Search results for: game outcome prediction
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4755

Search results for: game outcome prediction

4515 Simulating the Interaction of Strategy Development and Project Delivery

Authors: Nipun Agarwal, David Paul, Fareed Un Din

Abstract:

Every organization develops a strategy that needs to be implemented and is undertaken through project delivery. In essence, project requirements should exactly replicate an organization’s strategy. In reality this does not happen, and behavioral factors deviate the project delivery from the strategic objectives. This occurs as project stakeholders can have competing objectives. Resultantly, requirements that are implemented through projects are less aligned to the strategy. This paper develops a game theoretic model to simulate why such deviations occur. That explains the difference between strategy development and implementation.

Keywords: strategy, simulation, project management, game theory

Procedia PDF Downloads 138
4514 Hybrid Fuzzy Weighted K-Nearest Neighbor to Predict Hospital Readmission for Diabetic Patients

Authors: Soha A. Bahanshal, Byung G. Kim

Abstract:

Identification of patients at high risk for hospital readmission is of crucial importance for quality health care and cost reduction. Predicting hospital readmissions among diabetic patients has been of great interest to many researchers and health decision makers. We build a prediction model to predict hospital readmission for diabetic patients within 30 days of discharge. The core of the prediction model is a modified k Nearest Neighbor called Hybrid Fuzzy Weighted k Nearest Neighbor algorithm. The prediction is performed on a patient dataset which consists of more than 70,000 patients with 50 attributes. We applied data preprocessing using different techniques in order to handle data imbalance and to fuzzify the data to suit the prediction algorithm. The model so far achieved classification accuracy of 80% compared to other models that only use k Nearest Neighbor.

Keywords: machine learning, prediction, classification, hybrid fuzzy weighted k-nearest neighbor, diabetic hospital readmission

Procedia PDF Downloads 186
4513 Analysing the Variables That Affect Digital Game-Based L2 Vocabulary Learning

Authors: Jose Ramon Calvo-Ferrer

Abstract:

Video games have been extensively employed in educational contexts to teach contents and skills, upon the premise that they engage students and provide instant feedback, which makes them adequate tools in the field of education and training. Term frequency, along with metacognition and implicit corrective feedback, has often been identified as powerful variables in the learning of vocabulary in a foreign language. This study analyses the learning of L2 mobile operating system terminology by a group of students and uses the data collected by the video game The Conference Interpreter to identify the predictive strength of term frequency (times a term is shown), positive metacognition (times a right answer is provided), and negative metacognition (times a term is shown as wrong) regarding L2 vocabulary learning and perceived learning outcomes. The regression analysis shows that the factor ‘positive metacognition’ is a positive predictor of both dependent variables, whereas the other factors seem to have no statistical effect on any of them.

Keywords: digital game-based learning, feedback, metacognition, frequency, video games

Procedia PDF Downloads 156
4512 Using High Performance Computing for Online Flood Monitoring and Prediction

Authors: Stepan Kuchar, Martin Golasowski, Radim Vavrik, Michal Podhoranyi, Boris Sir, Jan Martinovic

Abstract:

The main goal of this article is to describe the online flood monitoring and prediction system Floreon+ primarily developed for the Moravian-Silesian region in the Czech Republic and the basic process it uses for running automatic rainfall-runoff and hydrodynamic simulations along with their calibration and uncertainty modeling. It takes a long time to execute such process sequentially, which is not acceptable in the online scenario, so the use of high-performance computing environment is proposed for all parts of the process to shorten their duration. Finally, a case study on the Ostravice river catchment is presented that shows actual durations and their gain from the parallel implementation.

Keywords: flood prediction process, high performance computing, online flood prediction system, parallelization

Procedia PDF Downloads 492
4511 Examining the Independent Effects of Early Exposure to Game Consoles and Parent-Child Activities on Psychosocial Development

Authors: Rosa S. Wong, Keith T. S. Tung, Frederick K. Ho, Winnie W. Y. Tso, King-wa Fu, Nirmala Rao, Patrick Ip

Abstract:

As technology advances, exposures in early childhood are no longer confined to stimulations in the surrounding physical environments. Children nowadays are also subject to influences from the digital world. In particular, early access to game consoles can cause risks to child development, especially when the game is not developmentally appropriate for young children. Overstimulation is possible and could impair brain development. On the other hand, recreational parent-child activities, including outdoor activities and visits to museums, require child interaction with parents, which is beneficial for developing adaptive emotion regulation and social skills. Given the differences between these two types of exposures, this study investigated and compared the independent effects of early exposure to a game console and early play-based parent-child activities on children’s long-term psychosocial outcomes. This study used data from a subset of children (n=304, 142 male and 162 female) in the longitudinal cohort study, which studied the long-term impact of family socioeconomic status on child development. In 2012/13, we recruited a group of children at Kindergarten 3 (K3) randomly from Hong Kong local kindergartens and collected data regarding their duration of exposure to game console and recreational parent-child activities at that time. In 2018/19, we re-surveyed the parents of these children who were matriculated as Form 1 (F1) students (ages ranging from 11 to 13 years) in secondary schools and asked the parents to rate their children’s psychosocial problems in F1. Linear regressions were conducted to examine the associations between early exposures and adolescent psychosocial problems with and without adjustment for child gender and K3 family socioeconomic status. On average, K3 children spent about 42 minutes on a game console every day and had 2-3 recreational activities with their parents every week. Univariate analyses showed that more time spent on game consoles at K3 was associated with more psychosocial difficulties in F1 particularly more externalizing problems. The effect of early exposure to game console on externalizing behavior remained significant (B=0.59, 95%CI: 0.15 to 1.03, p=0.009) after adjusting for recreational parent-child activities and child gender. For recreational parent-child activities at K3, its effect on overall psychosocial difficulties became insignificant after adjusting for early exposure to game consoles and child gender. However, it was found to have significant protective effect on externalizing problems (B=-0.65, 95%CI: -1.23 to -0.07, p=0.028) even after adjusting for the confounders. Early exposure to game consoles has negative impact on children’s psychosocial health, whereas play-based parent-child activities can foster positive psychosocial outcomes. More efforts should be directed to propagate the risks and benefits of these activities and urge the parents and caregivers to replace child-alone screen time with parent-child play time in daily routine.

Keywords: early childhood, electronic device, parenting, psychosocial wellbeing

Procedia PDF Downloads 167
4510 A Game of Information in Defense/Attack Strategies: Case of Poisson Attacks

Authors: Asma Ben Yaghlane, Mohamed Naceur Azaiez

Abstract:

In this paper, we briefly introduce the concept of Poisson attacks in the case of defense/attack strategies where attacks are assumed to be continuous. We suggest a game model in which the attacker will combine both criteria of a sufficient confidence level of a successful attack and a reasonably small size of the estimation error in order to launch an attack. Here, estimation error arises from assessing the system failure upon attack using aggregate data at the system level. The corresponding error is referred to as aggregation error. On the other hand, the defender will attempt to deter attack by making one or both criteria inapplicable. The defender will build his/her strategy by both strengthening the targeted system and increasing the size of error. We will formulate the defender problem based on appropriate optimization models. The attacker will opt for a Bayesian updating in assessing the impact on the improvement made by the defender. Then, the attacker will evaluate the feasibility of the attack before making the decision of whether or not to launch it. We will provide illustrations to better explain the process.

Keywords: attacker, defender, game theory, information

Procedia PDF Downloads 468
4509 Prediction of PM₂.₅ Concentration in Ulaanbaatar with Deep Learning Models

Authors: Suriya

Abstract:

Rapid socio-economic development and urbanization have led to an increasingly serious air pollution problem in Ulaanbaatar (UB), the capital of Mongolia. PM₂.₅ pollution has become the most pressing aspect of UB air pollution. Therefore, monitoring and predicting PM₂.₅ concentration in UB is of great significance for the health of the local people and environmental management. As of yet, very few studies have used models to predict PM₂.₅ concentrations in UB. Using data from 0:00 on June 1, 2018, to 23:00 on April 30, 2020, we proposed two deep learning models based on Bayesian-optimized LSTM (Bayes-LSTM) and CNN-LSTM. We utilized hourly observed data, including Himawari8 (H8) aerosol optical depth (AOD), meteorology, and PM₂.₅ concentration, as input for the prediction of PM₂.₅ concentrations. The correlation strengths between meteorology, AOD, and PM₂.₅ were analyzed using the gray correlation analysis method; the comparison of the performance improvement of the model by using the AOD input value was tested, and the performance of these models was evaluated using mean absolute error (MAE) and root mean square error (RMSE). The prediction accuracies of Bayes-LSTM and CNN-LSTM deep learning models were both improved when AOD was included as an input parameter. Improvement of the prediction accuracy of the CNN-LSTM model was particularly enhanced in the non-heating season; in the heating season, the prediction accuracy of the Bayes-LSTM model slightly improved, while the prediction accuracy of the CNN-LSTM model slightly decreased. We propose two novel deep learning models for PM₂.₅ concentration prediction in UB, Bayes-LSTM, and CNN-LSTM deep learning models. Pioneering the use of AOD data from H8 and demonstrating the inclusion of AOD input data improves the performance of our two proposed deep learning models.

