Search results for: dynamically reconfigurable
65 Reinforcement Learning For Agile CNC Manufacturing: Optimizing Configurations And Sequencing
Authors: Huan Ting Liao
Abstract:
In a typical manufacturing environment, computer numerical control (CNC) machining is essential for automating production through precise computer-controlled tool operations, significantly enhancing efficiency and ensuring consistent product quality. However, traditional CNC production lines often rely on manual loading and unloading, limiting operational efficiency and scalability. Although automated loading systems have been developed, they frequently lack sufficient intelligence and configuration efficiency, requiring extensive setup adjustments for different products and impacting overall productivity. This research addresses the job shop scheduling problem (JSSP) in CNC machining environments, aiming to minimize total completion time (makespan) and maximize CNC machine utilization. We propose a novel approach using reinforcement learning (RL), specifically the Q-learning algorithm, to optimize scheduling decisions. The study simulates the JSSP, incorporating robotic arm operations, machine processing times, and work order demand allocation to determine optimal processing sequences. The Q-learning algorithm enhances machine utilization by dynamically balancing workloads across CNC machines, adapting to varying job demands and machine states. This approach offers robust solutions for complex manufacturing environments by automating decision-making processes for job assignments. Additionally, we evaluate various layout configurations to identify the most efficient setup. By integrating RL-based scheduling optimization with layout analysis, this research aims to provide a comprehensive solution for improving manufacturing efficiency and productivity in CNC-based job shops. The proposed method's adaptability and automation potential promise significant advancements in tackling dynamic manufacturing challenges.Keywords: job shop scheduling problem, reinforcement learning, operations sequence, layout optimization, q-learning
Procedia PDF Downloads 2464 Enhancing Single Channel Minimum Quantity Lubrication through Bypass Controlled Design for Deep Hole Drilling with Small Diameter Tool
Authors: Yongrong Li, Ralf Domroes
Abstract:
Due to significant energy savings, enablement of higher machining speed as well as environmentally friendly features, Minimum Quantity Lubrication (MQL) has been used for many machining processes efficiently. However, in the deep hole drilling field (small tool diameter D < 5 mm) and long tool (length L > 25xD) it is always a bottle neck for a single channel MQL system. The single channel MQL, based on the Venturi principle, faces a lack of enough oil quantity caused by dropped pressure difference during the deep hole drilling process. In this paper, a system concept based on a bypass design has explored its possibility to dynamically reach the required pressure difference between the air inlet and the inside of aerosol generator, so that the deep hole drilling demanded volume of oil can be generated and delivered to tool tips. The system concept has been investigated in static and dynamic laboratory testing. In the static test, the oil volume with and without bypass control were measured. This shows an oil quantity increasing potential up to 1000%. A spray pattern test has demonstrated the differences of aerosol particle size, aerosol distribution and reaction time between single channel and bypass controlled single channel MQL systems. A dynamic trial machining test of deep hole drilling (drill tool D=4.5mm, L= 40xD) has been carried out with the proposed system on a difficult machining material AlSi7Mg. The tool wear along a 100 meter drilling was tracked and analyzed. The result shows that the single channel MQL with a bypass control can overcome the limitation and enhance deep hole drilling with a small tool. The optimized combination of inlet air pressure and bypass control results in a high quality oil delivery to tool tips with a uniform and continuous aerosol flow.Keywords: deep hole drilling, green production, Minimum Quantity Lubrication (MQL), near dry machining
Procedia PDF Downloads 20563 Location Uncertainty – A Probablistic Solution for Automatic Train Control
Authors: Monish Sengupta, Benjamin Heydecker, Daniel Woodland
Abstract:
New train control systems rely mainly on Automatic Train Protection (ATP) and Automatic Train Operation (ATO) dynamically to control the speed and hence performance. The ATP and the ATO form the vital element within the CBTC (Communication Based Train Control) and within the ERTMS (European Rail Traffic Management System) system architectures. Reliable and accurate measurement of train location, speed and acceleration are vital to the operation of train control systems. In the past, all CBTC and ERTMS system have deployed a balise or equivalent to correct the uncertainty element of the train location. Typically a CBTC train is allowed to miss only one balise on the track, after which the Automatic Train Protection (ATP) system applies emergency brake to halt the service. This is because the location uncertainty, which grows within the train control system, cannot tolerate missing more than one balise. Balises contribute a significant amount towards wayside maintenance and studies have shown that balises on the track also forms a constraint for future track layout change and change in speed profile.This paper investigates the causes of the location uncertainty that is currently experienced and considers whether it is possible to identify an effective filter to ascertain, in conjunction with appropriate sensors, more accurate speed, distance and location for a CBTC driven train without the need of any external balises. An appropriate sensor fusion algorithm and intelligent sensor selection methodology will be deployed to ascertain the railway location and speed measurement at its highest precision. Similar techniques are already in use in aviation, satellite, submarine and other navigation systems. Developing a model for the speed control and the use of Kalman filter is a key element in this research. This paper will summarize the research undertaken and its significant findings, highlighting the potential for introducing alternative approaches to train positioning that would enable removal of all trackside location correction balises, leading to huge reduction in maintenances and more flexibility in future track design.Keywords: ERTMS, CBTC, ATP, ATO
Procedia PDF Downloads 41062 Unsupervised Learning and Similarity Comparison of Water Mass Characteristics with Gaussian Mixture Model for Visualizing Ocean Data
Authors: Jian-Heng Wu, Bor-Shen Lin
Abstract:
The temperature-salinity relationship is one of the most important characteristics used for identifying water masses in marine research. Temperature-salinity characteristics, however, may change dynamically with respect to the geographic location and is quite sensitive to the depth at the same location. When depth is taken into consideration, however, it is not easy to compare the characteristics of different water masses efficiently for a wide range of areas of the ocean. In this paper, the Gaussian mixture model was proposed to analyze the temperature-salinity-depth characteristics of water masses, based on which comparison between water masses may be conducted. Gaussian mixture model could model the distribution of a random vector and is formulated as the weighting sum for a set of multivariate normal distributions. The temperature-salinity-depth data for different locations are first used to train a set of Gaussian mixture models individually. The distance between two Gaussian mixture models can then be defined as the weighting sum of pairwise Bhattacharyya distances among the Gaussian distributions. Consequently, the distance between two water masses may be measured fast, which allows the automatic and efficient comparison of the water masses for a wide range area. The proposed approach not only can approximate the distribution of temperature, salinity, and depth directly without the prior knowledge for assuming the regression family, but may restrict the complexity by controlling the number of mixtures when the amounts of samples are unevenly distributed. In addition, it is critical for knowledge discovery in marine research to represent, manage and share the temperature-salinity-depth characteristics flexibly and responsively. The proposed approach has been applied to a real-time visualization system of ocean data, which may facilitate the comparison of water masses by aggregating the data without degrading the discriminating capabilities. This system provides an interface for querying geographic locations with similar temperature-salinity-depth characteristics interactively and for tracking specific patterns of water masses, such as the Kuroshio near Taiwan or those in the South China Sea.Keywords: water mass, Gaussian mixture model, data visualization, system framework
Procedia PDF Downloads 14461 Particle Swarm Optimization Based Vibration Suppression of a Piezoelectric Actuator Using Adaptive Fuzzy Sliding Mode Controller
Authors: Jin-Siang Shaw, Patricia Moya Caceres, Sheng-Xiang Xu
Abstract:
