Search results for: de Bruijn sequences
379 Video Shot Detection and Key Frame Extraction Using Faber-Shauder DWT and SVD
Authors: Assma Azeroual, Karim Afdel, Mohamed El Hajji, Hassan Douzi
Abstract:
Key frame extraction methods select the most representative frames of a video, which can be used in different areas of video processing such as video retrieval, video summary, and video indexing. In this paper we present a novel approach for extracting key frames from video sequences. The frame is characterized uniquely by his contours which are represented by the dominant blocks. These dominant blocks are located on the contours and its near textures. When the video frames have a noticeable changement, its dominant blocks changed, then we can extracte a key frame. The dominant blocks of every frame is computed, and then feature vectors are extracted from the dominant blocks image of each frame and arranged in a feature matrix. Singular Value Decomposition is used to calculate sliding windows ranks of those matrices. Finally the computed ranks are traced and then we are able to extract key frames of a video. Experimental results show that the proposed approach is robust against a large range of digital effects used during shot transition.Keywords: FSDWT, key frame extraction, shot detection, singular value decomposition
Procedia PDF Downloads 397378 Exploitation of Terpenes as Guardians in Plant Biotechnology
Authors: Farzad Alaeimoghadam, Farnaz Alaeimoghadam
Abstract:
Plants are always being threatened by biotic and abiotic elements in their abode. Although they have inherited mechanisms to defend themselves, sometimes due to overpowering of their enemies or weakening of themselves, they just suffer from those elements. Human, as to help plants defend themselves, have developed several methods among which application of terpenes via plant biotechnology is promising. Terpenes are the most frequent and diverse secondary metabolites in plants. In these plants, terpenes are involved in different protective aspects. In this field, by utilizing biotechnological approaches on them, a delicate, precise, and an economic intervention will be achieved. In this review, first, the importance of terpenes as guardians in plants, which include their allelopathy effect, a call for alliances, and a mitigation impact on abiotic stresses will be pointed out. Second, problems concerning terpenes application in plant biotechnology comprising: damage to cell, undesirable terpene production and undesirable concentration and proportion of terpenes will be discussed. At the end, the approaches in plant biotechnology of terpenes including tampering with terpene gene sequences, compartmentalization, and localization and utilization of membrane transporters will be expressed. It is concluded with some useful notions concerning the topic.Keywords: plant biotechnology, plant protection, terpenes, terpenoids
Procedia PDF Downloads 354377 Comparison of Machine Learning-Based Models for Predicting Streptococcus pyogenes Virulence Factors and Antimicrobial Resistance
Authors: Fernanda Bravo Cornejo, Camilo Cerda Sarabia, Belén Díaz Díaz, Diego Santibañez Oyarce, Esteban Gómez Terán, Hugo Osses Prado, Raúl Caulier-Cisterna, Jorge Vergara-Quezada, Ana Moya-Beltrán
Abstract:
Streptococcus pyogenes is a gram-positive bacteria involved in a wide range of diseases and is a major-human-specific bacterial pathogen. In Chile, this year the 'Ministerio de Salud' declared an alert due to the increase in strains throughout the year. This increase can be attributed to the multitude of factors including antimicrobial resistance (AMR) and Virulence Factors (VF). Understanding these VF and AMR is crucial for developing effective strategies and improving public health responses. Moreover, experimental identification and characterization of these pathogenic mechanisms are labor-intensive and time-consuming. Therefore, new computational methods are required to provide robust techniques for accelerating this identification. Advances in Machine Learning (ML) algorithms represent the opportunity to refine and accelerate the discovery of VF associated with Streptococcus pyogenes. In this work, we evaluate the accuracy of various machine learning models in predicting the virulence factors and antimicrobial resistance of Streptococcus pyogenes, with the objective of providing new methods for identifying the pathogenic mechanisms of this organism.Our comprehensive approach involved the download of 32,798 genbank files of S. pyogenes from NCBI dataset, coupled with the incorporation of data from Virulence Factor Database (VFDB) and Antibiotic Resistance Database (CARD) which contains sequences of AMR gene sequence and resistance profiles. These datasets provided labeled examples of both virulent and non-virulent genes, enabling a robust foundation for feature extraction and model training. We employed preprocessing, characterization and feature extraction techniques on primary nucleotide/amino acid sequences and selected the optimal more for model training. The feature set was constructed using sequence-based descriptors (e.g., k-mers and One-hot encoding), and functional annotations based on database prediction. The ML models