Keywords: deep learning, AOD, PM2.5, prediction, Ulaanbaatar

Procedia PDF Downloads 48
4508 Exploring Chess Game AI Features Application

Authors: Bashayer Almalki, Mayar Bajrai, Dana Mirah, Kholood Alghamdi, Hala Sanyour

Abstract:

This research aims to investigate the features of an AI chess app that are most preferred by users. A questionnaire was used as the methodology to gather responses from a varied group of participants. The questionnaire consisted of several questions related to the features of the AI chess app. The responses were analyzed using descriptive statistics and factor analysis. The findings indicate that the most preferred features of an AI chess app are the ability to play against the computer, the option to adjust the difficulty level, and the availability of tutorials and puzzles. The results of this research could be useful for developers of AI chess apps to enhance the user experience and satisfaction.

Keywords: chess, game, application, computics

Procedia PDF Downloads 68
4507 To Prepare a Remedial Teaching Programme for Dyslexic Students of English and Marathi Medium Schools and Study Its Effect on Their Learning Outcome

Authors: Khan Zeenat, S. B. Dandegaonkar

Abstract:

Dyslexia is a neurological disorder which affects the reading and writing ability of children. A sample of 72 dyslexic children (36 from English medium and 36 from Marathi medium schools) of class V from English and Marathi medium schools were selected. The Experimental method was used to study the effect of Remedial Teaching Programme on the Learning outcome of Dyslexic students. The findings showed that there is a Positive effect of remedial teaching programme on the Learning outcome of English and Marathi medium students.

Keywords: remedial teaching, Dyslexic students, learning outcome, neurological

Procedia PDF Downloads 520
4506 Life Prediction of Condenser Tubes Applying Fuzzy Logic and Neural Network Algorithms

Authors: A. Majidian

Abstract:

The life prediction of thermal power plant components is necessary to prevent the unexpected outages, optimize maintenance tasks in periodic overhauls and plan inspection tasks with their schedules. One of the main critical components in a power plant is condenser because its failure can affect many other components which are positioned in downstream of condenser. This paper deals with factors affecting life of condenser. Failure rates dependency vs. these factors has been investigated using Artificial Neural Network (ANN) and fuzzy logic algorithms. These algorithms have shown their capabilities as dynamic tools to evaluate life prediction of power plant equipments.

Keywords: life prediction, condenser tube, neural network, fuzzy logic

Procedia PDF Downloads 351
4505 Gamification Using Stochastic Processes: Engage Children to Have Healthy Habits

Authors: Andre M. Carvalho, Pedro Sebastiao

Abstract:

This article is based on a dissertation that intends to analyze and make a model, intelligently, algorithms based on stochastic processes of a gamification application applied to marketing. Gamification is used in our daily lives to engage us to perform certain actions in order to achieve goals and gain rewards. This strategy is an increasingly adopted way to encourage and retain customers through game elements. The application of gamification aims to encourage children between 6 and 10 years of age to have healthy habits and the purpose of serving as a model for use in marketing. This application was developed in unity; we implemented intelligent algorithms based on stochastic processes, web services to respond to all requests of the application, a back-office website to manage the application and the database. The behavioral analysis of the use of game elements and stochastic processes in children’s motivation was done. The application of algorithms based on stochastic processes in-game elements is very important to promote cooperation and to ensure fair and friendly competition between users which consequently stimulates the user’s interest and their involvement in the application and organization.

Keywords: engage, games, gamification, randomness, stochastic processes

Procedia PDF Downloads 329
4504 Communities’ Attitudes and Perceptions of Protected Areas in South Africa: Insights from the Somkhanda Game Reserve

Authors: Sakhile Nsukwini, Urmilla Bob

Abstract:

Meaningful community participation is essential to the long-term success of protected areas. Hence, it is important to understand what drives neighbouring communities’ attitudes and perceptions towards protected areas. This study sought to determine local community attitudes towards conservation and protected areas, as well as their perceptions of benefits and participation at Somkhanda Game Reserve. Semi-structured interviews were held with experienced park officials, while a structured household survey and focus group discussions were conducted across two surrounding villages. The results highlighted a number of interesting findings, including support for biodiversity conservation and protected areas balanced by considerable negativity towards the Somkhanda Game Reserve itself. It was also determined that despite stated co-management policies, community residents perceived there was little meaningful participation, and benefits were poorly communicated and unfairly distributed. Practical suggestions were made for cooperatively developing more effective participation with the communities, despite limited available resources.

Keywords: communities, protected areas, perceptions, co-management, land restitution

Procedia PDF Downloads 114
4503 Wind Speed Prediction Using Passive Aggregation Artificial Intelligence Model

Authors: Tarek Aboueldahab, Amin Mohamed Nassar

Abstract:

Wind energy is a fluctuating energy source unlike conventional power plants, thus, it is necessary to accurately predict short term wind speed to integrate wind energy in the electricity supply structure. To do so, we present a hybrid artificial intelligence model of short term wind speed prediction based on passive aggregation of the particle swarm optimization and neural networks. As a result, improvement of the prediction accuracy is obviously obtained compared to the standard artificial intelligence method.

