during the accident of nuclear power plant, such as Chernobyl, Three Mile Island, Fukushima accidents. The concentration of Cs in the groundwater around the nuclear power plant exceeded the standard value almost 10,000 times after the Fukushima accident. The adsorption capacity of Titanate nano-materials for radioactive cation (Cs+) is very strong. Moreover, the radioactive ion can be tightly contained in the nanotubes or nanofibers without reversible adsorption, and it can safely be fixed. In addition, the nano-material has good chemical stability, thermal stability and mechanical stability to minimize the environmental impact of nuclear waste and waste volume. The preparation of titanate nanotubes or nanofibers was studied by hydrothermal methods, and chemical kinetics of removal of Cs by nano-materials was obtained. The adsorption time with maximum adsorption capacity and the effects of pH, coexisting ion concentration and the optimum adsorption conditions on the removal of Cs by titanate nano-materials were also obtained. The adsorption boundary curves, adsorption isotherm and the maximum adsorption capacity of Cs-137 as tracer on the nano-materials were studied in the research. The experimental results showed that the removal rate of Cs-137 in 0.01 tons of waste water with only 1 gram nano-materials could reach above 98%, according to the optimum adsorption conditions.

Keywords: preparation, titanate, cs-137, removal, nuclear

Procedia PDF Downloads 262
3746 A Sustainable and Low-Cost Filter to Treat Pesticides in Water

Authors: T. Abbas, J. McEvoy, E. Khan

Abstract:

Pesticide contamination in water supply is a common environmental problem in rural agricultural communities. Advanced water treatment processes such as membrane filtration and adsorption on activated carbon only remove pesticides from water without degrading them into less toxic/easily degradable compounds leaving behind contaminated brine and activated carbon that need to be managed. Rural communities which normally cannot afford expensive water treatment technologies need an economical and sustainable filter which not only treats pesticides from water but also degrades them into benign products. In this study, iron turning waste experimented as potential point-of-use filtration media for the removal/degradation of a mixture of six chlorinated pesticides (lindane, heptachlor, endosulfan, dieldrin, endrin, and DDT) in water. As a common and traditional medium for water filtration, sand was also tested along with iron turning waste. Iron turning waste was characterized using scanning electron microscopy and energy dispersive X-Ray analyzer. Four glass columns with different filter media layer configurations were set up: (1) only sand, (2) only iron turning, (3) sand and iron turning (two separate layers), and (4) sand, iron turning and sand (three separate layers). The initial pesticide concentration and flow rate were 2 μg/L and 10 mL/min. Results indicate that sand filtration was effective only for the removal of DDT (100%) and endosulfan (94-96%). Iron turning filtration column effectively removed endosulfan, endrin, and dieldrin (85-95%) whereas the lindane and DDT removal were 79-85% and 39-56%, respectively. The removal efficiencies for heptachlor, endosulfan, endrin, dieldrin, and DDT were 90-100% when sand and iron turning waste (two separate layers) were used. However, better removal efficiencies (93-100%) for five out of six pesticides were achieved, when sand, iron turning and sand (three separate layers) were used as filtration media. Moreover, the effects of water pH, amounts of media, and minerals present in water such as magnesium, sodium, calcium, and nitrate on the removal of pesticides were examined. Results demonstrate that iron turning waste efficiently removed all the pesticides under studied parameters. Also, it completely de-chlorinated all the pesticides studied and based on the detection of by-products, the degradation mechanisms for all six pesticides were proposed.