compared are logistic regression, decision trees, support vector machines, neural networks among others. The results of this work show some differences in accuracy between the algorithms, these differences allow us to identify different aspects that represent unique opportunities for a more precise and efficient characterization and identification of VF and AMR. This comparative analysis underscores the value of integrating machine learning techniques in predicting S. pyogenes virulence and AMR, offering potential pathways for more effective diagnostic and therapeutic strategies. Future work will focus on incorporating additional omics data, such as transcriptomics, and exploring advanced deep learning models to further enhance predictive capabilities.Keywords: antibiotic resistance, streptococcus pyogenes, virulence factors., machine learning
Procedia PDF Downloads 30376 One Species into Five: Nucleo-Mito Barcoding Reveals Cryptic Species in 'Frankliniella Schultzei Complex': Vector for Tospoviruses
Authors: Vikas Kumar, Kailash Chandra, Kaomud Tyagi
Abstract:
The insect order Thysanoptera includes small insects commonly called thrips. As insect vectors, only thrips are capable of Tospoviruses transmission (genus Tospovirus, family Bunyaviridae) affecting various crops. Currently, fifteen species of subfamily Thripinae (Thripidae) have been reported as vectors for tospoviruses. Frankliniella schultzei, which is reported as act as a vector for at least five tospovirses, have been suspected to be a species complex with more than one species. It is one of the historical unresolved issues where, two species namely, F. schultzei Trybom and F. sulphurea Schmutz were erected from South Africa and Srilanaka respectively. These two species were considered to be valid until 1968 when sulphurea was treated as colour morph (pale form) and synonymised under schultzei (dark form) However, these two have been considered as valid species by some of the thrips workers. Parallel studies have indicated that brown form of schultzei is a vector for tospoviruses while yellow form is a non-vector. However, recent studies have shown that yellow populations have also been documented as vectors. In view of all these facts, it is highly important to have a clear understanding whether these colour forms represent true species or merely different populations with different vector carrying capacities and whether there is some hidden diversity in 'Frankliniella schultzei species complex'. In this study, we aim to study the 'Frankliniella schultzei species complex' with molecular spectacles with DNA data from India and Australia and Africa. A total of fifty-five specimens was collected from diverse locations in India and Australia. We generated molecular data using partial fragments of mitochondrial cytochrome c oxidase I gene (mtCOI) and 28S rRNA gene. For COI dataset, there were seventy-four sequences, out of which data on fifty-five was generated in the current study and others were retrieved from NCBI. All the four different tree construction methods: neighbor-joining, maximum parsimony, maximum likelihood and Bayesian analysis, yielded the same tree topology and produced five cryptic species with high genetic divergence. For, rDNA, there were forty-five sequences, out of which data on thirty-nine was generated in the current study and others were retrieved from NCBI. The four tree building methods yielded four cryptic species with high bootstrap support value/posterior probability. Here we could not retrieve one cryptic species from South Africa as we could not generate data on rDNA from South Africa and sequence for rDNA from African region were not available in the database. The results of multiple species delimitation methods (barcode index numbers, automatic barcode gap discovery, general mixed Yule-coalescent, and Poisson-tree-processes) also supported the phylogenetic data and produced 5 and 4 Molecular Operational Taxonomic Units (MOTUs) for mtCOI and 28S dataset respectively. These results of our study indicate the likelihood that F. sulphurea may be a valid species, however, more morphological and molecular data is required on specimens from type localities of these two species and comparison with type specimens.Keywords: DNA barcoding, species complex, thrips, species delimitation
Procedia PDF Downloads 128375 Improved Operating Strategies for the Optimization of Proton Exchange Membrane Fuel Cell System Performance
Authors: Guillaume Soubeyran, Fabrice Micoud, Benoit Morin, Jean-Philippe Poirot-Crouvezier, Magali Reytier
Abstract:
Proton Exchange Membrane Fuel Cell (PEMFC) technology is considered as a solution for the reduction of CO2 emissions. However, this technology still meets several challenges for high-scale industrialization. In this context, the increase of durability remains a critical aspect for competitiveness of this technology. Fortunately, performance degradations in nominal operating conditions is partially reversible, meaning that if specific conditions are applied, a partial recovery of fuel cell performance can be achieved, while irreversible degradations can only be mitigated. Thus, it is worth studying the optimal conditions to rejuvenate these reversible degradations and assessing the long-term impact of such procedures on the performance of the cell. Reversible degradations consist mainly of anode Pt active sites poisoning by carbon monoxide at the anode, heterogeneities in water management during use, and oxidation/deactivation of Pt active sites at the cathode. The latter is identified as a major source of reversible performance loss caused by the presence oxygen, high temperature and high cathode potential that favor platinum oxidation, especially in high efficiency operating points. Hence, we studied here a recovery procedure aiming at reducing the platinum oxides by decreasing cathode potential during operation. Indeed, the application of short air starvation phase leads to a drop of cathode potential. Cell performances are temporarily increased afterwards. Nevertheless, local temperature and current heterogeneities within the cells are favored and shall be minimized. The consumption of fuel during the recovery phase shall also be considered to evaluate the global efficiency. Consequently, the purpose of this work is to find an optimal compromise between the recovery of reversible degradations by air starvation, the increase of global cell efficiency and the mitigation of irreversible degradations effects. Different operating parameters have first been studied such as cell voltage, temperature and humidity in single cell set-up. Considering the global PEMFC system efficiency, tests showed that reducing duration of recovery phase and reducing cell voltage was the key to ensure an efficient recovery. Recovery phase frequency was a major factor as well. A specific method was established to find the optimal frequency depending on the duration and voltage of the recovery phase. Then, long-term degradations have also been studied by applying FC-DLC cycles based on NEDC cycles on a 4-cell short stack by alternating test sequences with and without recovery phases. Depending on recovery phase timing, cell efficiency during the cycle was increased up to 2% thanks to a mean voltage increase of 10 mV during test sequences with recovery phases. However, cyclic voltammetry tests results suggest that the implementation of recovery phases causes an acceleration of the decrease of platinum active areas that could be due to the high potential variations applied to the cathode electrode during operation.Keywords: durability, PEMFC, recovery procedure, reversible degradation
Procedia PDF Downloads 134374 Identification of Conserved Domains and Motifs for GRF Gene Family
Authors: Jafar Ahmadi, Nafiseh Noormohammadi, Sedegeh Fabriki Ourang
Abstract:
GRF, Growth regulating factor, genes encode a novel class of plant-specific transcription factors. The GRF proteins play a role in the regulation of cell numbers in young and growing tissues and may act as transcription activations in growth and development of plants. Identification of GRF genes and their expression are important in plants to performance of the growth and development of various organs. In this study, to better understanding the structural and functional differences of GRFs family, 45 GRF proteins sequences in A. thaliana, Z. mays, O. sativa, B. napus, B. rapa, H. vulgare, and S. bicolor, have been collected and analyzed through bioinformatics data mining. As a result, in secondary structure of GRFs, the number of alpha helices was more than beta sheets and in all of them QLQ domains were completely in the biggest alpha helix. In all GRFs, QLQ, and WRC domains were completely protected except in AtGRF9. These proteins have no trans-membrane domain and due to have nuclear localization signals act in nuclear and they are component of unstable proteins in the test tube.Keywords: domain, gene family, GRF, motif
Procedia PDF Downloads 457373 Fiber Stiffness Detection of GFRP Using Combined ABAQUS and Genetic Algorithms
Authors: Gyu-Dong Kim, Wuk-Jae Yoo, Sang-Youl Lee
Abstract:
Composite structures offer numerous advantages over conventional structural systems in the form of higher specific stiffness and strength, lower life-cycle costs, and benefits such as easy installation and improved safety. Recently, there has been a considerable increase in the use of composites in engineering applications and as wraps for seismic upgrading and repairs. However, these composites deteriorate with time because of outdated materials, excessive use, repetitive loading, climatic conditions, manufacturing errors, and deficiencies in inspection methods. In particular, damaged fibers in a composite result in significant degradation of structural performance. In order to reduce the failure probability of composites in service, techniques to assess the condition of the composites to prevent continual growth of fiber damage are required. Condition assessment technology and nondestructive evaluation (NDE) techniques have provided various solutions for the safety of structures by means of detecting damage or defects from static or dynamic responses induced by external loading. A variety of techniques based on detecting the changes in static or dynamic behavior of isotropic structures has been developed in the last two decades. These methods, based on analytical approaches, are limited in their capabilities