Keywords: artificial intelligence, neural networks, particle swarm optimization, passive aggregation, wind speed prediction

Procedia PDF Downloads 450
4502 SNR Classification Using Multiple CNNs

Authors: Thinh Ngo, Paul Rad, Brian Kelley

Abstract:

Noise estimation is essential in today wireless systems for power control, adaptive modulation, interference suppression and quality of service. Deep learning (DL) has already been applied in the physical layer for modulation and signal classifications. Unacceptably low accuracy of less than 50% is found to undermine traditional application of DL classification for SNR prediction. In this paper, we use divide-and-conquer algorithm and classifier fusion method to simplify SNR classification and therefore enhances DL learning and prediction. Specifically, multiple CNNs are used for classification rather than a single CNN. Each CNN performs a binary classification of a single SNR with two labels: less than, greater than or equal. Together, multiple CNNs are combined to effectively classify over a range of SNR values from −20 ≤ SNR ≤ 32 dB.We use pre-trained CNNs to predict SNR over a wide range of joint channel parameters including multiple Doppler shifts (0, 60, 120 Hz), power-delay profiles, and signal-modulation types (QPSK,16QAM,64-QAM). The approach achieves individual SNR prediction accuracy of 92%, composite accuracy of 70% and prediction convergence one order of magnitude faster than that of traditional estimation.

Keywords: classification, CNN, deep learning, prediction, SNR

Procedia PDF Downloads 133
4501 Evaluation of Spatial Distribution Prediction for Site-Scale Soil Contaminants Based on Partition Interpolation

Authors: Pengwei Qiao, Sucai Yang, Wenxia Wei

Abstract:

Soil pollution has become an important issue in China. Accurate spatial distribution prediction of pollutants with interpolation methods is the basis for soil remediation in the site. However, a relatively strong variability of pollutants would decrease the prediction accuracy. Theoretically, partition interpolation can result in accurate prediction results. In order to verify the applicability of partition interpolation for a site, benzo (b) fluoranthene (BbF) in four soil layers was adopted as the research object in this paper. IDW (inverse distance weighting)-, RBF (radial basis function)-and OK (ordinary kriging)-based partition interpolation accuracies were evaluated, and their influential factors were analyzed; then, the uncertainty and applicability of partition interpolation were determined. Three conclusions were drawn. (1) The prediction error of partitioned interpolation decreased by 70% compared to unpartitioned interpolation. (2) Partition interpolation reduced the impact of high CV (coefficient of variation) and high concentration value on the prediction accuracy. (3) The prediction accuracy of IDW-based partition interpolation was higher than that of RBF- and OK-based partition interpolation, and it was suitable for the identification of highly polluted areas at a contaminated site. These results provide a useful method to obtain relatively accurate spatial distribution information of pollutants and to identify highly polluted areas, which is important for soil pollution remediation in the site.

Keywords: accuracy, applicability, partition interpolation, site, soil pollution, uncertainty

Procedia PDF Downloads 144
4500 Effect of Modification and Expansion on Emergence of Cooperation in Demographic Multi-Level Donor-Recipient Game

Authors: Tsuneyuki Namekata, Yoko Namekata

Abstract:

It is known that the mean investment evolves from a very low initial value to some high level in the Continuous Prisoner's Dilemma. We examine how the cooperation level evolves from a low initial level to a high level in our Demographic Multi-level Donor-Recipient situation. In the Multi-level Donor-Recipient game, one player is selected as a Donor and the other as a Recipient randomly. The Donor has multiple cooperative moves and one defective move. A cooperative move means the Donor pays some cost for the Recipient to receive some benefit. The more cooperative move the Donor takes, the higher cost the Donor pays and the higher benefit the Recipient receives. The defective move has no effect on them. Two consecutive Multi-level Donor-Recipient games, one as a Donor and the other as a Recipient, can be viewed as a discrete version of the Continuous Prisoner's Dilemma. In the Demographic Multi-level Donor-Recipient game, players are initially distributed spatially. In each period, players play multiple Multi-level Donor-Recipient games against other players. He leaves offspring if possible and dies because of negative accumulated payoff of him or his lifespan. Cooperative moves are necessary for the survival of the whole population. There is only a low level of cooperative move besides the defective move initially available in strategies of players. A player may modify and expand his strategy by his recent experiences or practices. We distinguish several types of a player about modification and expansion. We show, by Agent-Based Simulation, that introducing only the modification increases the emergence rate of cooperation and introducing both the modification and the expansion further increases it and a high level of cooperation does emerge in our Demographic Multi-level Donor-Recipient Game.