Keywords: pesticide contamination, rural communities, iron turning waste, filtration

Procedia PDF Downloads 249
3745 Tailoring of ECSS Standard for Space Qualification Test of CubeSat Nano-Satellite

Authors: B. Tiseo, V. Quaranta, G. Bruno, G. Sisinni

Abstract:

There is an increasing demand of nano-satellite development among universities, small companies, and emerging countries. Low-cost and fast-delivery are the main advantages of such class of satellites achieved by the extensive use of commercial-off-the-shelf components. On the other side, the loss of reliability and the poor success rate are limiting the use of nano-satellite to educational and technology demonstration and not to the commercial purpose. Standardization of nano-satellite environmental testing by tailoring the existing test standard for medium/large satellites is then a crucial step for their market growth. Thus, it is fundamental to find the right trade-off between the improvement of reliability and the need to keep their low-cost/fast-delivery advantages. This is particularly even more essential for satellites of CubeSat family. Such miniaturized and standardized satellites have 10 cm cubic form and mass no more than 1.33 kilograms per 1 unit (1U). For this class of nano-satellites, the qualification process is mandatory to reduce the risk of failure during a space mission. This paper reports the description and results of the space qualification test campaign performed on Endurosat’s CubeSat nano-satellite and modules. Mechanical and environmental tests have been carried out step by step: from the testing of the single subsystem up to the assembled CubeSat nano-satellite. Functional tests have been performed during all the test campaign to verify the functionalities of the systems. The test duration and levels have been selected by tailoring the European Space Agency standard ECSS-E-ST-10-03C and GEVS: GSFC-STD-7000A.

Keywords: CubeSat, nano-satellite, shock, testing, vibration

Procedia PDF Downloads 175
3744 The Effect of Sodium Bicarbonate on the Mg and P Concentrations in Turkish Black and Green Tea

Authors: E. Moroydor Derun, T. Yalcin, O. Dere Ozdemir, S. Kipcak, N. Tugrul, S. Piskin

Abstract:

Tea is one of the most consumed beverages all over the world. Especially, black and green teas are preferred to consume. In Turkey, some local tea houses use sodium bicarbonate (SB) to obtain more infusion by using less amount of tea. Therefore, the addition of SB to black and green teas affects element concentrations of these teas. In this study, determination of magnesium (Mg) and phosphorus (P) contents in black and green teas is aimed for conscious consumption, after the addition of SB. Inductively coupled plasma optical emission spectrometry (ICP-OES) was used for these analysis. The results of this study showed that the concentrations of Mg and P decreased by adding SB from 11.020, 21.915 to 10.009, 17.520 in black tea and from 12.605, 14.550 to 8.118, 9.425 in green tea, respectively. The addition of SB on analyzed teas is not recommended as it reduces intake percentages of Mg and P from the essential elements.

Keywords: elements, ICP-OES, sodium bicarbonate, tea

Procedia PDF Downloads 372
3743 Synthesis of Carbonyl Iron Particles Modified with Poly (Trimethylsilyloxyethyl Methacrylate) Nano-Grafts

Authors: Martin Cvek, Miroslav Mrlik, Michal Sedlacik, Tomas Plachy

Abstract:

Magnetorheological elastomers (MREs) are multi-phase composite materials containing micron-sized ferromagnetic particles dispersed in an elastomeric matrix. Their properties such as modulus, damping, magneto-striction, and electrical conductivity can be controlled by an external magnetic field and/or pressure. These features of the MREs are used in the development of damping devices, shock attenuators, artificial muscles, sensors or active elements of electric circuits. However, imperfections on the particle/matrix interfaces result in the lower performance of the MREs when compared with theoretical values. Moreover, magnetic particles are susceptible to corrosion agents such as acid rains or sea humidity. Therefore, the modification of particles is an effective tool for the improvement of MRE performance due to enhanced compatibility between particles and matrix as well as improvements of their thermo-oxidation and chemical stability. In this study, the carbonyl iron (CI) particles were controllably modified with poly(trimethylsilyloxyethyl methacrylate) (PHEMATMS) nano-grafts to develop magnetic core–shell structures exhibiting proper wetting with various elastomeric matrices resulting in improved performance within a frame of rheological, magneto-piezoresistance, pressure-piezoresistance, or radio-absorbing properties. The desired molecular weight of PHEMATMS nano-grafts was precisely tailored using surface-initiated atom transfer radical polymerization (ATRP). The CI particles were firstly functionalized using a 3-aminopropyltriethoxysilane agent, followed by esterification reaction with α-bromoisobutyryl bromide. The ATRP was performed in the anisole medium using ethyl α-bromoisobutyrate as a macroinitiator, N, N´, N´´, N´´-pentamethyldiethylenetriamine as a ligand, and copper bromide as an initiator. To explore the effect PHEMATMS molecular weights on final properties, two variants of core-shell structures with different nano-graft lengths were synthesized, while the reaction kinetics were designed through proper reactant feed ratios and polymerization times. The PHEMATMS nano-grafts were characterized by nuclear magnetic resonance and gel permeation chromatography proving information to their monomer conversions, molecular chain lengths, and low polydispersity indexes (1.28 and 1.35) as the results of the executed ATRP. The successful modifications were confirmed via Fourier transform infrared- and energy-dispersive spectroscopies while expected wavenumber outputs and element presences, respectively, of constituted PHEMATMS nano-grafts, were occurring in the spectra. The surface morphology of bare CI and their PHEMATMS-grafted analogues was further studied by scanning electron microscopy, and the thicknesses of grafted polymeric layers were directly observed by transmission electron microscopy. The contact angles as a measure of particle/matrix compatibility were investigated employing the static sessile drop method. The PHEMATMS nano-grafts enhanced compatibility of hydrophilic CI with low-surface-energy hydrophobic polymer matrix in terms of their wettability and dispersibility in an elastomeric matrix. Thus, the presence of possible defects at the particle/matrix interface is reduced, and higher performance of modified MREs is expected.