in dealing with complex systems, primarily because of their limitations in handling different loading and boundary conditions. Recently, investigators have introduced direct search methods based on metaheuristics techniques and artificial intelligence, such as genetic algorithms (GA), simulated annealing (SA) methods, and neural networks (NN), and have promisingly applied these methods to the field of structural identification. Among them, GAs attract our attention because they do not require a considerable amount of data in advance in dealing with complex problems and can make a global solution search possible as opposed to classical gradient-based optimization techniques. In this study, we propose an alternative damage-detection technique that can determine the degraded stiffness distribution of vibrating laminated composites made of Glass Fiber-reinforced Polymer (GFRP). The proposed method uses a modified form of the bivariate Gaussian distribution function to detect degraded stiffness characteristics. In addition, this study presents a method to detect the fiber property variation of laminated composite plates from the micromechanical point of view. The finite element model is used to study free vibrations of laminated composite plates for fiber stiffness degradation. In order to solve the inverse problem using the combined method, this study uses only first mode shapes in a structure for the measured frequency data. In particular, this study focuses on the effect of the interaction among various parameters, such as fiber angles, layup sequences, and damage distributions, on fiber-stiffness damage detection.Keywords: stiffness detection, fiber damage, genetic algorithm, layup sequences
Procedia PDF Downloads 272372 Traffic Light Detection Using Image Segmentation
Authors: Vaishnavi Shivde, Shrishti Sinha, Trapti Mishra
Abstract:
Traffic light detection from a moving vehicle is an important technology both for driver safety assistance functions as well as for autonomous driving in the city. This paper proposed a deep-learning-based traffic light recognition method that consists of a pixel-wise image segmentation technique and a fully convolutional network i.e., UNET architecture. This paper has used a method for detecting the position and recognizing the state of the traffic lights in video sequences is presented and evaluated using Traffic Light Dataset which contains masked traffic light image data. The first stage is the detection, which is accomplished through image processing (image segmentation) techniques such as image cropping, color transformation, segmentation of possible traffic lights. The second stage is the recognition, which means identifying the color of the traffic light or knowing the state of traffic light which is achieved by using a Convolutional Neural Network (UNET architecture).Keywords: traffic light detection, image segmentation, machine learning, classification, convolutional neural networks
Procedia PDF Downloads 173371 Identification of Odorant Receptors through the Antennal Transcriptome of the Grapevine Pest, Lobesia botrana (Lepidoptera: Tortricidae)
Authors: Ricardo Godoy, Herbert Venthur, Hector Jimenez, Andres Quiroz, Ana Mutis
Abstract:
In agriculture, grape production has great economic importance at global level, considering that in 2013 it reached 7.4 million hectares (ha) covered by plantations of this fruit worldwide. Chile is the number one exporter in the world with 800,000 tons. However, these values have been threatened by the attack of the grapevine moth, Lobesia botrana (Denis & Schiffermuller) (Lepidoptera: Tortricidae), since its detection in 2008. Nowadays, the use of semiochemicals, in particular the major component of the sex pheromone, (E,Z)-7.9-dodecadienil acetate, are part of mating disruption methods to control L. botrana. How insect pests can recognize these molecules, is being part of huge efforts to deorphanize their olfactory mechanism at molecular level. Thus, an interesting group of proteins has been identified in the antennae of insects, where odorant-binding proteins (OBPs) are known by transporting molecules to odorant receptors (ORs) and a co-receptor (ORCO) causing a behavioral change in the insect. Other proteins such as chemosensory proteins (CSPs), ionotropic receptors (IRs), odorant degrading enzymes (ODEs) and sensory neuron membrane proteins (SNMPs) seem to be involved, but few studies have been performed so far. The above has led to an increasing interest in insect communication at a molecular level, which has contributed to both a better understanding of the olfaction process and the design of new pest management strategies. To date, it has been reported that the ORs can detect one or a small group of odorants in a specific way. Therefore, the objective of this study is the identification of genes that encode these ORs using the antennal transcriptome of L. botrana. Total RNA was extracted for females and males of L. botrana, and the antennal transcriptome sequenced by Next Generation Sequencing service using an Illumina HiSeq2500 platform with 50 million reads per sample. Unigenes were assembled using Trinity v2.4.0 package and transcript abundance was obtained using edgeR. Genes were