This paper aims to integrate the particle swarm optimization (PSO) method with the adaptive fuzzy sliding mode controller (AFSMC) to achieve vibration attenuation in a piezoelectric actuator subject to base excitation. The piezoelectric actuator is a complicated system made of ferroelectric materials and its performance can be affected by nonlinear hysteresis loop and unknown system parameters and external disturbances. In this study, an adaptive fuzzy sliding mode controller is proposed for the vibration control of the system, because the fuzzy sliding mode controller is designed to tackle the unknown parameters and external disturbance of the system, and the adaptive algorithm is aimed for fine-tuning this controller for error converging purpose. Particle swarm optimization method is used in order to find the optimal controller parameters for the piezoelectric actuator. PSO starts with a population of random possible solutions, called particles. The particles move through the search space with dynamically adjusted speed and direction that change according to their historical behavior, allowing the values of the particles to quickly converge towards the best solutions for the proposed problem. In this paper, an initial set of controller parameters is applied to the piezoelectric actuator which is subject to resonant base excitation with large amplitude vibration. The resulting vibration suppression is about 50%. Then PSO is applied to search for an optimal controller in the neighborhood of this initial controller. The performance of the optimal fuzzy sliding mode controller found by PSO indeed improves up to 97.8% vibration attenuation. Finally, adaptive version of fuzzy sliding mode controller is adopted for further improving vibration suppression. Simulation result verifies the performance of the adaptive controller with 99.98% vibration reduction. Namely the vibration of the piezoelectric actuator subject to resonant base excitation can be completely annihilated using this PSO based adaptive fuzzy sliding mode controller.Keywords: adaptive fuzzy sliding mode controller, particle swarm optimization, piezoelectric actuator, vibration suppression
Procedia PDF Downloads 14660 Assessing Impacts of Climate Variability and Change on Water Productivity and Nutrient Use Efficiency of Maize in the Semi-arid Central Rift Valley of Ethiopia
Authors: Fitih Ademe, Kibebew Kibret, Sheleme Beyene, Mezgebu Getnet, Gashaw Meteke
Abstract:
Changes in precipitation, temperature and atmospheric CO2 concentration are expected to alter agricultural productivity patterns worldwide. The interactive effects of soil moisture and nutrient availability are the two key edaphic factors that determine crop yield and are sensitive to climatic changes. The study assessed the potential impacts of climate change on maize yield and corresponding water productivity and nutrient use efficiency under climate change scenarios for the Central Rift Valley of Ethiopia by mid (2041-2070) and end century (2071-2100). Projected impacts were evaluated using climate scenarios generated from four General Circulation Models (GCMs) dynamically downscaled by the Swedish RCA4 Regional Climate Model (RCM) in combination with two Representative Concentration Pathways (RCP 4.5 and RCP8.5). Decision Support System for Agro-technology Transfer cropping system model (DSSAT-CSM) was used to simulate yield, water and nutrient use for the study periods. Results indicate that rainfed maize yield might decrease on average by 16.5 and 23% by the 2050s and 2080s, respectively, due to climate change. Water productivity is expected to decline on average by 2.2 and 12% in the CRV by mid and end centuries with respect to the baseline. Nutrient uptake and corresponding nutrient use efficiency (NUE) might also be negatively affected by climate change. Phosphorus uptake probably will decrease in the CRV on average by 14.5 to 18% by 2050s, while N uptake may not change significantly at Melkassa. Nitrogen and P use efficiency indicators showed decreases in the range between 8.5 to 10.5% and between 9.3 to 10.5%, respectively, by 2050s relative to the baseline average. The simulation results further indicated that a combination of increased water availability and optimum nutrient application might increase both water productivity and nutrient use efficiency in the changed climate, which can ensure modest production in the future. Potential options that can improve water availability and nutrient uptake should be identified for the study locations using a crop modeling approach.Keywords: crop model, climate change scenario, nutrient uptake, nutrient use efficiency, water productivity
Procedia PDF Downloads 8659 Comparative Evaluation of a Dynamic Navigation System Versus a Three-Dimensional Microscope in Retrieving Separated Endodontic Files: An in Vitro Study
Authors: Mohammed H. Karim, Bestoon M. Faraj
Abstract:
Introduction: instrument separation is a common challenge in the endodontic field. Various techniques and technologies have been developed to improve the retrieval success rate. This study aimed to compare the effectiveness of a Dynamic Navigation System (DNS) and a three-dimensional microscope in retrieving broken rotary NiTi files when using trepan burs and the extractor system. Materials and Methods: Thirty maxillary first bicuspids with sixty separate roots were split into two comparable groups based on a comprehensive Cone-Beam Computed Tomography (CBCT) analysis of the root length and curvature. After standardised access opening, glide paths, and patency attainment with the K file (sizes 10 and 15), the teeth were arranged on 3D models (three per quadrant, six per model). Subsequently, controlled-memory heat-treated NiTi rotary files (#25/0.04) were notched 4 mm from the tips and fractured at the apical third of the roots. The C-FR1 Endo file removal system was employed under both guidance to retrieve the fragments, and the success rate, canal aberration, treatment time and volumetric changes were measured. The statistical analysis was performed using IBM SPSS software at a significance level of 0.05. Results: The microscope-guided group had a higher success rate than the DNS guidance, but the difference was insignificant (p > 0.05). In addition, the microscope-guided drills resulted in a substantially lower proportion of canal aberration, required less time to retrieve the fragments and caused a minor change in the root canal volume (p < 0.05). Conclusion: Although dynamically guided trephining with the extractor can retrieve separated instruments, it is inferior to three-dimensional microscope guidance regarding treatment time, procedural errors, and volume change.Keywords: dynamic navigation system, separated instruments retrieval, trephine burs and extractor system, three-dimensional video microscope
Procedia PDF Downloads 9858 The Impact of the COVID-19 on the Cybercrimes in Hungary and the Possible Solutions for Prevention
Authors: László Schmidt
Abstract:
Technological and digital innovation is constantly and dynamically evolving, which poses an enormous challenge to both lawmaking and law enforcement. To legislation because artificial intelligence permeates many areas of people’s daily lives that the legislator must regulate. it can see how challenging it is to regulate e.g. self-driving cars/taxis/camions etc. Not to mention cryptocurrencies and Chat GPT, the use of which also requires legislative intervention. Artificial intelligence also poses an extraordinary challenge to law enforcement. In criminal cases, police and prosecutors can make great use of AI in investigations, e.g. in forensics, DNA samples, reconstruction, identification, etc. But it can also be of great help in the detection of crimes committed in cyberspace. In the case of cybercrime, on the one hand, it can be viewed as a new type of crime that can only be committed with the help of information systems, and that has a specific protected legal object, such as an information system or data. On the other hand, it also includes traditional crimes that are much easier to commit with the help of new tools. According to Hungarian Criminal Code section 375 (1), any person who, for unlawful financial gain, introduces data into an information system, or alters or deletes data processed therein, or renders data inaccessible, or otherwise interferes with the functioning of the information system, and thereby causes damage, is guilty of a felony punishable by imprisonment not exceeding three years. The Covid-19 coronavirus epidemic has had a significant impact on our lives and our daily lives. It was no different in the world of crime. With people staying at home for months, schools, restaurants, theatres, cinemas closed, and no travel, criminals have had to change their ways. Criminals were committing crimes online in even greater numbers than before. These crimes were very diverse, ranging from false fundraising, the collection and misuse of personal data, extortion to fraud on various online marketplaces. The most vulnerable age groups (minors and elderly) could be made more aware and prevented from becoming victims of this type of crime through targeted programmes. The aim of the study is to show the Hungarian judicial practice in relation to cybercrime and possible preventive solutions.Keywords: cybercrime, COVID-19, Hungary, criminal law
Procedia PDF Downloads 6057 Artificial Neural Network Based Model for Detecting Attacks in Smart Grid Cloud
Authors: Sandeep Mehmi, Harsh Verma, A. L. Sangal
Abstract:
Ever since the idea of using computing services as commodity that can be delivered like other utilities e.g. electric and telephone has been floated, the scientific fraternity has diverted their research towards a new area called utility computing. New paradigms like cluster computing and grid computing came into existence while edging closer to utility computing. With the advent of internet the demand of anytime, anywhere access of the resources that could be provisioned dynamically as a service, gave rise to the next generation computing paradigm known as cloud computing. Today, cloud computing has become one of the most aggressively growing computer paradigm, resulting in growing rate of applications in area of IT outsourcing. Besides catering the computational and storage demands, cloud computing has economically benefitted almost all the fields, education, research, entertainment, medical, banking, military operations, weather forecasting, business and finance to name a few. Smart grid is another discipline that direly needs to be benefitted from the cloud computing advantages. Smart grid system is a new technology that has revolutionized the power sector by automating the transmission and distribution system and integration of smart devices. Cloud based smart grid can fulfill the storage requirement of unstructured and uncorrelated data generated by smart sensors as well as computational needs for self-healing, load balancing and demand response features. But, security issues such as confidentiality, integrity, availability, accountability and privacy need to be resolved for the development of smart grid cloud. In recent years, a number of intrusion prevention techniques have been proposed in the cloud, but hackers/intruders still manage to bypass the security of the cloud. Therefore, precise intrusion detection systems need to be developed in order to secure the critical information infrastructure like smart grid cloud. Considering the success of artificial neural networks in building robust intrusion detection, this research proposes an artificial neural network based model for detecting attacks in smart grid cloud.Keywords: artificial neural networks, cloud computing, intrusion detection systems, security issues, smart grid
Procedia PDF Downloads 31856 Exploring the Dynamic Identities of Multilingual Adolescents in Contexts of L3+ Learning in Four European Sites
Authors: Harper Staples
Abstract:
A necessary outcome of today’s contemporary globalised reality, current views of multilingualism hold that it no longer represents the exception, but rather the rule. As such, the simultaneous acquisition of multiple languages represents a common experience for many of today's students and therefore represents a key area of inquiry in the domain of foreign language learner identity. Second and multilingual language acquisition processes parallel each other in many ways; however, there are differences to be found in the ways in which a student may learn a third language. A multilingual repertoire will have to negotiate complex change as language competencies dynamically evolve; moreover, this process will vary according to the contextual factors attributed to a unique learner. A developing multilingual identity must, therefore, contend with an array of potential challenges specific to the individual in question. Despite an overarching recognition in the literature that pluri-language acquisition represents a unique field of inquiry within applied linguistic research, there is a paucity of empirical work which examines the ways in which individuals construct a sense of their own identity as multilingual speakers in such contexts of learning. This study explores this phenomenon via a mixed-methods, comparative case study approach at four school sites based in Finland, France, Wales, and England. It takes a strongly individual-in-context view, conceptualising each adolescent participant in dynamic terms in order to undertake a holistic exploration of the myriad factors that might impact upon, and indeed be impacted by, a learner's developing multilingual identity. Emerging themes of note thus far suggest that, beyond the expected divergences in the experience of multilinguality at the individual level, there are contradictions in the way in which adolescent students in each site 'claim' their plurilingualism. This can be argued to be linked to both meso and macro-level factors, including the foreign language curriculum and, more broadly, societal attitudes towards multilingualism. These diverse emergent identifications have implications not only for attainment in the foreign language but also for student well-being more generally.Keywords: foreign language learning, student identity, multilingualism, educational psychology
Procedia PDF Downloads 17655 Constructivism and Situational Analysis as Background for Researching Complex Phenomena: Example of Inclusion
Authors: Radim Sip, Denisa Denglerova
Abstract:
It’s impossible to capture complex phenomena, such as inclusion, with reductionism. The most common form of reductionism is the objectivist approach, where processes and relationships are reduced to entities and clearly outlined phases, with a consequent search for relationships between them. Constructivism as a paradigm and situational analysis as a methodological research portfolio represent a way to avoid the dominant objectivist approach. They work with a situation, i.e. with the essential blending of actors and their environment. Primary transactions are taking place between actors and their surroundings. Researchers create constructs based on their need to solve a problem. Concepts therefore do not describe reality, but rather a complex of real needs in relation to the available options how such needs can be met. For examination of a complex problem, corresponding methodological tools and overall design of the research are necessary. Using an original research on inclusion in the Czech Republic as an example, this contribution demonstrates that inclusion is not a substance easily described, but rather a relationship field changing its forms in response to its actors’ behaviour and current circumstances. Inclusion consists of dynamic relationship between an ideal, real circumstances and ways to achieve such ideal under the given circumstances. Such achievement has many shapes and thus cannot be captured by description of objects. It can be expressed in relationships in the situation defined by time and space. Situational analysis offers tools to examine such phenomena. It understands a situation as a complex of dynamically changing aspects and prefers relationships and positions in the given situation over a clear and final definition of actors, entities, etc. Situational analysis assumes creation of constructs as a tool for solving a problem at hand. It emphasizes the meanings that arise in the process of coordinating human actions, and the discourses through which these meanings are negotiated. Finally, it offers “cartographic tools” (situational maps, socials worlds / arenas maps, positional maps) that are able to capture the complexity in other than linear-analytical ways. This approach allows for inclusion to be described as a complex of phenomena taking place with a certain historical preference, a complex that can be overlooked if analyzed with a more traditional approach.Keywords: constructivism, situational analysis, objective realism, reductionism, inclusion
Procedia PDF Downloads 14854 A Topology-Based Dynamic Repair Strategy for Enhancing Urban Road Network Resilience under Flooding
Authors: Xuhui Lin, Qiuchen Lu, Yi An, Tao Yang
Abstract:
As global climate change intensifies, extreme weather events such as floods increasingly threaten urban infrastructure, making the vulnerability of urban road networks a pressing issue. Existing static repair strategies fail to adapt to the rapid changes in road network conditions during flood events, leading to inefficient resource allocation and suboptimal recovery. The main research gap lies in the lack of repair strategies that consider both the dynamic characteristics of networks and the progression of flood propagation. This paper proposes a topology-based dynamic repair strategy that adjusts repair priorities based on real-time changes in flood propagation and traffic demand. Specifically, a novel method is developed to assess and enhance the resilience of urban road networks during flood events. The method combines road network topological analysis, flood propagation modelling, and traffic flow simulation, introducing a local importance metric to dynamically evaluate the significance of road segments across different spatial and temporal scales. Using London's road network and rainfall data as a case study, the effectiveness of this dynamic strategy is compared to traditional and Transport for London (TFL) strategies. The most significant highlight of the research is that the dynamic strategy substantially reduced the number of stranded vehicles across different traffic demand periods, improving efficiency by up to 35.2%. The advantage of this method lies in its ability to adapt in real-time to changes in network conditions, enabling more precise resource allocation and more efficient repair processes. This dynamic strategy offers significant value to urban planners, traffic management departments, and emergency response teams, helping them better respond to extreme weather events like floods, enhance overall urban resilience, and reduce economic losses and social impacts.Keywords: Urban resilience, road networks, flood response, dynamic repair strategy, topological analysis
Procedia PDF Downloads 3553 Dynamic Ambulance Deployment to Reduce Ambulance Response Times Using Geographic Information Systems