Keywords: atom transfer radical polymerization, core-shell, particle modification, wettability

Procedia PDF Downloads 194
3742 Green Computing: Awareness and Practice in a University Information Technology Department

Authors: Samson Temitope Obafemi

Abstract:

The fact that ICTs is pervasive in today’s society paradoxically also calls for the need for green computing. Green computing generally encompasses the study and practice of using Information and Communication Technology (ICT) resources effectively and efficiently without negatively affecting the environment. Since the emergence of this innovation, manufacturers and governmental bodies such as Energy Star and the United State of America’s government have obviously invested many resources in ensuring the reality of green design, manufacture, and disposal of ICTs. However, the level of adherence to green use of ICTs among users have been less accounted for especially in developing ICT consuming nations. This paper, therefore, focuses on examining the awareness and practice of green computing among academics and students of the Information Technology Department of Durban University of Technology, Durban South Africa, in the context of green use of ICTs. This was achieved through a survey that involved the use of a questionnaire with four sections: (a) demography of respondents, (b) Awareness of green computing, (c) practices of green computing, and (d) attitude towards greener computing. One hundred and fifty (150) questionnaires were distributed, one hundred and twenty (125) were completed and collected for data analysis. Out of the one hundred and twenty-five (125) respondents, twenty-five percent (25%) were academics while the remaining seventy-five percent (75%) were students. The result showed a higher level of awareness of green computing among academics when compared to the students. Green computing practices are also shown to be highly adhered to among academics only. However, interestingly, the students were found to be more enthusiastic towards greener computing in the future. The study, therefore, suggests that the awareness of green computing should be further strengthened among students from the curriculum point of view in order to improve on the greener use of ICTs in universities especially in developing countries.

Keywords: awareness, green computing, green use, information technology

Procedia PDF Downloads 183
3741 Simultaneous Removal of Arsenic and Toxic Metals from Contaminated Soil: a Pilot-Scale Demonstration

Authors: Juan Francisco Morales Arteaga, Simon Gluhar, Anela Kaurin, Domen Lestan

Abstract:

Contaminated soils are recognized as one of the most pressing global environmental problems. As is one of the most hazardous elements: chronic exposure to arsenic has devastating effects on health, cardiovascular diseases, cancer, and eventually death. Pb, Zn and Cd are very highly toxic metals that affect almost every organ in the body. With this in mind, new technologies for soil remediation processes are urgently needed. Calcareous artificially contaminated soil containing 231 mg kg-1 As and historically contaminated with Pb, Zn and Cd was washed with a 1:1.5 solid-liquid ratio of 90 mM EDTA, 100 mM oxalic acid, and 50 mM sodium dithionite to remove 59, 75, 29, and 53% of As, Pb, Zn, and Cd, respectively. To reduce emissions of residual EDTA and chelated metals from the remediated soil, zero valent iron (ZVI) was added (1% w/w) to the slurry of the washed soil immediately prior to rinsing. Experimental controls were conducted without the addition of ZVI after remediation. The use of ZVI reduced metal leachability and minimized toxic emissions 21 days after remediation. After this time, NH4NO3 extraction was performed to determine the mobility of toxic elements in the soil. In addition, Unified Human BioaccessibilityMethod (UBM) was performed to quantify the bioaccessibility levels of metals in stimulated human gastric and gastrointestinal phases.