identified using BLASTN and BLASTX locally installed in a Unix system and based on our own Tortricidae database. Those Unigenes related to ORs were characterized using ORFfinder and protein Blastp server. Finally, a phylogenetic analysis was performed with the candidate amino acid sequences for LbotORs including amino acid sequences of other moths ORs, such as Bombyx mori, Cydia pomonella, among others. Our findings suggest 61 genes encoding ORs and one gene encoding an ORCO in both sexes, where the greatest difference was found in the OR6 because of the transcript abundance according to the value of FPKM in females and males was 1.48 versus 324.00. In addition, according to phylogenetic analysis OR6 is closely related to OR1 in Cydia pomonella and OR6, OR7 in Epiphyas postvittana, which have been described as pheromonal receptors (PRs). These results represent the first evidence of ORs present in the antennae of L. botrana and a suitable starting point for further functional studies with selected ORs, such as OR6, which is potentially related to pheromonal recognition.Keywords: antennal transcriptome, lobesia botrana, odorant receptors (ORs), phylogenetic analysis
Procedia PDF Downloads 200370 A Genetic Algorithm Based Permutation and Non-Permutation Scheduling Heuristics for Finite Capacity Material Requirement Planning Problem
Authors: Watchara Songserm, Teeradej Wuttipornpun
Abstract:
This paper presents a genetic algorithm based permutation and non-permutation scheduling heuristics (GAPNP) to solve a multi-stage finite capacity material requirement planning (FCMRP) problem in automotive assembly flow shop with unrelated parallel machines. In the algorithm, the sequences of orders are iteratively improved by the GA characteristics, whereas the required operations are scheduled based on the presented permutation and non-permutation heuristics. Finally, a linear programming is applied to minimize the total cost. The presented GAPNP algorithm is evaluated by using real datasets from automotive companies. The required parameters for GAPNP are intently tuned to obtain a common parameter setting for all case studies. The results show that GAPNP significantly outperforms the benchmark algorithm about 30% on average.Keywords: capacitated MRP, genetic algorithm, linear programming, automotive industries, flow shop, application in industry
Procedia PDF Downloads 489369 Membrane Technologies for Obtaining Bioactive Fractions from Blood Main Protein: An Exploratory Study for Industrial Application
Authors: Fatima Arrutia, Francisco Amador Riera
Abstract:
The meat industry generates large volumes of blood as a result of meat processing. Several industrial procedures have been implemented in order to treat this by-product, but are focused on the production of low-value products, and in many cases, blood is simply discarded as waste. Besides, in addition to economic interests, there is an environmental concern due to bloodborne pathogens and other chemical contaminants found in blood. Consequently, there is a dire need to find extensive uses for blood that can be both applicable to industrial scale and able to yield high value-added products. Blood has been recognized as an important source of protein. The main blood serum protein in mammals is serum albumin. One of the top trends in food market is functional foods. Among them, bioactive peptides can be obtained from protein sources by microbiological fermentation or enzymatic and chemical hydrolysis. Bioactive peptides are short amino acid sequences that can have a positive impact on health when administered. The main drawback for bioactive peptide production is the high cost of the isolation, purification and characterization techniques (such as chromatography and mass spectrometry) that make unaffordable the scale-up. On the other hand, membrane technologies are very suitable to apply to the industry because they offer a very easy scale-up and are low-cost technologies, compared to other traditional separation methods. In this work, the possibility of obtaining bioactive peptide fractions from serum albumin by means of a simple procedure of only 2 steps (hydrolysis and membrane filtration) was evaluated, as an exploratory study for possible industrial application. The methodology used in this work was, firstly, a tryptic hydrolysis of serum albumin in order to release the peptides from the protein. The protein was previously subjected to a thermal treatment in order to enhance the enzyme cleavage and thus the peptide yield. Then, the obtained hydrolysate was filtered through a nanofiltration/ultrafiltration flat rig at three different pH values with two different membrane materials, so as to compare membrane performance. The corresponding permeates were analyzed by liquid chromatography-tandem mass spectrometry technology in order to obtain the peptide sequences present in each permeate. Finally, different concentrations of every permeate were evaluated for their in vitro antihypertensive and antioxidant activities though ACE-inhibition and DPPH radical scavenging tests. The hydrolysis process with the previous thermal treatment allowed achieving a degree of hydrolysis of the 49.66% of the maximum possible. It was found that peptides were best transmitted to the permeate stream at pH values that corresponded to their isoelectric points. Best selectivity between peptide groups was achieved at basic pH values. Differences in peptide content were found between membranes and also between pH values for the same membrane. The antioxidant activity of all permeates was high compared with the control only for the highest dose. However, antihypertensive activity was best for intermediate concentrations, rather than higher or lower doses. Therefore, although differences between them, all permeates were promising regarding antihypertensive and antioxidant properties.Keywords: bioactive peptides, bovine serum albumin, hydrolysis, membrane filtration