Keywords: agent-based simulation, donor-recipient game, emergence of cooperation, spatial structure, TFT, TF2T

Procedia PDF Downloads 370
4499 Lies of Police Interrogators in the Ultimatum Game

Authors: Eitan Elaad

Abstract:

The present study's purpose was to examine lyingand pretend fairness by police interrogators in sharing situations. Forty police officers and 40 laypeople from the community, all males, self-assessed their lie-telling ability, rated the frequency of their lies, evaluated the acceptability of lying, and indicated using rational and intuitive thinking while lying. Next, according to the ultimatum game procedure, participants were asked to share 100 points with a virtual target, either a male police interrogator or a male layman. Participantsallocated points to the target person bearing in mind that the other person must accept their offer. Participants' goal was to retain as many points as possible, and to this end, they could tell the target person that fewer than 100 points were available for distribution. The difference between the available 100 points and the sum of points designated for sharing defines lying. The ratio of offered and designated points defines pretend fairness. Results indicate that those police officers lied more than laypeople. Similar results emergedeven when the target person was a police interrogator. However, police interrogators presented higher pretend fairness than laypeople. The higher pretend fairness may be in line with interrogation tactics of persuasion used in the criminal interrogation. Higher-lying frequency reported by police interrogators compared with laypeople support the present results. Finally, lie acceptability predicted lying in the ultimatum game. Specifically, participants who rated lying as more acceptable tended to lie more than low acceptability raters.

Keywords: lying, police interrogators, lie acceptability, ultimatum game, pretend fairness

Procedia PDF Downloads 153
4498 Uplink Throughput Prediction in Cellular Mobile Networks

Authors: Engin Eyceyurt, Josko Zec

Abstract:

The current and future cellular mobile communication networks generate enormous amounts of data. Networks have become extremely complex with extensive space of parameters, features and counters. These networks are unmanageable with legacy methods and an enhanced design and optimization approach is necessary that is increasingly reliant on machine learning. This paper proposes that machine learning as a viable approach for uplink throughput prediction. LTE radio metric, such as Reference Signal Received Power (RSRP), Reference Signal Received Quality (RSRQ), and Signal to Noise Ratio (SNR) are used to train models to estimate expected uplink throughput. The prediction accuracy with high determination coefficient of 91.2% is obtained from measurements collected with a simple smartphone application.

Keywords: drive test, LTE, machine learning, uplink throughput prediction

Procedia PDF Downloads 155
4497 External Validation of Risk Prediction Score for Candidemia in Critically Ill Patients: A Retrospective Observational Study

Authors: Nurul Mazni Abdullah, Saw Kian Cheah, Raha Abdul Rahman, Qurratu 'Aini Musthafa

Abstract:

Purpose: Candidemia was associated with high mortality in the critically ill patients. Early candidemia prediction is imperative for preemptive antifungal treatment. This study aimed to externally validate the candidemia risk prediction scores by Jameran et al. (2021) by identifying risk factors of acute kidney injury, renal replacement therapy, parenteral nutrition, and multifocal candida colonization. Methods: This single-center, retrospective observational study included all critically ill patients admitted to the intensive care unit (ICU) in a tertiary referral center from January 2018 to December 2023. The study evaluated the candidemia risk prediction score performance by analysing the occurrence of candidemia within the study period. Patients’ demographic characteristics, comorbidities, SOFA scores, and ICU outcomes were analyzed. Patients who were diagnosed with candidemia prior to ICU admission were excluded. Results: A total of 500 patients were analyzed with 2 dropouts due to incomplete data. Validation analysis showed that the candidemia risk prediction score has a sensitivity of 75.00% (95% CI: 59.66-86.81), specificity of 65.35% (95% CI: 60.78-69.72), positive predictive value of 17.28, and negative predictive value of 96.44. The incidence of candidemia was 8.86%, with no significant differences in demographics or comorbidities except for higher SOFA scoring in the candidemia group. The candidemia group showed significantly longer ICU, hospital LOS, and higher ICU in-hospital mortality. Conclusion: This study concluded the candidemia risk prediction score by Jameran et al. (2021) had good sensitivity and a high negative prediction value. Thus, the risk prediction score was validated for candidemia prediction in critically ill patients.

