Search results for: electric automobiles
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1458

Search results for: electric automobiles

1218 Transition 1970 Volkswagen Beetle from Internal Combustion Engine Vehicle to Electric Vehicle, Modeling and Simulation

Authors: Jamil Khalil Izraqi

Abstract:

This paper investigates the transition of a 1970 Volkswagen Beetle from an internal combustion engine (ICE) to an EV using Matlab/Simulink modeling and simulation. The performance of the EV drivetrain system was simulated under various operating conditions, including standard and custom driving cycles in Turkey and Jordan (Amman), respectively. The results of this paper indicate that the transition is viable and that modeling and simulation can help in understanding the performance and efficiency of the electric drivetrain system, including battery pack, power electronics, and brushless direct current (BLDC) Motor.

Keywords: BLDC, buck-boost, inverter, SOC, drive-cycle

Procedia PDF Downloads 101
1217 Electrical Energy Harvesting Using Thermo Electric Generator for Rural Communities in India

Authors: N. Nandan A. M. Nagaraj, L. Sanjeev Kumar

Abstract:

In the rapidly growing population, the requirement of electrical power is increasing day by day. In order to meet the needs, we need to generate the power using alternate method. In this paper, a presentable approach is developed by analysis and can be implemented by utilizing heat energy, which is generated in numerous ways in some of the rural areas in India. The thermoelectric generator unit will be developed by combing with control circuits and converts, which is used to light the LED lamps. The temperature difference which is available in the kitchens, especially the exhaust pipes/chimneys of wooden fire stoves, where more heat is dissipated into the atmosphere, can be utilized for electrical power generation. Hence, the temperature rise of surroundings atmosphere can be reduced.

Keywords: thermo electric generator, LED, converts, temperature

Procedia PDF Downloads 142
1216 Packaging Improvement for Unit Cell Vanadium Redox Flow Battery (V-RFB)

Authors: A. C. Khor, M. R. Mohamed, M. H. Sulaiman, M. R. Daud

Abstract:

Packaging for vanadium redox flow battery is one of the key elements for successful implementation of flow battery in the electrical energy storage system. Usually the bulky battery size and low energy densities make this technology not available for mobility application. Therefore RFB with improved packaging size and energy capacity are highly desirable. This paper focuses on the study of packaging improvement for unit cell V-RFB to the application on Series Hybrid Electric Vehicle. Two different designs of 25 cm2 and 100 cm2 unit cell V-RFB at same current density are used for the sample in this investigation. Further suggestions on packaging improvement are highlighted.

Keywords: electric vehicle, redox flow battery, packaging, vanadium

Procedia PDF Downloads 434
1215 Principal Component Analysis Applied to the Electric Power Systems – Practical Guide; Practical Guide for Algorithms

Authors: John Morales, Eduardo Orduña

Abstract:

Currently the Principal Component Analysis (PCA) theory has been used to develop algorithms regarding to Electric Power Systems (EPS). In this context, this paper presents a practical tutorial of this technique detailed their concept, on-line and off-line mathematical foundations, which are necessary and desirables in EPS algorithms. Thus, features of their eigenvectors which are very useful to real-time process are explained, showing how it is possible to select these parameters through a direct optimization. On the other hand, in this work in order to show the application of PCA to off-line and on-line signals, an example step to step using Matlab commands is presented. Finally, a list of different approaches using PCA is presented, and some works which could be analyzed using this tutorial are presented.

Keywords: practical guide; on-line; off-line, algorithms, faults

Procedia PDF Downloads 563
1214 Evaluating Reliability Indices in 3 Critical Feeders at Lorestan Electric Power Distribution Company

Authors: Atefeh Pourshafie, Homayoun Bakhtiari

Abstract:

The main task of power distribution companies is to supply the power required by customers in an acceptable level of quality and reliability. Some key performance indicators for electric power distribution companies are those evaluating the continuity of supply within the network. More than other problems, power outages (due to lightning, flood, fire, earthquake, etc.) challenge economy and business. In addition, end users expect a reliable power supply. Reliability indices are evaluated on an annual basis by the specialized holding company of Tavanir (Power Produce, Transmission& distribution company of Iran) . Evaluation of reliability indices is essential for distribution companies, and with regard to the privatization of distribution companies, it will be of particular importance to evaluate these indices and to plan for their improvement in a not too distant future. According to IEEE-1366 standard, there are too many indices; however, the most common reliability indices include SAIFI, SAIDI and CAIDI. These indices describe the period and frequency of blackouts in the reporting period (annual or any desired timeframe). This paper calculates reliability indices for three sample feeders in Lorestan Electric Power Distribution Company and defines the threshold values in a ten-month period. At the end, strategies are introduced to reach the threshold values in order to increase customers' satisfaction.