Keywords: soil remediation, soil science, soil washing, toxic metals removal

Procedia PDF Downloads 170
3740 Electrophysical and Thermoelectric Properties of Nano-scaled In2O3:Sn, Zn, Ga-Based Thin Films: Achievements and Limitations for Thermoelectric Applications

Authors: G. Korotcenkov, V. Brinzari, B. K. Cho

Abstract:

The thermoelectric properties of nano-scaled In2O3:Sn films deposited by spray pyrolysis are considered in the present report. It is shown that multicomponent In2O3:Sn-based films are promising material for the application in thermoelectric devices. It is established that the increase in the efficiency of thermoelectric conversion at CSn~5% occurred due to nano-scaled structure of the films studied and the effect of the grain boundary filtering of the low energy electrons. There are also analyzed the limitations that may appear during such material using in devices developed for the market of thermoelectric generators and refrigerators. Studies showed that the stability of nano-scaled film’s parameters is the main problem which can limit the application of these materials in high temperature thermoelectric converters.

Keywords: energy conversion technologies, thermoelectricity, In2O3-based films, power factor, nanocomposites, stability

Procedia PDF Downloads 224
3739 Effects of Copper Oxide Nanoparticles on the Growth Performance, Antioxidant Enzymes Activity and Gut Morphology of Broiler Chickens

Authors: Mohammad Nassiri, Farhad Ahmadi

Abstract:

This research was carried out to investigate the effects of copper oxide nanoparticles (nano-CuO) on performance and gut morphology of broiler chickens. A total of 240 one-day-old male chickens (Ross-308) were randomly divided in a completely randomized design, the inclusion of 4 groups of 60 birds with 4 replicates and 15 birds in each. Experimental diets were as follow: T1 control (basal diets, without nano-CuO but contain 9.1 mg Cu/kg from CuO), T2, T3, and T4 basal diet supplementation with 30, 60, and 90 mg nano-CuO/kg, respectively. Feed intake (FI) and gain weight as weekly recorded and on d 21 feed conversion ratio (FCR) were calculated. Furthermore, at the end of the trial (21 d), four birds per treatment (one bird/replicate) randomly selected and after removed blood samples, they slaughtered and then to the analysis of gut morphological. A segment (10 cm) from the middle part of duodenum and jejunum was removed and put in the formalin 10% (pH = 7). The results revealed that nano-CuO had significantly increased body weight (P = 0.029, but feed intake (P = 0.017), and feed conversion ratio (P = 0.031) decreased in the birds that fed 90 mg nano-CuO when compared to control and the other groups. Total antioxidant capacity (P = 0.041), superoxide dismutase (P = 0.036), and glutathione peroxidase (P = 0.048) were more in the birds fed diet inclusion of 60 and 90 mg nano-CuO (T4) than other treatments. The lowest malonaldehyde (MDA) level was observed in T3 (P = 0.23) and T4 (P = 0.028) decreased (P = 0.17). The villi height and villi height to crypt depth (VH/CD ratio) numerically increased (P = 0.09) in the bird fed 90 mg nano-CuO in comparison with other treatments. According to present results, it could be concluded that dietary nano-CuO improved performance parameters and antioxidant status of broiler chickens during starter period. As well, the optimum improvement observed in the birds fed diet inclusion of 90 mg nano-CuO/kg.