Keywords: Candidemia, intensive care, acute kidney injury, clinical prediction rule, incidence

Procedia PDF Downloads 7
4496 Gas Network Noncooperative Game

Authors: Teresa Azevedo PerdicoúLis, Paulo Lopes Dos Santos

Abstract:

The conceptualisation of the problem of network optimisation as a noncooperative game sets up a holistic interactive approach that brings together different network features (e.g., com-pressor stations, sources, and pipelines, in the gas context) where the optimisation objectives are different, and a single optimisation procedure becomes possible without having to feed results from diverse software packages into each other. A mathematical model of this type, where independent entities take action, offers the ideal modularity and subsequent problem decomposition in view to design a decentralised algorithm to optimise the operation and management of the network. In a game framework, compressor stations and sources are under-stood as players which communicate through network connectivity constraints–the pipeline model. That is, in a scheme similar to tatonnementˆ, the players appoint their best settings and then interact to check for network feasibility. The devolved degree of network unfeasibility informs the players about the ’quality’ of their settings, and this two-phase iterative scheme is repeated until a global optimum is obtained. Due to network transients, its optimisation needs to be assessed at different points of the control interval. For this reason, the proposed approach to optimisation has two stages: (i) the first stage computes along the period of optimisation in order to fulfil the requirement just mentioned; (ii) the second stage is initialised with the solution found by the problem computed at the first stage, and computes in the end of the period of optimisation to rectify the solution found at the first stage. The liability of the proposed scheme is proven correct on an abstract prototype and three example networks.

Keywords: connectivity matrix, gas network optimisation, large-scale, noncooperative game, system decomposition

Procedia PDF Downloads 152
4495 Study on the Model Predicting Post-Construction Settlement of Soft Ground

Authors: Pingshan Chen, Zhiliang Dong

Abstract:

In order to estimate the post-construction settlement more objectively, the power-polynomial model is proposed, which can reflect the trend of settlement development based on the observed settlement data. It was demonstrated by an actual case history of an embankment, and during the prediction. Compared with the other three prediction models, the power-polynomial model can estimate the post-construction settlement more accurately with more simple calculation.

Keywords: prediction, model, post-construction settlement, soft ground

Procedia PDF Downloads 425
4494 An Auxiliary Technique for Coronary Heart Disease Prediction by Analyzing Electrocardiogram Based on ResNet and Bi-Long Short-Term Memory

Authors: Yang Zhang, Jian He

Abstract:

Heart disease is one of the leading causes of death in the world, and coronary heart disease (CHD) is one of the major heart diseases. Electrocardiogram (ECG) is widely used in the detection of heart diseases, but the traditional manual method for CHD prediction by analyzing ECG requires lots of professional knowledge for doctors. This paper introduces sliding window and continuous wavelet transform (CWT) to transform ECG signals into images, and then ResNet and Bi-LSTM are introduced to build the ECG feature extraction network (namely ECGNet). At last, an auxiliary system for coronary heart disease prediction was developed based on modified ResNet18 and Bi-LSTM, and the public ECG dataset of CHD from MIMIC-3 was used to train and test the system. The experimental results show that the accuracy of the method is 83%, and the F1-score is 83%. Compared with the available methods for CHD prediction based on ECG, such as kNN, decision tree, VGGNet, etc., this method not only improves the prediction accuracy but also could avoid the degradation phenomenon of the deep learning network.

Keywords: Bi-LSTM, CHD, ECG, ResNet, sliding window

Procedia PDF Downloads 89
4493 Exploring the Impact of Additive Manufacturing on Supply Chains: A Game-Theoretic Analysis of Manufacturer-Retailer Dynamics

Authors: Mohammad Ebrahim Arbabian

Abstract:

This paper investigates the impact of 3D printing, also known as additive manufacturing, on a multi-item supply chain comprising a manufacturer and retailer. Operating under a wholesale-price contract and catering to stochastic customer demand, this study delves into the largely unexplored realm of how 3D printing technology reshapes supply chain dynamics. A distinguishing aspect of 3D printing is its versatility in producing various product types, yet its slower production pace compared to traditional methods poses a challenge. We analyze the trade-off between 3D printing's limited capacity and its enhancement of production flexibility. By delineating the economic circumstances favoring 3D printing adoption by the manufacturer, we establish the Stackelberg equilibrium in the retailer-manufacturer game. Additionally, we determine optimal order quantities for the retailer considering 3D printing as an option for the manufacturer, ascertain optimal wholesale prices in the presence of 3D printing, and compute optimal profits for both parties involved in the supply chain.

Keywords: additive manufacturing, supply chain management, contract theory, Stackelberg game, optimization

Procedia PDF Downloads 61
4492 Mobile Games Applications Android-Based Physics Education to Improve Student Motivation and Interest in Learning Physics

Authors: Rizky Dwi A, Mikha Herlina Pi

Abstract:

Physics lessons for high school students, especially in Indonesia is less desirable because many people believe that physics is very difficult, especially the development of increasingly sophisticated era make online gaming more attractive many people especially school children with a variety of increasingly sophisticated gadgets. Therefore, if those two things combined to attract students in physics, the physics-based educational game android can motivate students' interest and understanding of the physics because while playing, they can also learn physics.