Keywords: power, distribution network, reliability, outage

Procedia PDF Downloads 473
1213 Robust Control of Traction Motors based Electric Vehicles by Means of High-Gain

Authors: H. Mekki, A. Djerioui, S. Zeghlache, L. Chrifi-Alaoui

Abstract:

Induction motor (IM)Induction motor (IM) are nowadays widely used in industrial applications specially in electric vehicles (EVs) and traction locomotives, due to their high efficiency high speed and lifetime. However, since EV motors are easily influenced by un-certainties parameter variations and external load disturbance, both robust control techniques have received considerable attention during the past few decades. This paper present a robust controller design based sliding mode control (SMC) and high gain flux observer (HGO) for induction motor (IM) based Electric Vehicles (EV) drives. This control technique is obtained by the combination between the field oriented and the sliding mode control strategy and present remarkable dynamic performances just as a good robustness with respect to EV drives load torque. A high gain flux observer is also presented and associated in order to design sensorless control by estimating the rotor flux only using measurements of the stator voltages and currents. Simulations results are provided to evaluate the consistency and to show the effectiveness of the proposed SMC strategy also the performance of the HGO for Electric Vehicles system are nowadays widely used in industrial applications specially in electric vehicles (EVs) and traction locomotives, due to their high efficiency high speed and lifetime. However, since EV motors are easily influenced by un-certainties parameter variations and external load disturbance, both robust control techniques have received considerable attention during the past few decades. This paper present a robust controller design based sliding mode control (SMC) and high gain flux observer (HGO) for induction motor (IM) based Electric Vehicles (EV) drives. This control technique is obtained by the combination between the field oriented and the sliding mode control strategy and present remarkable dynamic performances just as a good robustness with respect to EV drives load torque. A high gain flux observer is also presented and associated in order to design sensorless control by estimating the rotor flux only using measurements of the stator voltages and currents. Simulations results are provided to evaluate the consistency and to show the effectiveness of the proposed SMC strategy also the performance of the HGO for Electric Vehicles system.

Keywords: electric vehicles, sliding mode control, induction motor drive, high gain observer

Procedia PDF Downloads 74
1212 Numerical Analysis of Liquid Metal Magnetohydrodynamic Flows in a Manifold with Three Sub-Channels

Authors: Meimei Wen, Chang Nyung Kim

Abstract:

In the current study, three-dimensional liquid metal (LM) magneto-hydrodynamic (MHD) flows in a manifold with three sub-channels under a uniform magnetic field are numerically investigated. In the manifold, the electrical current can cross channel walls, thus having influence on the flow distribution in each sub-channel. A case with various arrangements of electric conductivity for different parts of channel walls is considered, yielding different current distributions as well as flow distributions in each sub-channel. Here, the imbalance of mass flow rates in the three sub-channels is addressed. Meanwhile, predicted are detailed behaviors of the flow velocity, pressure, current and electric potential of LM MHD flows with three sub-channels. Commercial software CFX is used for the numerical simulation of LM MHD flows.

Keywords: CFX, liquid metal, manifold, MHD flow

Procedia PDF Downloads 344
1211 A Novel Multi-Objective Park and Ride Control Scheme Using Renewable Energy Sources: Cairo Case Study

Authors: Mohammed Elsayed Lotfy Elsayed Abouzeid, Tomonobu Senjyu

Abstract:

A novel multi-objective park and ride control approach is presented in this research. Park and ride will encourage the owners of the vehicles to leave their cars in the nearest points (on the edges of the crowded cities) and use public transportation facilities (train, bus, metro, or mon-rail) to reach their work inside the crowded city. The proposed control scheme is used to design electric vehicle charging stations (EVCS) to charge 1000 electric vehicles (EV) during their owners' work time. Cairo, Egypt is used as a case study. Photovoltaic (PV) and battery energy storage system (BESS) are used to meet the EVCS demand. Two multi-objective optimization techniques (MOGA and epsilon-MOGA) are utilized to get the optimal sizes of PV and BESS so as to meet the load demand and minimize the total life cycle cost. Detailed analysis and comparison are held to investigate the performance of the proposed control scheme using MATLAB.

Keywords: Battery Energy Storage System, Electric Vehicle, Park and Ride, Photovoltaic, Multi-objective

Procedia PDF Downloads 144
1210 The Severity of Electric Bicycle Injuries Compared to Classic Bicycle Injuries in Children: A Retrospective Review

Authors: Tali Capua, Karin Hermon, Miguel Glatstein, Oren Tavor, Ayelet Rimon

Abstract:

Background: Electric bicycles (E-bikes) are one of a wide range of light electric vehicles that provide convenient local transportation and attractive recreational opportunities. Along with their growing use worldwide, the E-bike related injury rate increases. To the best of our knowledge, this study is the first to specifically compare E-bike with classic bicycle related injuries in children. Methods: Data of all pediatric ( < 16 years of age) bicycle related injuries presenting to an urban level I trauma center between 2014 and 2015 were collected and analyzed. The recorded data included age, gender, details of the accident, as well severity of injury, medical diagnosis, and the outcome. Abbreviated Injury Score (AIS) and Injury Severity Score (ISS) were calculated for each patient. Data of E-bike related injuries and classic bicycle were then compared. Results: A total of 124 bicycle related injuries and 97 E-bike related injuries presented to the emergency department. Once pedestrians and bicycle passengers were removed, the groups of riders consisted of 111 bikers and 85 E-bikers. The mean age of bikers was 9.9 years (range 3-16 years) and of E-bikers was 13.7 years (range 7.5-16 years). Injuries to the head and the extremities were common in both groups. Compared to bikers, E-bikers had significantly more injuries to intra-abdominal organs (p = 0.04). Twenty patients (16%) with bicycle related injuries were admitted, and 13 (15%) patients with E-bike related injuries, of the latter group four underwent surgical intervention. ISS scores were low overall, but the injuries of higher severity (ISS > 9) were among the E-bikers. Conclusions: This study provides unique information which suggests that injuries in E-bikers tend to be more severe than in classic bikers. There is a need for regulation regarding the use of E-bikes to enhance the safety of both bikers and other road and pavement users.

Keywords: bicycle, electric bicycle, injury, pediatric, trauma

Procedia PDF Downloads 189
1209 The Effect of Acrylic Gel Grouting on Groundwater in Porous Media

Authors: S. Wagner, C. Boley, Y. Forouzandeh

Abstract:

When digging excavations, groundwater bearing layers are often encountered. In order to allow anhydrous excavation, soil groutings are carried out, which form a water-impermeable layer. As it is injected into groundwater areas, the effects of the materials used on the environment must be known. Developing an eco-friendly, economical and low viscous acrylic gel which has a sealing effect on groundwater is therefore a significant task. At this point the study begins. Basic investigations with the rheometer and a reverse column experiment have been performed with different mixing ratios of an acrylic gel. A dynamic rheology study was conducted to determine the time at which the gel still can be processed and the maximum gel strength is reached. To examine the effect of acrylic gel grouting on determine the parameters pH value, turbidity, electric conductivity, and total organic carbon on groundwater, an acrylic gel was injected in saturated sand filled the column. The structure was rinsed with a constant flow and the eluate was subsequently examined. The results show small changes in pH values and turbidity but there is a dependency between electric conductivity and total organic carbon. The curves of the two parameters react at the same time, which means that the electrical conductivity in the eluate can be measured constantly until the maximum is reached and only then must total organic carbon (TOC) samples be taken.

Keywords: acrylic gel grouting, dynamic rheology study, electric conductivity, total organic carbon

Procedia PDF Downloads 146
1208 Realization of a Temperature Based Automatic Controlled Domestic Electric Boiling System

Authors: Shengqi Yu, Jinwei Zhao

Abstract:

This paper presents a kind of analog circuit based temperature control system, which is mainly composed by threshold control signal circuit, synchronization signal circuit and trigger pulse circuit. Firstly, the temperature feedback signal function is realized by temperature sensor TS503F3950E. Secondly, the main control circuit forms the cycle controlled pulse signal to control the thyristor switching model. Finally two reverse paralleled thyristors regulate the output power by their switching state. In the consequence, this is a modernized and energy-saving domestic electric heating system.

Keywords: time base circuit, automatic control, zero-crossing trigger, temperature control

Procedia PDF Downloads 481
1207 Liquid Food Sterilization Using Pulsed Electric Field

Authors: Tanmaya Pradhan, K. Midhun, M. Joy Thomas

Abstract:

Increasing the shelf life and improving the quality are important objectives for the success of packaged liquid food industry. One of the methods by which this can be achieved is by deactivating the micro-organisms present in the liquid food through pasteurization. Pasteurization is done by heating, but some serious disadvantages such as the reduction in food quality, flavour, taste, colour, etc. were observed because of heat treatment, which leads to the development of newer methods instead of pasteurization such as treatment using UV radiation, high pressure, nuclear irradiation, pulsed electric field, etc. In recent years the use of the pulsed electric field (PEF) for inactivation of the microbial content in the food is gaining popularity. PEF uses a very high electric field for a short time for the inactivation of microorganisms, for which we require a high voltage pulsed power source. Pulsed power sources used for PEF treatments are usually in the range of 5kV to 50kV. Different pulse shapes are used, such as exponentially decaying and square wave pulses. Exponentially decaying pulses are generated by high power switches with only turn-on capacity and, therefore, discharge the total energy stored in the capacitor bank. These pulses have a sudden onset and, therefore, a high rate of rising but have a very slow decay, which yields extra heat, which is ineffective in microbial inactivation. Square pulses can be produced by an incomplete discharge of a capacitor with the help of a switch having both on/off control or by using a pulse forming network. In this work, a pulsed power-based system is designed with the help of high voltage capacitors and solid-state switches (IGBT) for the inactivation of pathogenic micro-organism in liquid food such as fruit juices. The high voltage generator is based on the Marx generator topology, which can produce variable amplitude, frequency, and pulse width according to the requirements. Liquid food is treated in a chamber where pulsed electric field is produced between stainless steel electrodes using the pulsed output voltage of the supply. Preliminary bacterial inactivation tests were performed by subjecting orange juice inoculated with Escherichia Coli bacteria. With the help of the developed pulsed power source and the chamber, the inoculated orange has been PEF treated. The voltage was varied to get a peak electric field up to 15kV/cm. For a total treatment time of 200µs, a 30% reduction in the bacterial count has been observed. The detailed results and analysis will be presented in the final paper.