Authors: Masoud Swalehe, Semra Günay
Abstract:
Developed countries are losing many lives to non-communicable diseases as compared to their developing counterparts. The effects of these diseases are mostly sudden and manifest at a very short time prior to death or a dangerous attack and this has consolidated the significance of emergency medical system (EMS) as one of the vital areas of healthcare service delivery. The primary objective of this research is to reduce ambulance response times (RT) of Eskişehir province EMS since a number of studies have established a relationship between ambulance response times and survival chances of patients especially out of hospital cardiac arrest (OHCA) victims. It has been found out that patients who receive out of hospital medical attention in few (4) minutes after cardiac arrest because of low ambulance response times stand higher chances of survival than their counterparts who take longer times (more than 12 minutes) to receive out of hospital medical care because of higher ambulance response times. The study will make use of geographic information systems (GIS) technology to dynamically reallocate ambulance resources according to demand and time so as to reduce ambulance response times. Geospatial-time distribution of ambulance calls (demand) will be used as a basis for optimal ambulance deployment using system status management (SSM) strategy to achieve much demand coverage with the same number of ambulance resources to cause response time reduction. Drive-time polygons will be used to come up with time specific facility coverage areas and suggesting additional facility candidate sites where ambulance resources can be moved to serve higher demands making use of network analysis techniques. Emergency Ambulance calls’ data from 1st January 2014 to 31st December 2014 obtained from Eskişehir province health directorate will be used in this study. This study will focus on the reduction of ambulance response times which is a key Emergency Medical Services performance indicator.Keywords: emergency medical services, system status management, ambulance response times, geographic information system, geospatial-time distribution, out of hospital cardiac arrest
Procedia PDF Downloads 30052 Modelling of Solidification in a Latent Thermal Energy Storage with a Finned Tube Bundle Heat Exchanger Unit
Authors: Remo Waser, Simon Maranda, Anastasia Stamatiou, Ludger J. Fischer, Joerg Worlitschek
Abstract:
In latent heat storage, a phase change material (PCM) is used to store thermal energy. The heat transfer rate during solidification is limited and considered as a key challenge in the development of latent heat storages. Thus, finned heat exchangers (HEX) are often utilized to increase the heat transfer rate of the storage system. In this study, a new modeling approach to calculating the heat transfer rate in latent thermal energy storages with complex HEX geometries is presented. This model allows for an optimization of the HEX design in terms of costs and thermal performance of the system. Modeling solidification processes requires the calculation of time-dependent heat conduction with moving boundaries. Commonly used computational fluid dynamic (CFD) methods enable the analysis of the heat transfer in complex HEX geometries. If applied to the entire storage, the drawback of this approach is the high computational effort due to small time steps and fine computational grids required for accurate solutions. An alternative to describe the process of solidification is the so-called temperature-based approach. In order to minimize the computational effort, a quasi-stationary assumption can be applied. This approach provides highly accurate predictions for tube heat exchangers. However, it shows unsatisfactory results for more complex geometries such as finned tube heat exchangers. The presented simulation model uses a temporal and spatial discretization of heat exchanger tube. The spatial discretization is based on the smallest possible symmetric segment of the HEX. The heat flow in each segment is calculated using finite volume method. Since the heat transfer fluid temperature can be derived using energy conservation equations, the boundary conditions at the inner tube wall is dynamically updated for each time step and segment. The model allows a prediction of the thermal performance of latent thermal energy storage systems using complex HEX geometries with considerably low computational effort.Keywords: modelling of solidification, finned tube heat exchanger, latent thermal energy storage
Procedia PDF Downloads 26851 Florida’s Groundwater and Surface Water System Reliability in Terms of Climate Change and Sea-Level Rise
Authors: Rahman Davtalab
Abstract:
Florida is one of the most vulnerable states to natural disasters among the 50 states of the USA. The state exposed by tropical storms, hurricanes, storm surge, landslide, etc. Besides, the mentioned natural phenomena, global warming, sea-level rise, and other anthropogenic environmental changes make a very complicated and unpredictable system for decision-makers. In this study, we tried to highlight the effects of climate change and sea-level rise on surface water and groundwater systems for three different geographical locations in Florida; Main Canal of Jacksonville Beach (in the northeast of Florida adjacent to the Atlantic Ocean), Grace Lake in central Florida, far away from surrounded coastal line, and Mc Dill in Florida and adjacent to Tampa Bay and Mexican Gulf. An integrated hydrologic and hydraulic model was developed and simulated for all three cases, including surface water, groundwater, or a combination of both. For the case study of Main Canal-Jacksonville Beach, the investigation showed that a 76 cm sea-level rise in time horizon 2060 could increase the flow velocity of the tide cycle for the main canal's outlet and headwater. This case also revealed how the sea level rise could change the tide duration, potentially affecting the coastal ecosystem. As expected, sea-level rise can raise the groundwater level. Therefore, for the Mc Dill case, the effect of groundwater rise on soil storage and the performance of stormwater retention ponds is investigated. The study showed that sea-level rise increased the pond’s seasonal high water up to 40 cm by time horizon 2060. The reliability of the retention pond is dropped from 99% for the current condition to 54% for the future. The results also proved that the retention pond could not retain and infiltrate the designed treatment volume within 72 hours, which is a significant indication of increasing pollutants in the future. Grace Lake case study investigates the effects of climate change on groundwater recharge. This study showed that using the dynamically downscaled data of the groundwater recharge can decline up to 24% by the mid-21st century.Keywords: groundwater, surface water, Florida, retention pond, tide, sea level rise
Procedia PDF Downloads 18550 The Thinking of Dynamic Formulation of Rock Aging Agent Driven by Data
Authors: Longlong Zhang, Xiaohua Zhu, Ping Zhao, Yu Wang
Abstract:
The construction of mines, railways, highways, water conservancy projects, etc., have formed a large number of high steep slope wounds in China. Under the premise of slope stability and safety, the minimum cost, green and close to natural wound space repair, has become a new problem. Nowadays, in situ element testing and analysis, monitoring, field quantitative factor classification, and assignment evaluation will produce vast amounts of data. Data processing and analysis will inevitably differentiate the morphology, mineral composition, physicochemical properties between rock wounds, by which to dynamically match the appropriate techniques and materials for restoration. In the present research, based on the grid partition of the slope surface, tested the content of the combined oxide of rock mineral (SiO₂, CaO, MgO, Al₂O₃, Fe₃O₄, etc.), and classified and assigned values to the hardness and breakage of rock texture. The data of essential factors are interpolated and normalized in GIS, which formed the differential zoning map of slope space. According to the physical and chemical properties and spatial morphology of rocks in different zones, organic acids (plant waste fruit, fruit residue, etc.), natural mineral powder (zeolite, apatite, kaolin, etc.), water-retaining agent, and plant gum (melon powder) were mixed in different proportions to form rock aging agents. To spray the aging agent with different formulas on the slopes in different sections can affectively age the fresh rock wound, providing convenience for seed implantation, and reducing the transformation of heavy metals in the rocks. Through many practical engineering practices, a dynamic data platform of rock aging agent formula system is formed, which provides materials for the restoration of different slopes. It will also provide a guideline for the mixed-use of various natural materials to solve the complex, non-uniformity ecological restoration problem.Keywords: data-driven, dynamic state, high steep slope, rock aging agent, wounds
Procedia PDF Downloads 11549 Numerical Analysis of CO₂ Storage as Clathrates in Depleted Natural Gas Hydrate Formation
Authors: Sheraz Ahmad, Li Yiming, Li XiangFang, Xia Wei, Zeen Chen
Abstract:
Holding CO₂ at massive scale in the enclathrated solid matter called hydrate can be perceived as one of the most reliable methods for CO₂ sequestration to take greenhouse gases emission control measures and global warming preventive actions. In this study, a dynamically coupled mass and heat transfer mathematical model is developed which elaborates the unsteady behavior of CO₂ flowing into a porous medium and converting itself into hydrates. The combined numerical model solution by implicit finite difference method is explained and through coupling the mass, momentum and heat conservation relations, an integrated model can be established to analyze the CO₂ hydrate growth within P-T equilibrium conditions. CO₂ phase transition, effect of hydrate nucleation by exothermic heat release and variations of thermo-physical properties has been studied during hydrate nucleation. The results illustrate that formation pressure distribution becomes stable at the early stage of hydrate nucleation process and always remains stable afterward, but formation temperature is unable to keep stable and varies during CO₂ injection and hydrate nucleation process. Initially, the temperature drops due to cold high-pressure CO₂ injection since when the massive hydrate growth triggers and temperature increases under the influence of exothermic heat evolution. Intermittently, it surpasses the initial formation temperature before CO₂ injection initiates. The hydrate growth rate increases by increasing injection pressure in the long formation and it also expands overall hydrate covered length in the same induction period. The results also show that the injection pressure conditions and hydrate growth rate affect other parameters like CO₂ velocity, CO₂ permeability, CO₂ density, CO₂ and H₂O saturation inside the porous medium. In order to enhance the hydrate growth rate and expand hydrate covered length, the injection temperature is reduced, but it did not give satisfactory outcomes. Hence, CO₂ injection in vacated natural gas hydrate porous sediment may form hydrate under low temperature and high-pressure conditions, but it seems very challenging on a huge scale in lengthy formations.Keywords: CO₂ hydrates, CO₂ injection, CO₂ Phase transition, CO₂ sequestration
Procedia PDF Downloads 13548 A POX Controller Module to Collect Web Traffic Statistics in SDN Environment
Authors: Wisam H. Muragaa, Kamaruzzaman Seman, Mohd Fadzli Marhusin
Abstract:
Software Defined Networking (SDN) is a new norm of networks. It is designed to facilitate the way of managing, measuring, debugging and controlling the network dynamically, and to make it suitable for the modern applications. Generally, measurement methods can be divided into two categories: Active and passive methods. Active measurement method is employed to inject test packets into the network in order to monitor their behaviour (ping tool as an example). Meanwhile the passive measurement method is used to monitor the traffic for the purpose of deriving measurement values. The measurement methods, both active and passive, are useful for the collection of traffic statistics, and monitoring of the network traffic. Although there has been a work focusing on measuring traffic statistics in SDN environment, it was only meant for measuring packets and bytes rates for non-web traffic. In this study, a feasible method will be designed to measure the number of packets and bytes in a certain time, and facilitate obtaining statistics for both web traffic and non-web traffic. Web traffic refers to HTTP requests that use application layer; while non-web traffic refers to ICMP and TCP requests. Thus, this work is going to be more comprehensive than previous works. With a developed module on POX OpenFlow controller, information will be collected from each active flow in the OpenFlow switch, and presented on Command Line Interface (CLI) and wireshark interface. Obviously, statistics that will be displayed on CLI and on wireshark interfaces include type of protocol, number of bytes and number of packets, among others. Besides, this module will show the number of flows added to the switch whenever traffic is generated from and to hosts in the same statistics list. In order to carry out this work effectively, our Python module will send a statistics request message to the switch requesting its current ports and flows statistics in every five seconds; while the switch will reply with the required information in a message called statistics reply message. Thus, POX controller will be notified and updated with any changes could happen in the entire network in a very short time. Therefore, our aim of this study is to prepare a list for the important statistics elements that are collected from the whole network, to be used for any further researches; particularly, those that are dealing with the detection of the network attacks that cause a sudden rise in the number of packets and bytes like Distributed Denial of Service (DDoS).Keywords: mininet, OpenFlow, POX controller, SDN
Procedia PDF Downloads 23547 Knowledge Capital and Manufacturing Firms’ Innovation Management: Exploring the Impact of Transboundary Investment and Assimilative Capacity.
Authors: Suleman Bawa, Ayiku Emmanuel Lartey
Abstract:
Purpose - This paper aims to examine the association between knowledge capital and multinational firms’ innovation management. We again explored the impact of transboundary investment and assimilative capacity between knowledge capital and multinational firms’ innovation management. The vital position of knowledge capital and multinational firms’ innovation management in today’s increasingly volatile environment coupled with fierce competition has been extensively acknowledged by academics and industry investment capitals. Design/methodology/approach - The theoretical association model and an empirical correlation analysis were constructed based on relevant research using data collected from 19 multinational firms in Ghana as the subject, and path analysis was constructed using SPSS 22.0 and AMOS 24.0 to test the formulated hypotheses. Findings - Varied conclusions are drawn consequential from theoretical inferences and empirical tests. For multinational firms, knowledge capital relics positively significant to multinational firms’ innovation management. Multinational firms with advanced knowledge capital likely spawn greater corporations’ innovation management. Second, transboundary investment efficiently intermediates the association between knowledge physical capital, knowledge interactive capital, and corporations’ innovation management. At the same time, this impact is insignificant between knowledge of empirical capital and corporations’ innovation management. Lastly, the impact of transboundary investment and assimilative capacity on the association between knowledge capital and corporations’ innovation management is established. We summarized the implications for managers based on our outcomes. Research limitations/implications - Multinational firms must dynamically build knowledge capital to augment corporations’ innovation management. Conversely, knowledge capital motivates multinational firms to implement transboundary investment and cultivate assimilative capacity. Accordingly, multinational firms can efficiently exploit diverse information to augment their corporate innovation management. Practical implications – This paper presents a comprehensive justification of knowledge capital and manufacturing firms’ innovation management by exploring the impact of transboundary investment and assimilative capacity within the manufacturing industry, its sequential progress, and its associated challenges. Originality/value – This paper is amongst the first to find empirical results to back knowledge capital and manufacturing firms’ innovation management by exploring the impact of transboundary investment and assimilative capacity within the manufacturing industry. Additionally, aligning knowledge as a coordinative instrument is a significant input to our discernment in this area.Keywords: knowledge capital, transboundary investment, innovation management, assimilative capacity
Procedia PDF Downloads 7646 Analysis of the Operating Load of Gas Bearings in the Gas Generator of the Turbine Engine during a Deceleration to Dash Maneuver
Authors: Zbigniew Czyz, Pawel Magryta, Mateusz Paszko
Abstract:
The paper discusses the status of loads acting on the drive unit of the unmanned helicopter during deceleration to dash maneuver. Special attention was given for the loads of bearings in the gas generator turbine engine, in which will be equipped a helicopter. The analysis was based on the speed changes as a function of time for manned flight of helicopter PZL W3-Falcon. The dependence of speed change during the flight was approximated by the least squares method and then determined for its changes in acceleration. This enabled us to specify the forces acting on the bearing of the gas generator in static and dynamic conditions. Deceleration to dash maneuvers occurs in steady flight at a speed of 222 km/h by horizontal braking and acceleration. When the speed reaches 92 km/h, it dynamically changes an inclination of the helicopter to the maximum acceleration and power to almost maximum and holds it until it reaches its initial speed. This type of maneuvers are used due to ineffective shots at significant cruising speeds. It is, therefore, important to reduce speed to the optimum as soon as possible and after giving a shot to return to the initial speed (cruising). In deceleration to dash maneuvers, we have to deal with the force of gravity of the rotor assembly, gas aerodynamics forces and the forces caused by axial acceleration during this maneuver. While we can assume that the working components of the gas generator are designed so that axial gas forces they create could balance the aerodynamic effects, the remaining ones operate with a value that results from the motion profile of the aircraft. Based on the analysis, we can make a compilation of the results. For this maneuver, the force of gravity (referring to statistical calculations) respectively equals for bearing A = 5.638 N and bearing B = 1.631 N. As overload coefficient k in this direction is 1, this force results solely from the weight of the rotor assembly. For this maneuver, the acceleration in the longitudinal direction achieved value a_max = 4.36 m/s2. Overload coefficient k is, therefore, 0.44. When we multiply overload coefficient k by the weight of all gas generator components that act on the axial bearing, the force caused by axial acceleration during deceleration to dash maneuver equals only 3.15 N. The results of the calculations are compared with other maneuvers such as acceleration and deceleration and jump up and jump down maneuvers. This work has been financed by the Polish Ministry of Science and Higher Education.Keywords: gas bearings, helicopters, helicopter maneuvers, turbine engines