Keywords: education, game physics, interest, student's motivation

Procedia PDF Downloads 281
4491 Correlation between Fetal Umbilical Cord pH and the Day, the Time and the Team Hand over Times: An Analysis of 6929 Deliveries of the Ulm University Hospital

Authors: Sabine Pau, Sophia Volz, Emanuel Bauer, Amelie De Gregorio, Frank Reister, Wolfgang Janni, Florian Ebner

Abstract:

Purpose: The umbilical cord pH is a well evaluated contributor for prediction of neonatal outcome. This study correlates nenonatal umbilical cord pH with the weekday of delivery, the time of birth as well as the staff hand over times (midwifes and doctors). Material and Methods: This retrospective study included all deliveries of a 20 year period (1994-2014) at our primary obstetric center. All deliveries with a newborn cord pH under 7,20 were included in this analysis (6929 of 48974 deliveries (14,4%)). Further subgroups were formed according to the pH (< 7,05; 7,05 – 7,09; 7,10 – 7,14; 7,15 – 7,19). The data were then separated in day- and night time (8am-8pm/8pm-8am) for a first analysis. Finally, handover times were defined at 6 am – 6.30 am, 2 pm -2.30 pm, 10 pm- 10.30 pm (midwives) and for the doctors 8-8.30 am, 4 – 4.30 pm (Monday- Thursday); 2 pm -2.30 pm (Friday) and 9 am – 9.30 am (weekend). Routinely a shift consists of at least three doctors as well as three midwives. Results: During the last 20 years, 6929 neonates were born with an umbilical cord ph < 7,20 ( < 7,05 : 7,1%; 7,05 – 7,09 : 10,9%; 7,10 – 7,14 : 30,2%; 7,15 – 7,19:51,8%). There was no significant difference between either night/day delivery (p = 0.408), delivery on different weekdays (p = 0.253), delivery between Monday to Thursday, Friday and the weekend (p = 0.496 ) or delivery during the handover times of the doctors as well as the midwives (p = 0.221). Even the standard deviation showed no differences between the groups. Conclusion: Despite an increased workload over the last 20 years, the standard of care remains high even during the handover times and night shifts. This applies for midwives and doctors. As the neonatal outcome depends on various factors, further studies are necessary to take more factors influencing the fetal outcome into consideration. In order to maintain this high standard of care, an adaption of work-load and changing conditions is necessary.

Keywords: delivery, fetal umbilical cord pH, day time, hand over times

Procedia PDF Downloads 316
4490 Understanding Health-Related Properties of Grapes by Pharmacokinetic Modelling of Intestinal Absorption

Authors: Sophie N. Selby-Pham, Yudie Wang, Louise Bennett

Abstract:

Consumption of grapes promotes health and reduces the risk of chronic diseases due to the action of grape phytochemicals in regulation of Oxidative Stress and Inflammation (OSI). The bioefficacy of phytochemicals depends on their absorption in the human body. The time required for phytochemicals to achieve maximal plasma concentration (Tₘₐₓ) after oral intake reflects the time window of maximal bioefficacy of phytochemicals, with Tₘₐₓ dependent on physicochemical properties of phytochemicals. This research collated physicochemical properties of grape phytochemicals from white and red grapes to predict their Tₘₐₓ using pharmacokinetic modelling. The predicted values of Tₘₐₓ were then compared to the measured Tₘₐₓ collected from clinical studies to determine the accuracy of prediction. In both liquid and solid intake forms, white grapes exhibit a shorter Tₘₐₓ range (0.5-2.5 h) versus red grapes (1.5-5h). The prediction accuracy of Tₘₐₓ for grape phytochemicals was 33.3% total error of prediction compared to the mean, indicating high prediction accuracy. Pharmacokinetic modelling allows prediction of Tₘₐₓ without costly clinical trials, informing dosing frequency for sustained presence of phytochemicals in the body to optimize the health benefits of phytochemicals.

Keywords: absorption kinetics, phytochemical, phytochemical absorption prediction model, Vitis vinifera

Procedia PDF Downloads 148
4489 Development of National Education Policy-2020 Aligned Student-Centric-Outcome-Based-Curriculum of Engineering Programmes of Polytechnics in India: Faculty Preparedness and Challenges Ahead

Authors: Jagannath P. Tegar

Abstract:

The new National Education Policy (NEP) 2020 of Govt. of India has envisaged a major overhaul of the education system of India, in particular, the revamping of the Curriculum of Higher Education. In this process, the faculty members of the Indian universities and institutions have a challenging role in developing the curriculum, which is a shift from the traditional (content-based) curriculum to a student-centric- outcome-based Curriculum (SC-OBC) to be implemented in all of the Universities and institutions. The efforts and initiatives on the design and implementation of SC-OBC are remarkable in the engineering and technical education landscape of the country, but it is still in its early stages and many more steps are needed for the successful adaptation in every level of Higher Education. The premier institute of Govt. of India (NITTTR, Bhopal) has trained and developed the capacity and capability among the teachers of Polytechnics on the design and development of Student Centric - Outcome Based Curriculum and also providing academic consultancy for reforming curriculum in line of NEP- 2020 envisions for the states such as Chhattisgarh, Bihar and Maharashtra to make them responsibly ready for such a new shift in Higher Education. This research-based paper is on three main aspects: 1) the level of acceptance and preparedness of teachers /faculty towards NEP-2020 and student-centred outcome-based learning. 2) the extent of implementing NEP-2020 and student-centered outcome-based learning at Indian institutions/ universities and 3) the challenges of implementing NEP-2020 and student-centered outcome-based learning outcome-based education in the Indian context. The paper content will inspire curriculum designers and developers to prepare SC-OBC that meets the specific needs of industry and society at large, which is intended in the NEP-2020 of Govt. of India

Keywords: outcome based curriculum, student centric learning, national education policy -2020, implementation of nep-2020. outcome based learning, higher education curriculum

Procedia PDF Downloads 80
4488 The Effect Training Program on Mixed Contractions on Both the Maximum Force and Explosive Force of the Lower Limbs Conducted Study to the Football Players Under the Age of 17 Years-Tiaret, Algeria

Authors: Saidia Houari

Abstract:

The game of football is one of the global sports activities that have witnessed a remarkable development in recent years in the physical, technical, rhetorical and psychological aspects, so the modern play in different teams and international teams quickly and forcefully in the exact technical performance, and this is due to the interest of international coaches. The good training of the players during the youth stage at the level of various aspects to develop all the techniques that have a great effectiveness in competitions according to scientific methods studied. The muscle strength plays a very important role achieving the performance player during the game and it is clear the need for the player in many situations, especially when jumping to hit the ball head or the goal on the goal or long passes of different types and in the performance of various skills by force and speed appropriate to the possession of the ball or the control of the court of the court while overcoming the body weight during the game it is known that the stronger the muscles of the athlete and the reduced joints injuries, and the strength increases energy saving such as Latin phosphate and glycogen, and develop the player for a game football volitional qualities of the most important of courage, determination And self-confidence. There are also some skill movements that can not be performed without a certain level of strength, so the development of power may affect the effectiveness of the long-term training system.

Keywords: trainning program, maximum force and expolosive force, lowers limbs, under 17 years

Procedia PDF Downloads 104
4487 Use of Visual, Animating Narrative in an Entrepreneurial Storytelling: A Case Study of Greenesignit! Card Game, Educational and Brainstorming Tool for Development of Sustainable Products

Authors: Maja S. Todorovic

Abstract:

This paper aims to promote entrepreneurial storytelling by exploring new ideas and learning practices. An entrepreneur needs to be a ‘storyteller’, an ‘epic hero’, capable of offering an emotional connection to his audience, a character with whom audience can identify with, rejoice, suffer, celebrate, fail – simply experience everything. In other words, a successful entrepreneur is giving tangible experience through his business story and that’s what makes his story and business alive. Use of mythology, eulogy, metaphor, epic, fairytales and cartoons, permeated with humor and sudden twists is a winning recipe for a business story that captures attention. In the business case of the Greenesignit! Card game, (educational and brainstorming tool for development of sustainable products) we will demonstrate how an entrepreneur successfully used visual narrative to communicate his story and at the same time as a vehicle to transmute his message in learning tool and product development.

Keywords: animating narrative, entrepreneur, Greeneisgnit! card game, visual storytelling

Procedia PDF Downloads 392
4486 A Hybrid Feature Selection Algorithm with Neural Network for Software Fault Prediction

Authors: Khalaf Khatatneh, Nabeel Al-Milli, Amjad Hudaib, Monther Ali Tarawneh

Abstract:

Software fault prediction identify potential faults in software modules during the development process. In this paper, we present a novel approach for software fault prediction by combining a feedforward neural network with particle swarm optimization (PSO). The PSO algorithm is employed as a feature selection technique to identify the most relevant metrics as inputs to the neural network. Which enhances the quality of feature selection and subsequently improves the performance of the neural network model. Through comprehensive experiments on software fault prediction datasets, the proposed hybrid approach achieves better results, outperforming traditional classification methods. The integration of PSO-based feature selection with the neural network enables the identification of critical metrics that provide more accurate fault prediction. Results shows the effectiveness of the proposed approach and its potential for reducing development costs and effort by detecting faults early in the software development lifecycle. Further research and validation on diverse datasets will help solidify the practical applicability of the new approach in real-world software engineering scenarios.

Keywords: feature selection, neural network, particle swarm optimization, software fault prediction

Procedia PDF Downloads 94