Keywords: Escherichia coli bacteria, high voltage generator, microbial inactivation, pulsed electric field, pulsed forming line, solid-state switch

Procedia PDF Downloads 184
1206 Magneto-Electric Behavior a Couple Aluminum / Steel Xc48

Authors: A. Mekroud, A. Khemis, M. S. Mecibah

Abstract:

The tribological behavior of a pin of paramagnetic material (aluminum), rolling on a rotating disk made of ferromagnetic material (steel XC48) in the presence of an externally applied alternating magnetic field, with the passage of electric current were studied. All tests were performed using a conventional tribometer pin- disk. Structural characterization of the surfaces in contact, oxides and wear debris, by X-ray diffraction (θ-2θ angle), showed the significant effect of magnetic field on the activation of the contact surface of the pin in no ferromagnetic material. The absence of the magnetic field causes a change of wear mode.

Keywords: structural characterization of the surfaces, oxides and wear debris, X-ray diffraction

Procedia PDF Downloads 420
1205 A Regression Analysis Study of the Applicability of Side Scan Sonar based Safety Inspection of Underwater Structures

Authors: Chul Park, Youngseok Kim, Sangsik Choi

Abstract:

This study developed an electric jig for underwater structure inspection in order to solve the problem of the application of side scan sonar to underwater inspection, and analyzed correlations of empirical data in order to enhance sonar data resolution. For the application of tow-typed sonar to underwater structure inspection, an electric jig was developed. In fact, it was difficult to inspect a cross-section at the time of inspection with tow-typed equipment. With the development of the electric jig for underwater structure inspection, it was possible to shorten an inspection time over 20%, compared to conventional tow-typed side scan sonar, and to inspect a proper cross-section through accurate angle control. The indoor test conducted to enhance sonar data resolution proved that a water depth, the distance from an underwater structure, and a filming angle influenced a resolution and data quality. Based on the data accumulated through field experience, multiple regression analysis was conducted on correlations between three variables. As a result, the relational equation of sonar operation according to a water depth was drawn.

Keywords: underwater structure, SONAR, safety inspection, resolution

Procedia PDF Downloads 265
1204 Analysis of Brake System for Vehicle Off-Road

Authors: Elmo Thiago Lins Cöuras Ford, Valentina Alessandra Carvalho do Vale, José Ubiragi de Lima Mendes

Abstract:

In elapsing of the years it elaborates automobile it is developing automobiles more and more modern that, every year, the vehicles recently of the assembly lines, practically they push for the past produced models there is very little time. Those innovations didn't also pass unperceived in 0respect the safety of the vehicles. It is in this development apprenticeship the brakes systems equipped more and more with resources sophisticated. In that way, before of that context, this research tried to project a brake system for a vehicle off-road and to analyze your acting as the brakes efficiency: distances traveled and time, concluding with possible improvements in the system.

Keywords: brakes system, off-road, vehicle acting, automotive and mechanical engineering

Procedia PDF Downloads 484
1203 Experimental Study of the Fan Electric Drive Based on a Two-Speed Motor in Dynamic Modes

Authors: Makhsud Bobojanov, Dauletbek Rismukhamedov, Furkat Tuychiev, Khusniddin Shamsutdionov

Abstract:

The article presents the results of experimental study of a two-speed asynchronous motor 4A80B6/4U3 with pole-changing winding on a fan drive VSUN 160x74-0.55-4 in static and dynamic modes. A prototype of a pole-changing Motor was made based on the results of the calculation and the performance and mechanical characteristics of the Motor were removed at the experimental stand, as well as useful capacities and other parameters from both poles were determined. In dynamic mode, the curves of changes of torque and current of the stator were removed by direct start, constant speed operation, by switching of speeds and stopping.