Procedia PDF Downloads 33945 Web Development in Information Technology with Javascript, Machine Learning and Artificial Intelligence
Authors: Abdul Basit Kiani, Maryam Kiani
Abstract:
Online developers now have the tools necessary to create online apps that are not only reliable but also highly interactive, thanks to the introduction of JavaScript frameworks and APIs. The objective is to give a broad overview of the recent advances in the area. The fusion of machine learning (ML) and artificial intelligence (AI) has expanded the possibilities for web development. Modern websites now include chatbots, clever recommendation systems, and customization algorithms built in. In the rapidly evolving landscape of modern websites, it has become increasingly apparent that user engagement and personalization are key factors for success. To meet these demands, websites now incorporate a range of innovative technologies. One such technology is chatbots, which provide users with instant assistance and support, enhancing their overall browsing experience. These intelligent bots are capable of understanding natural language and can answer frequently asked questions, offer product recommendations, and even help with troubleshooting. Moreover, clever recommendation systems have emerged as a powerful tool on modern websites. By analyzing user behavior, preferences, and historical data, these systems can intelligently suggest relevant products, articles, or services tailored to each user's unique interests. This not only saves users valuable time but also increases the chances of conversions and customer satisfaction. Additionally, customization algorithms have revolutionized the way websites interact with users. By leveraging user preferences, browsing history, and demographic information, these algorithms can dynamically adjust the website's layout, content, and functionalities to suit individual user needs. This level of personalization enhances user engagement, boosts conversion rates, and ultimately leads to a more satisfying online experience. In summary, the integration of chatbots, clever recommendation systems, and customization algorithms into modern websites is transforming the way users interact with online platforms. These advanced technologies not only streamline user experiences but also contribute to increased customer satisfaction, improved conversions, and overall website success.Keywords: Javascript, machine learning, artificial intelligence, web development
Procedia PDF Downloads 8044 Teachers Leadership Dimension in History Learning
Authors: Lee Bih Ni, Zulfhikar Rabe, Nurul Asyikin Hassan
Abstract:
The Ministry of Education Malaysia dynamically and drastically made the subject of History mandatory to be in force in 2013. This is in recognition of the nation's heritage and treasures in maintaining true facts and information for future generations of the State. History reveals the civilization of a nation and the fact of national cultural heritage. Civilization needs to be preserved as a legacy of sovereign heritage. Today's generation is the catalyst for future heirs who will support the principle and direction of the country. In line with the National Education Philosophy that aims to shape the potential development of individuals holistically and uniquely in order to produce a balanced and harmonious student in terms of intellectual, spiritual, emotional and physical. Hence, understanding the importance of studying the history subject as a pillar of identity and the history of nationhood is to be a priority in the pursuit of knowledge and empowering the spirit of statehood that is nurtured through continuous learning at school. Judging from the aspect of teacher leadership role in integrating history in a combined way based on Teacher Education Philosophy. It empowers the teaching profession towards the teacher to support noble character. It also supports progressive and scientific views. Teachers are willing to uphold the State's aspirations and celebrate the country's cultural heritage. They guarantee individual development and maintain a united, democratic, progressive and disciplined society. Teacher's role as a change and leadership agent in education begins in the classroom through formal or informal educational processes. This situation is expanded in schools, communities and countries. The focus of this paper is on the role of teacher leadership influencing the effectiveness of teaching and learning history in the classroom environment. Leadership guides to teachers' perceptions on the role of teacher leadership, teaching leadership, and the teacher leadership role and effective teacher leadership role. Discussions give emphasis on aspects of factors affecting the classroom environment, forming the classroom agenda, effective classroom implementation methods, suitable climate for historical learning and teacher challenges in implicating the effectiveness of teaching and learning processes.Keywords: teacher leadership, leadership lessons, effective classroom, effective teacher
Procedia PDF Downloads 28343 Design of Data Management Software System Supporting Rendezvous and Docking with Various Spaceships
Authors: Zhan Panpan, Lu Lan, Sun Yong, He Xiongwen, Yan Dong, Gu Ming
Abstract:
The function of the two spacecraft docking network, the communication and control of a docking target with various spacecrafts is realized in the space lab data management system. In order to solve the problem of the complex data communication mode between the space lab and various spaceships, and the problem of software reuse caused by non-standard protocol, a data management software system supporting rendezvous and docking with various spaceships has been designed. The software system is based on CCSDS Spcecraft Onboard Interface Service(SOIS). It consists of Software Driver Layer, Middleware Layer and Appliaction Layer. The Software Driver Layer hides the various device interfaces using the uniform device driver framework. The Middleware Layer is divided into three lays, including transfer layer, application support layer and system business layer. The communication of space lab plaform bus and the docking bus is realized in transfer layer. Application support layer provides the inter tasks communitaion and the function of unified time management for the software system. The data management software functions are realized in system business layer, which contains telemetry management service, telecontrol management service, flight status management service, rendezvous and docking management service and so on. The Appliaction Layer accomplishes the space lab data management system defined tasks using the standard interface supplied by the Middleware Layer. On the basis of layered architecture, rendezvous and docking tasks and the rendezvous and docking management service are independent in the software system. The rendezvous and docking tasks will be activated and executed according to the different spaceships. In this way, the communication management functions in the independent flight mode, the combination mode of the manned spaceship and the combination mode of the cargo spaceship are achieved separately. The software architecture designed standard appliction interface for the services in each layer. Different requirements of the space lab can be supported by the use of standard services per layer, and the scalability and flexibility of the data management software can be effectively improved. It can also dynamically expand the number and adapt to the protocol of visiting spaceships. The software system has been applied in the data management subsystem of the space lab, and has been verified in the flight of the space lab. The research results of this paper can provide the basis for the design of the data manage system in the future space station.Keywords: space lab, rendezvous and docking, data management, software system
Procedia PDF Downloads 36842 Efficient Residual Road Condition Segmentation Network Based on Reconstructed Images
Authors: Xiang Shijie, Zhou Dong, Tian Dan
Abstract:
This paper focuses on the application of real-time semantic segmentation technology in complex road condition recognition, aiming to address the critical issue of how to improve segmentation accuracy while ensuring real-time performance. Semantic segmentation technology has broad application prospects in fields such as autonomous vehicle navigation and remote sensing image recognition. However, current real-time semantic segmentation networks face significant technical challenges and optimization gaps in balancing speed and accuracy. To tackle this problem, this paper conducts an in-depth study and proposes an innovative Guided Image Reconstruction Module. By resampling high-resolution images into a set of low-resolution images, this module effectively reduces computational complexity, allowing the network to more efficiently extract features within limited resources, thereby improving the performance of real-time segmentation tasks. In addition, a dual-branch network structure is designed in this paper to fully leverage the advantages of different feature layers. A novel Hybrid Attention Mechanism is also introduced, which can dynamically capture multi-scale contextual information and effectively enhance the focus on important features, thus improving the segmentation accuracy of the network in complex road condition. Compared with traditional methods, the proposed model achieves a better balance between accuracy and real-time performance and demonstrates competitive results in road condition segmentation tasks, showcasing its superiority. Experimental results show that this method not only significantly improves segmentation accuracy while maintaining real-time performance, but also remains stable across diverse and complex road conditions, making it highly applicable in practical scenarios. By incorporating the Guided Image Reconstruction Module, dual-branch structure, and Hybrid Attention Mechanism, this paper presents a novel approach to real-time semantic segmentation tasks, which is expected to further advance the development of this field.Keywords: hybrid attention mechanism, image reconstruction, real-time, road status recognition
Procedia PDF Downloads 2341 Optimizing Electric Vehicle Charging Networks with Dynamic Pricing and Demand Elasticity
Authors: Chiao-Yi Chen, Dung-Ying Lin
Abstract:
With the growing awareness of environmental protection and the implementation of government carbon reduction policies, the number of electric vehicles (EVs) has rapidly increased, leading to a surge in charging demand and imposing significant challenges on the existing power grid’s capacity. Traditional urban power grid planning has not adequately accounted for the additional load generated by EV charging, which often strains the infrastructure. This study aims to optimize grid operation and load management by dynamically adjusting EV charging prices based on real-time electricity supply and demand, leveraging consumer demand elasticity to enhance system efficiency. This study uniquely addresses the intricate interplay between urban traffic patterns and power grid dynamics in the context of electric vehicle (EV) adoption. By integrating Hsinchu City's road network with the IEEE 33-bus system, the research creates a comprehensive model that captures both the spatial and temporal aspects of EV charging demand. This approach allows for a nuanced analysis of how traffic flow directly influences the load distribution across the power grid. The strategic placement of charging stations at key nodes within the IEEE 33-bus system, informed by actual road traffic data, enables a realistic simulation of the dynamic relationship between vehicle movement and energy consumption. This integration of transportation and energy systems provides a holistic view of the challenges and opportunities in urban EV infrastructure planning, highlighting the critical need for solutions that can adapt to the ever-changing interplay between traffic patterns and grid capacity. The proposed dynamic pricing strategy effectively reduces peak charging loads, enhances the operational efficiency of charging stations, and maximizes operator profits, all while ensuring grid stability. These findings provide practical insights and a valuable framework for optimizing EV charging infrastructure and policies in future smart cities, contributing to more resilient and sustainable urban energy systems.Keywords: dynamic pricing, demand elasticity, EV charging, grid load balancing, optimization
Procedia PDF Downloads 1940 Influence of Long-Term Variability in Atmospheric Parameters on Ocean State over the Head Bay of Bengal
Authors: Anindita Patra, Prasad K. Bhaskaran
Abstract:
The atmosphere-ocean is a dynamically linked system that influences the exchange of energy, mass, and gas at the air-sea interface. The exchange of energy takes place in the form of sensible heat, latent heat, and momentum commonly referred to as fluxes along the atmosphere-ocean boundary. The large scale features such as El Nino and Southern Oscillation (ENSO) is a classic example on the interaction mechanism that occurs along the air-sea interface that deals with the inter-annual variability of the Earth’s Climate System. Most importantly the ocean and atmosphere as a coupled system acts in tandem thereby maintaining the energy balance of the climate system, a manifestation of the coupled air-sea interaction process. The present work is an attempt to understand the long-term variability in atmospheric parameters (from surface to upper levels) and investigate their role in influencing the surface ocean variables. More specifically the influence of atmospheric circulation and its variability influencing the mean Sea Level Pressure (SLP) has been explored. The study reports on a critical examination of both ocean-atmosphere parameters during a monsoon season over the head Bay of Bengal region. A trend analysis has been carried out for several atmospheric parameters such as the air temperature, geo-potential height, and omega (vertical velocity) for different vertical levels in the atmosphere (from surface to the troposphere) covering a period from 1992 to 2012. The Reanalysis 2 dataset from the National Centers for Environmental Prediction-Department of Energy (NCEP-DOE) was used in this study. The study signifies that the variability in air temperature and omega corroborates with the variation noticed in geo-potential height. Further, the study advocates that for the lower atmosphere the geo-potential heights depict a typical east-west contrast exhibiting a zonal dipole behavior over the study domain. In addition, the study clearly brings to light that the variations over different levels in the atmosphere plays a pivotal role in supporting the observed dipole pattern as clearly evidenced from the trends in SLP, associated surface wind speed and significant wave height over the study domain.Keywords: air temperature, geopotential height, head Bay of Bengal, long-term variability, NCEP reanalysis 2, omega, wind-waves
Procedia PDF Downloads 22539 Tunable Graphene Metasurface Modeling Using the Method of Moment Combined with Generalised Equivalent Circuit
Authors: Imen Soltani, Takoua Soltani, Taoufik Aguili
Abstract:
Metamaterials crossover classic physical boundaries and gives rise to new phenomena and applications in the domain of beam steering and shaping. Where electromagnetic near and far field manipulations were achieved in an accurate manner. In this sense, 3D imaging is one of the beneficiaries and in particular Denis Gabor’s invention: holography. But, the major difficulty here is the lack of a suitable recording medium. So some enhancements were essential, where the 2D version of bulk metamaterials have been introduced the so-called metasurface. This new class of interfaces simplifies the problem of recording medium with the capability of tuning the phase, amplitude, and polarization at a given frequency. In order to achieve an intelligible wavefront control, the electromagnetic properties of the metasurface should be optimized by means of solving Maxwell’s equations. In this context, integral methods are emerging as an important method to study electromagnetic from microwave to optical frequencies. The method of moment presents an accurate solution to reduce the problem of dimensions by writing its boundary conditions in the form of integral equations. But solving this kind of equations tends to be more complicated and time-consuming as the structural complexity increases. Here, the use of equivalent circuit’s method exhibits the most scalable experience to develop an integral method formulation. In fact, for allaying the resolution of Maxwell’s equations, the method of Generalised Equivalent Circuit was proposed to convey the resolution from the domain of integral equations to the domain of equivalent circuits. In point of fact, this technique consists in creating an electric image of the studied structure using discontinuity plan paradigm and taken into account its environment. So that, the electromagnetic state of the discontinuity plan is described by generalised test functions which are modelled by virtual sources not storing energy. The environmental effects are included by the use of an impedance or admittance operator. Here, we propose a tunable metasurface composed of graphene-based elements which combine the advantages of reflectarrays concept and graphene as a pillar constituent element at Terahertz frequencies. The metasurface’s building block consists of a thin gold film, a dielectric spacer SiO₂ and graphene patch antenna. Our electromagnetic analysis is based on the method of moment combined with generalised equivalent circuit (MoM-GEC). We begin by restricting our attention to study the effects of varying graphene’s chemical potential on the unit cell input impedance. So, it was found that the variation of complex conductivity of graphene allows controlling the phase and amplitude of the reflection coefficient at each element of the array. From the results obtained here, we were able to determine that the phase modulation is realized by adjusting graphene’s complex conductivity. This modulation is a viable solution compared to tunning the phase by varying the antenna length because it offers a full 2π reflection phase control.Keywords: graphene, method of moment combined with generalised equivalent circuit, reconfigurable metasurface, reflectarray, terahertz domain