Keywords: antioxidant, broilers, copper, performance, nanoparticles

Procedia PDF Downloads 544
3738 Vibration Frequency Analysis of Sandwich Nano-Plate on Visco Pasternak Foundation by Using Modified Couple Stress Theory

Authors: Hamed Khani Arani, Mohammad Shariyat, Armaghan Mohammadian

Abstract:

In this research, the free vibration of a rectangular sandwich nano-plate (SNP) made of three smart layers in the visco Pasternak foundation is studied. The core of the sandwich is a piezo magnetic nano-plate integrated with two layers of piezoelectric materials. First-order shear deformation plate theory is utilized to derive the motion equations by using Hamilton’s principle, piezoelectricity, and modified couple stress theory. Elastic medium is modeled by visco Pasternak foundation, where the damping coefficient effect is investigated on the stability of sandwich nano-plate. These equations are solved by the differential quadrature method (DQM), considering different boundary conditions. Results indicate the effect of various parameters such as aspect ratio, thickness ratio, shear correction factor, damping coefficient, and boundary conditions on the dimensionless frequency of sandwich nano-plate. The results are also compared by those available in the literature, and these findings can be used for automotive industry, communications equipment, active noise, stability, and vibration cancellation systems and utilized for designing the magnetostrictive actuator, motor, transducer and sensors in nano and micro smart structures.

Keywords: free vibration, modified couple stress theory, sandwich nano-plate, visco Pasternak foundation

Procedia PDF Downloads 132
3737 The Investigation of Green Building Certification on the Productivity and Mental and Physical Health of Building's Occupants in Tehran, Iran

Authors: Armin Samarghandi, Amirreza Jafari, Mohamad Ghiasi

Abstract:

Numerous assertions and some empirical evidence imply that 'green' buildings ought to be more productive and healthier (mentally and physiologically) than conventional structures. Since then, empirical data has been equivocal, indicating either that the studies are inaccurate or that the research has just scratched the surface of green buildings in offices, accommodation, and hospital settings and not taken the aforementioned holistically. This study compared four green-certified buildings -one residential green building, one green hospital, and one green school- with conventional structures in Tehran, Iran, by means of a questionnaire spread among those utilizing these buildings, and assessing their productivity and health rate as opposed to the time they resided, worked in conventional buildings. The results demonstrated higher scores pertaining to productivity and physical and mental wellness as a consequence of better indoor environmental quality (IEQ), natural lighting, design, and sustainability of these buildings against non-green buildings. In addition, ancillary matters -environmental, financial, intellectual, emotional, social, and spiritual dimensions of participants- were indirectly evaluated, and the same results were produced.

Keywords: green building, LEED, productivity, physical and mental health, indoor environmental quality

Procedia PDF Downloads 114
3736 Mobility and Speciation of Iron in the Alluvial Sheet of Nil River (North-Eastern Algerian)

Authors: S. Benessam, T. H. Debieche, S. Amiour, A. Chine, S. Khelili

Abstract:

Iron is naturally present in groundwater, it comes from the dissolution of the geological formations (clay, schist, mica-schist, gneiss…). Its chemical form and mobility in water are controlled mainly by two physicochemical parameters (Eh and pH). In order to determine its spatiotemporal evolution in groundwater, a two-monthly monitoring of the physicochemical parameters and major elements in the water of the alluvial sheet of Nil river (North-eastern Algerian) was carried out during the period from November 2013 to January 2015. The results show that iron is present in weak concentrations in the upstream part of the alluvial sheet and with raised concentrations, which can exceed the standard of potable drinking water (0.2 mg/L), in the central and downstream parts of the alluvial sheet. This variation of the concentrations is related to the important variation of Eh between the upstream part (200 mV) where the aquiver is unconfined (oxidizing medium) and the central and downstream parts (-100 mV) where the aquifer is confined (reducing medium). Iron in the oxidizing part is presented with the complexes form, where it precipitates or/and adsorbed by the geological formations. On the other hand in the reducing parts, it is released in water. In this study, one will discuss also the mobility and the chemical forms of iron according to the rains and pumping.

Keywords: groundwater, iron, mobility, speciation

Procedia PDF Downloads 330