Keywords: two speed motor, pole-changing motor, electric drive of fan, dynamic modes

Procedia PDF Downloads 135
1202 An Experimental Study on the Temperature Reduction of Exhaust Gas at a Snorkeling of Submarine

Authors: Seok-Tae Yoon, Jae-Yeong Choi, Gyu-Mok Jeon, Yong-Jin Cho, Jong-Chun Park

Abstract:

Conventional submarines obtain propulsive force by using an electric propulsion system consisting of a diesel generator, battery, motor, and propeller. In the underwater, the submarine uses the electric power stored in the battery. After that, when a certain amount of electric power is consumed, the submarine floats near the sea water surface and recharges the electric power by using the diesel generator. The voyage carried out while charging the power is called a snorkel, and the high-temperature exhaust gas from the diesel generator forms a heat distribution on the sea water surface. The heat distribution is detected by weapon system equipped with thermo-detector and that is the main cause of reducing the survivability of the submarine. In this paper, an experimental study was carried out to establish optimal operating conditions of a submarine for reduction of infrared signature radiated from the sea water surface. For this, a hot gas generating system and a round acrylic water tank with adjustable water level were made. The control variables of the experiment were set as the mass flow rate, the temperature difference between the water and the hot gas in the water tank, and the water level difference between the air outlet and the water surface. The experimental instrumentation used a thermocouple of T-type to measure the released air temperature on the surface of the water, and a thermography system to measure the thermal energy distribution on the water surface. As a result of the experiment study, we analyzed the correlation between the final released temperature of the exhaust pipe exit in a submarine and the depth of the snorkel, and presented reasonable operating conditions for the infrared signature reduction of submarine.

Keywords: experiment study, flow rate, infrared signature, snorkeling, thermography

Procedia PDF Downloads 352
1201 The Impact of Public Charging Infrastructure on the Adoption of Electric Vehicles

Authors: Shaherah Jordan, Paula Vandergert

Abstract:

The discussion on public charging infrastructure is usually framed around the ‘chicken-egg’ challenge of consumers feeling reluctant to purchase without the necessary infrastructure and policymakers reluctant to invest in the infrastructure without the demand. However, public charging infrastructure may be more crucial to electric vehicle (EV) adoption than previously thought. Historically, access to residential charging was thought to be a major factor in potential for growth in the EV market as it offered a guaranteed place for a vehicle to be charged. The purpose of this study is to understand how the built environment may encourage uptake of EVs by seeking a correlation between EV ownership and public charging points in an urban and densely populated city such as London. Using a statistical approach with data from the Department for Transport and Zap-Map, a statistically significant correlation was found between the total (slow, fast and rapid) number of public charging points and a number of EV registrations per borough – with the strongest correlation found between EV registrations and rapid chargers. This research does not explicitly prove that there is a cause and effect relationship between public charging points EVs but challenges some of the previous literature which indicates that public charging infrastructure is not as important as home charging. Furthermore, the study provides strong evidence that public charging points play a functional and psychological role in the adoption of EVs and supports the notion that the built environment can influence human behaviour.

Keywords: behaviour change, electric vehicles, public charging infrastructure, transportation

Procedia PDF Downloads 215
1200 Study on the Voltage Induced Wrinkling of Elastomer with Different Electrode Areas

Authors: Zhende Hou, Fan Yang, Guoli Zhang

Abstract:

Dielectric elastomer is a promising class of Electroactive polymers which can deform in response to an applied electric field. Comparing general smart material, the Dielectric elastomer is more compliance and can achieve higher energy density, which can be for diverse applications such as actuators, artificial muscles, soft robotics, and energy harvesters. The coupling of the Electroactive polymers and the electric field is that the elastomer is sandwiched between two compliant electrodes and when the electrodes are subjected to a voltage, the positive and negative charges on the two electrodes compress the polymer, so that the polymer reduces in thickness and expands in area. However, the pre-stretched dielectric elastomer film not only can achieve large electric-field induced deformation but also is prone to wrinkling, under the interaction of its own strain energy and the applied electric field energy. For a uniaxially pre-stretched dielectric elastomer film, the electrode area is an important parameter to the electric-field induced deformation and may also be a key factor affecting the film wrinkling. To determine and quantify the effect experimentally, VHB 9473 tapes were employed and compliant electrodes with different areas were pant on each of them. The tape was first tensed to a uniaxial stretch of 8. Then a DC voltage was applied to the electrodes and increased gradually until wrinkling occurred in the film. Then, the critical wrinkling voltages of the film with different electrode areas were obtained, and the wrinkle wavelengths were obtained simultaneously for analyzing the wrinkling characteristics. Experimental results indicate when the electrode area is smaller the wrinkling voltage is higher, and with the increases of electrode area, the wrinkling voltage decreases rapidly until a specific area. Beyond that, the wrinkling voltage becomes larger gradually with the increases of the area. While the wrinkle wavelength decreases gradually with the increase of voltage monotonically. That is, the relation between the critical wrinkling voltage and the electrode areas is U-shaped. Analysis believes that the film wrinkling is a kind of local effect, the interaction and the energy transfer between electrode region and non-electrode region have great influence on wrinkling. In the experiment, very thin copper wires are used as the electrode leads that just contact with the electrodes, which can avoid the stiffness of the leads affecting the wrinkling.