Procedia PDF Downloads 17638 A Method and System for Secure Authentication Using One Time QR Code
Authors: Divyans Mahansaria
Abstract:
User authentication is an important security measure for protecting confidential data and systems. However, the vulnerability while authenticating into a system has significantly increased. Thus, necessary mechanisms must be deployed during the process of authenticating a user to safeguard him/her from the vulnerable attacks. The proposed solution implements a novel authentication mechanism to counter various forms of security breach attacks including phishing, Trojan horse, replay, key logging, Asterisk logging, shoulder surfing, brute force search and others. QR code (Quick Response Code) is a type of matrix barcode or two-dimensional barcode that can be used for storing URLs, text, images and other information. In the proposed solution, during each new authentication request, a QR code is dynamically generated and presented to the user. A piece of generic information is mapped to plurality of elements and stored within the QR code. The mapping of generic information with plurality of elements, randomizes in each new login, and thus the QR code generated for each new authentication request is for one-time use only. In order to authenticate into the system, the user needs to decode the QR code using any QR code decoding software. The QR code decoding software needs to be installed on handheld mobile devices such as smartphones, personal digital assistant (PDA), etc. On decoding the QR code, the user will be presented a mapping between the generic piece of information and plurality of elements using which the user needs to derive cipher secret information corresponding to his/her actual password. Now, in place of the actual password, the user will use this cipher secret information to authenticate into the system. The authentication terminal will receive the cipher secret information and use a validation engine that will decipher the cipher secret information. If the entered secret information is correct, the user will be provided access to the system. Usability study has been carried out on the proposed solution, and the new authentication mechanism was found to be easy to learn and adapt. Mathematical analysis of the time taken to carry out brute force attack on the proposed solution has been carried out. The result of mathematical analysis showed that the solution is almost completely resistant to brute force attack. Today’s standard methods for authentication are subject to a wide variety of software, hardware, and human attacks. The proposed scheme can be very useful in controlling the various types of authentication related attacks especially in a networked computer environment where the use of username and password for authentication is common.Keywords: authentication, QR code, cipher / decipher text, one time password, secret information
Procedia PDF Downloads 26837 A Novel Approach to 3D Thrust Vectoring CFD via Mesh Morphing
Authors: Umut Yıldız, Berkin Kurtuluş, Yunus Emre Muslubaş
Abstract:
Thrust vectoring, especially in military aviation, is a concept that sees much use to improve maneuverability in already agile aircraft. As this concept is fairly new and cost intensive to design and test, computational methods are useful in easing the preliminary design process. Computational Fluid Dynamics (CFD) can be utilized in many forms to simulate nozzle flow, and there exist various CFD studies in both 2D mechanical and 3D injection based thrust vectoring, and yet, 3D mechanical thrust vectoring analyses, at this point in time, are lacking variety. Additionally, the freely available test data is constrained to limited pitch angles and geometries. In this study, based on a test case provided by NASA, both steady and unsteady 3D CFD simulations are conducted to examine the aerodynamic performance of a mechanical thrust vectoring nozzle model and to validate the utilized numerical model. Steady analyses are performed to verify the flow characteristics of the nozzle at pitch angles of 0, 10 and 20 degrees, and the results are compared with experimental data. It is observed that the pressure data obtained on the inner surface of the nozzle at each specified pitch angle and under different flow conditions with pressure ratios of 1.5, 2 and 4, as well as at azimuthal angle of 0, 45, 90, 135, and 180 degrees exhibited a high level of agreement with the corresponding experimental results. To validate the CFD model, the insights from the steady analyses are utilized, followed by unsteady analyses covering a wide range of pitch angles from 0 to 20 degrees. Throughout the simulations, a mesh morphing method using a carefully calculated mathematical shape deformation model that simulates the vectored nozzle shape exactly at each point of its travel is employed to dynamically alter the divergent part of the nozzle over time within this pitch angle range. The mesh morphing based vectored nozzle shapes were compared with the drawings provided by NASA, ensuring a complete match was achieved. This computational approach allowed for the creation of a comprehensive database of results without the need to generate separate solution domains. The database contains results at every 0.01° increment of nozzle pitch angle. The unsteady analyses, generated using the morphing method, are found to be in excellent agreement with experimental data, further confirming the accuracy of the CFD model.Keywords: thrust vectoring, computational fluid dynamics, 3d mesh morphing, mathematical shape deformation model
Procedia PDF Downloads 8336 Effects of Global Validity of Predictive Cues upon L2 Discourse Comprehension: Evidence from Self-paced Reading
Authors: Binger Lu
Abstract:
It remains unclear whether second language (L2) speakers could use discourse context cues to predict upcoming information as native speakers do during online comprehension. Some researchers propose that L2 learners may have a reduced ability to generate predictions during discourse processing. At the same time, there is evidence that discourse-level cues are weighed more heavily in L2 processing than in L1. Previous studies showed that L1 prediction is sensitive to the global validity of predictive cues. The current study aims to explore whether and to what extent L2 learners can dynamically and strategically adjust their prediction in accord with the global validity of predictive cues in L2 discourse comprehension as native speakers do. In a self-paced reading experiment, Chinese native speakers (N=128), C-E bilinguals (N=128), and English native speakers (N=128) read high-predictable (e.g., Jimmy felt thirsty after running. He wanted to get some water from the refrigerator.) and low-predictable (e.g., Jimmy felt sick this morning. He wanted to get some water from the refrigerator.) discourses in two-sentence frames. The global validity of predictive cues was manipulated by varying the ratio of predictable (e.g., Bill stood at the door. He opened it with the key.) and unpredictable fillers (e.g., Bill stood at the door. He opened it with the card.), such that across conditions, the predictability of the final word of the fillers ranged from 100% to 0%. The dependent variable was reading time on the critical region (the target word and the following word), analyzed with linear mixed-effects models in R. C-E bilinguals showed reliable prediction across all validity conditions (β = -35.6 ms, SE = 7.74, t = -4.601, p< .001), and Chinese native speakers showed significant effect (β = -93.5 ms, SE = 7.82, t = -11.956, p< .001) in two of the four validity conditions (namely, the High-validity and MedLow conditions, where fillers ended with predictable words in 100% and 25% cases respectively), whereas English native speakers didn’t predict at all (β = -2.78 ms, SE = 7.60, t = -.365, p = .715). There was neither main effect (χ^²(3) = .256, p = .968) nor interaction (Predictability: Background: Validity, χ^²(3) = 1.229, p = .746; Predictability: Validity, χ^²(3) = 2.520, p = .472; Background: Validity, χ^²(3) = 1.281, p = .734) of Validity with speaker groups. The results suggest that prediction occurs in L2 discourse processing but to a much less extent in L1, witha significant effect in some conditions of L1 Chinese and anull effect in L1 English processing, consistent with the view that L2 speakers are more sensitive to discourse cues compared with L1 speakers. Additionally, the pattern of L1 and L2 predictive processing was not affected by the global validity of predictive cues. C-E bilinguals’ predictive processing could be partly transferred from their L1, as prior research showed that discourse information played a more significant role in L1 Chinese processing.Keywords: bilingualism, discourse processing, global validity, prediction, self-paced reading
Procedia PDF Downloads 138