Keywords: elastomers, uniaxial stretch, electrode area, wrinkling

Procedia PDF Downloads 248
1199 A Neural Network Control for Voltage Balancing in Three-Phase Electric Power System

Authors: Dana M. Ragab, Jasim A. Ghaeb

Abstract:

The three-phase power system suffers from different challenging problems, e.g. voltage unbalance conditions at the load side. The voltage unbalance usually degrades the power quality of the electric power system. Several techniques can be considered for load balancing including load reconfiguration, static synchronous compensator and static reactive power compensator. In this work an efficient neural network is designed to control the unbalanced condition in the Aqaba-Qatrana-South Amman (AQSA) electric power system. It is designed for highly enhanced response time of the reactive compensator for voltage balancing. The neural network is developed to determine the appropriate set of firing angles required for the thyristor-controlled reactor to balance the three load voltages accurately and quickly. The parameters of AQSA power system are considered in the laboratory model, and several test cases have been conducted to test and validate the proposed technique capabilities. The results have shown a high performance of the proposed Neural Network Control (NNC) technique for correcting the voltage unbalance conditions at three-phase load based on accuracy and response time.

Keywords: three-phase power system, reactive power control, voltage unbalance factor, neural network, power quality

Procedia PDF Downloads 195
1198 F-IVT Actuation System to Power Artificial Knee Joint

Authors: Alò Roberta, Bottiglione Francesco, Mantriota Giacomo

Abstract:

The efficiency of the actuation system of lower limb exoskeletons and of active orthoses is a significant aspect of the design of such devices because it affects their efficacy. F-IVT is an innovative actuation system to power artificial knee joint with energy recovery capabilities. Its key and non-conventional elements are a flywheel, that acts as a mechanical energy storage system, and an Infinitely Variable Transmission (IVT). The design of the F-IVT can be optimized for a certain walking condition, resulting in a heavy reduction of both the electric energy consumption and of the electric peak power. In this work, by means of simulations of level ground walking at different speeds, it is demonstrated how F-IVT is still an advantageous actuator, even when it does not work in nominal conditions.

Keywords: active orthoses, actuators, lower extremity exoskeletons, knee joint

Procedia PDF Downloads 601
1197 Optimization of Wire EDM Parameters for Fabrication of Micro Channels

Authors: Gurinder Singh Brar, Sarbjeet Singh, Harry Garg

Abstract:

Wire Electric Discharge Machining (WEDM) is thermal machining process capable of machining very hard electrically conductive material irrespective of their hardness. WEDM is being widely used to machine micro-scale parts with the high dimensional accuracy and surface finish. The objective of this paper is to optimize the process parameters of wire EDM to fabricate the microchannels and to calculate the surface finish and material removal rate of microchannels fabricated using wire EDM. The material used is aluminum 6061 alloy. The experiments were performed using CNC wire cut electric discharge machine. The effect of various parameters of WEDM like pulse on time (TON) with the levels (100, 150, 200), pulse off time (TOFF) with the levels (25, 35, 45) and current (IP) with the levels (105, 110, 115) were investigated to study the effect on output parameter i.e. Surface Roughness and Material Removal Rate (MRR). Each experiment was conducted under different conditions of a pulse on time, pulse off time and peak current. For material removal rate, TON and Ip were the most significant process parameter. MRR increases with the increase in TON and Ip and decreases with the increase in TOFF. For surface roughness, TON and Ip have the maximum effect and TOFF was found out to be less effective.

Keywords: microchannels, Wire Electric Discharge Machining (WEDM), Metal Removal Rate (MRR), surface finish

Procedia PDF Downloads 499
1196 Numerical Simulation of Plasma Actuator Using OpenFOAM

Authors: H. Yazdani, K. Ghorbanian

Abstract:

This paper deals with modeling and simulation of the plasma actuator with OpenFOAM. Plasma actuator is one of the newest devices in flow control techniques which can delay separation by inducing external momentum to the boundary layer of the flow. The effects of the plasma actuators on the external flow are incorporated into Navier-Stokes computations as a body force vector which is obtained as a product of the net charge density and the electric field. In order to compute this body force vector, the model solves two equations: One for the electric field due to the applied AC voltage at the electrodes and the other for the charge density representing the ionized air. The simulation result is compared to the experimental and typical values which confirms the validity of the modeling.

Keywords: active flow control, flow-field, OpenFOAM, plasma actuator

Procedia PDF Downloads 306
1195 Multifunctional Janus Microbots for Intracellular Delivery of Therapeutic Agents

Authors: Shilpee Jain, Sachin Latiyan, Kaushik Suneet

Abstract:

Unlike traditional robots, medical microbots are not only smaller in size, but they also possess various unique properties, for example, biocompatibility, stability in the biological fluids, navigation opposite to the bloodstream, wireless control over locomotion, etc. The idea behind their usage in the medical field was to build a minimally invasive method for addressing the post-operative complications, including longer recovery time, infection eruption and pain. Herein, the present study demonstrates the fabrication of dual nature magneto-conducting Fe3O4 magnetic nanoparticles (MNPs) and SU8 derived carbon-based Janus microbots for the efficient intracellular delivery of biomolecules. The low aspect ratio with feature size 2-5 μm microbots were fabricated by using a photolithography technique. These microbots were pyrolyzed at 900°C, which converts SU8 into amorphous carbon. The pyrolyzed microbots have dual properties, i.e., the half part is magneto-conducting and another half is only conducting for sufficing the therapeutic payloads efficiently with the application of external electric/magnetic field stimulations. For the efficient intracellular delivery of the microbots, the size and aspect ratio plays a significant role. However, on a smaller scale, the proper control over movement is difficult to achieve. The dual nature of Janus microbots allowed to control its maneuverability in the complex fluids using external electric as well as the magnetic field. Interestingly, Janus microbots move faster with the application of an external electric field (44 µm/s) as compared to the magnetic field (18 µm/s) application. Furthermore, these Janus microbots exhibit auto-fluorescence behavior that will help to track their pathway during navigation. Typically, the use of MNPs in the microdevices enhances the tendency to agglomerate. However, the incorporation of Fe₃O₄ MNPs in the pyrolyzed carbon reduces the chances of agglomeration of the microbots. The biocompatibility of the medical microbots, which is the essential property of any biosystems, was determined in vitro using HeLa cells. The microbots were found to compatible with HeLa cells. Additionally, the intracellular uptake of microbots was higher in the presence of an external electric field as compared to without electric field stimulation. In summary, the cytocompatible Janus microbots were fabricated successfully. They are stable in the biological fluids, wireless controllable navigation with the help of a few Guess external magnetic fields, their movement can be tracked because of autofluorescence behavior, they are less susceptible to agglomeration and higher cellular uptake could be achieved with the application of the external electric field. Thus, these carriers could offer a versatile platform to suffice the therapeutic payloads under wireless actuation.

Keywords: amorphous carbon, electric/magnetic stimulations, Janus microbots, magnetic nanoparticles, minimally invasive procedures

Procedia PDF Downloads 125
1194 Autonomous Taxiing Robot for Grid Resilience Enhancement in Green Airport

Authors: Adedayo Ajayi, Patrick Luk, Liyun Lao

Abstract:

This paper studies the supportive needs for the electrical infrastructure of the green airport. In particular, the core objective revolves around the choice of electric grid configuration required to meet the expected electrified loads, i.e., the taxiing and charging loads of hybrid /pure electric aircraft in the airport. Further, reliability and resilience are critical aspects of a newly proposed grid; the concept of mobile energy storage as energy as a service (EAAS) for grid support in the proposed green airport is investigated using an autonomous electric taxiing robot (A-ETR) at a case study (Cranfield Airport). The performance of the model is verified and validated through DigSILENT power factory simulation software to compare the networks in terms of power quality, short circuit fault levels, system voltage profile, and power losses. Contingency and reliability index analysis are further carried out to show the potential of EAAS on the grid. The results demonstrate that the low voltage a.c network ( LVAC) architecture gives better performance with adequate compensation than the low voltage d.c (LVDC) microgrid architecture for future green airport electrification integration. And A-ETR can deliver energy as a service (EaaS) to improve the airport's electrical power system resilience and energy supply.

Keywords: reliability, voltage profile, flightpath 2050, green airport

Procedia PDF Downloads 82
1193 Spectral Domain Fast Multipole Method for Solving Integral Equations of One and Two Dimensional Wave Scattering

Authors: Mohammad Ahmad, Dayalan Kasilingam

Abstract:

In this paper, a spectral domain implementation of the fast multipole method is presented. It is shown that the aggregation, translation, and disaggregation stages of the fast multipole method (FMM) can be performed using the spectral domain (SD) analysis. The spectral domain fast multipole method (SD-FMM) has the advantage of eliminating the near field/far field classification used in conventional FMM formulation. The study focuses on the application of SD-FMM to one-dimensional (1D) and two-dimensional (2D) electric field integral equation (EFIE). The case of perfectly conducting strip, circular and square cylinders are numerically analyzed and compared with the results from the standard method of moments (MoM).

Keywords: electric field integral equation, fast multipole method, method of moments, wave scattering, spectral domain

Procedia PDF Downloads 406
1192 Correlation Between Forbush-Decrease Amplitude Detected by Mountain Chacaltaya Neutron Monitor and Solar Wind Electric Filed

Authors: Sebwato Nasurudiin, Akimasa Yoshikawa, Ahmed Elsaid, Ayman Mahrous

Abstract:

This study examines the correlation between the amplitude of Forbush Decreases (FDs) detected by the Mountain Chacaltaya neutron monitor and the solar wind electric field (E). Forbush Decreases, characterized by sudden drops in cosmic ray intensity, are typically associated with interplanetary coronal mass ejections (ICMEs) and high-speed solar wind streams. The Mountain Chacaltaya neutron monitor, located at a high altitude in Bolivia, offers an optimal setting for observing cosmic ray variations. The solar wind electric field, influenced by the solar wind velocity and interplanetary magnetic field, significantly impacts cosmic ray transport in the heliosphere. By analyzing neutron monitor data alongside solar wind parameters, we found a high correlation between E and FD amplitudes with a correlation factor of nearly 87%. The findings enhance our understanding of space weather processes, cosmic ray modulation, and solar-terrestrial interactions, providing valuable insights for predicting space weather events and mitigating their technological impacts. This study contributes to the broader astrophysics field by offering empirical data on cosmic ray modulation mechanisms.

Keywords: cosmic rays, Forbush decrease, solar wind, neutron monitor

Procedia PDF Downloads 46
1191 Driving towards Sustainability with Shared Electric Mobility: A Case Study of Time-Sharing Electric Cars on University’s Campus

Authors: Jiayi Pan, Le Qin, Shichan Zhang

Abstract:

Following the worldwide growing interest in the sharing economy, especially in China, innovations within the field are rapidly emerging. It is, therefore, appropriate to address the under-investigated sustainability issues related to the development of shared mobility. In 2019, Shanghai Jiao Tong University (SJTU) introduced one of the first on-campus Time-sharing Electric Cars (TEC) that counts now about 4000 users. The increasing popularity of this original initiative highlights the necessity to assess its sustainability and find ways to extend the performance and availability of this new transport option. This study used an online questionnaire survey on TEC usage and experience to collect answers among students and university staff. The study also conducted interviews with TEC’s team in order to better understand its motivations and operating model. Data analysis underscores that TEC’s usage frequency is positively associated with a lower carbon footprint, showing that this scheme contributes to improving the environmental sustainability of transportation on campus. This study also demonstrates that TEC provides a convenient solution to those not owning a car in situations where soft mobility cannot satisfy their needs, this contributing to a globally positive assessment of TEC in the social domains of sustainability. As SJTU’s TEC project belongs to the non-profit sector and aims at serving current research, its economical sustainability is not among the main preoccupations, and TEC, along with similar projects, could greatly benefit from this study’s findings to better evaluate the overall benefits and develop operation on a larger scale. This study suggests various ways to further improve the TEC users’ experience and enhance its promotion. This research believably provides meaningful insights on the position of shared transportation within transport mode choice and how to assess the overall sustainability of such innovations.

Keywords: shared mobility, sharing economy, sustainability assessment, sustainable transportation, urban electric transportation

Procedia PDF Downloads 215
1190 Effect of III-V Nitrides on Performance of Graphene-Gold SPR Biosensor

Authors: Bijaya Kumar Sahoo

Abstract:

The effect of III-V nitride semiconductors on performance of a graphene-on-gold surface plasmon resonance (SPR) biosensor has been investigated theoretically. III-V nitrides (AlN, GaN and InN) have been grown between gold (Au) and graphene layers. The sensitivity and performance of the biosensor have been computed for with and without semiconductors. Due to superior electronic and optical properties, III-V nitrides demonstrate high sensitivity and performance over Si and Ge. The enhancement of evanescent electric field due to III-V nitrides have been computed and found highest for InN. The analysis shows that for a high-sensitive imaging biosensor the required optimal thickness of gold, InN and graphene are respectively 49 nm, 11 nm and 0.34 nm for the light of wavelength =633 nm (red He-Ne laser). This study suggests that InN would be a better choice for fabrication of new imaging SPR biosensors.

Keywords: SPR biosensor, optical properties, III-V nitrides, sensitivity, enhancement of electric field, performance of graphene gold SPR biosensor

Procedia PDF Downloads 550
1189 Stability Analysis of a Low Power Wind Turbine for the Simultaneous Generation of Energy through Two Electric Generators

Authors: Daniel Icaza, Federico Córdova, Chiristian Castro, Fernando Icaza, Juan Portoviejo

Abstract:

In this article, the mathematical model is presented, and simulations were carried out using specialized software such as MATLAB before the construction of a 900-W wind turbine. The present study was conducted with the intention of taking advantage of the rotation of the blades of the wind generator after going through a process of amplification of speed by means of a system of gears to finally mechanically couple two electric generators of similar characteristics. This coupling allows generating a maximum voltage of 6 V in DC for each generator and putting in series the 12 V DC is achieved, which is later stored in batteries and used when the user requires it. Laboratory tests were made to verify the level of power generation produced based on the wind speed at the entrance of the blades.

Keywords: smart grids, wind turbine, modeling, renewable energy, robust control

Procedia PDF Downloads 232