Procedia PDF Downloads 200368 Mutations in MTHFR Gene Associated with Mental Retardation and Cerebral Palsy Combined with Mental Retardation in Erbil City
Authors: Hazha Hidayat, Shayma Ibrahim
Abstract:
Folate metabolism plays a crucial role in the normal development of the neonatal central nervous system. It is regulated by MTHFR gene polymorphism. Any factors, which will affect this metabolism either by hereditary or gene mutation will lead to many mental disorders. The purpose of this study was to investigate whether MTHFR gene mutation contributes to the development of mental retardation and CP combined with mental retardation in Erbil city. DNA was isolated from the peripheral blood samples of 40 cases suffering from mental retardation (MR) and CP combined with MR were recruited, sequence the 4, 6, 7, 8 exons of the MTHFR gene were done to identify the variants. Exons were amplified by PCR technique and then sequenced according to Sanger method to show the differences with MTHFR reference sequences. We observed (14) mutations in 4, 6, 7, 8 exons in the MTHFR gene associated with Cerebral Palsy combined with mental retardation included deletion, insertion, Substitution. The current study provides additional evidence that multiple variations in the MTHFR gene are associated with mental retardation and Cerebral Palsy.Keywords: methylenetetrahydrofolate reductase (MTHFR) gene, SNPs, homocysteine, sequencing
Procedia PDF Downloads 308367 Preparation of Gramine Nanosuspension and Protective Effect of Gramine on Human Oral Cell Lines by Induction of Apoptosis
Authors: K. Suresh, R. Arunkumar
Abstract:
The objective of this study is to investigate the preparation of gramine nano suspension and protective effect of Gramine on the apoptosis of laryngeal cancer cells cell line (HEp-2 and KB). The growth inhibition rate of Hep-2 and KB cells in vitro were measured by MTT assay and apoptosis by, levels of reactive oxygen species, mitochondrial membrane potential, morphological changes and flowcytometry. Based on the results, we determined the effective doses of gramine as 127.23µm/ml for 24 hr and 119.81 µm/ml for 48hr in hep-2 cell line and 147.58 µm ml for 24 hr and 123.74µm µm/ml for 48hr in KB cell line. cytotoxicity effects of gramine were confirmed by treatment of HEp-2 cell and KB cell with IC50 concentration of gramine resulted in sequences of events marked by the enhance the apoptosis accompanied by loss of cell viability, modulation of reactive oxygen species and cell cycle arrest through the induction of G0/G1 phase arrest on HEp-2 cells. Our study suggests that the nanosuspension of gramine possesses the more cytotoxic effect of cancer cells and a novel candidate for cancer chemoprevention.Keywords: apoptosis, HEp-2 cell line, KB cell line mitochondria, gramine, nanosuspension
Procedia PDF Downloads 453366 Prediction of All-Beta Protein Secondary Structure Using Garnier-Osguthorpe-Robson Method
Authors: K. Tejasri, K. Suvarna Vani, S. Prathyusha, S. Ramya
Abstract:
Proteins are chained sequences of amino acids which are brought together by the peptide bonds. Many varying formations of the chains are possible due to multiple combinations of amino acids and rotation in numerous positions along the chain. Protein structure prediction is one of the crucial goals worked towards by the members of bioinformatics and theoretical chemistry backgrounds. Among the four different structure levels in proteins, we emphasize mainly the secondary level structure. Generally, the secondary protein basically comprises alpha-helix and beta-sheets. Multi-class classification problem of data with disparity is truly a challenge to overcome and has to be addressed for the beta strands. Imbalanced data distribution constitutes a couple of the classes of data having very limited training samples collated with other classes. The secondary structure data is extracted from the protein primary sequence, and the beta-strands are predicted using suitable machine learning algorithms.Keywords: proteins, secondary structure elements, beta-sheets, beta-strands, alpha-helices, machine learning algorithms
Procedia PDF Downloads 94365 Analysis of Genetic Variations in Camel Breeds (Camelus dromedarius)
Authors: Yasser M. Saad, Amr A. El Hanafy, Saleh A. Alkarim, Hussein A. Almehdar, Elrashdy M. Redwan
Abstract:
Camels are substantial providers of transport, milk, sport, meat, shelter, security and capital in many countries, particularly in Saudi Arabia. Inter simple sequence repeat technique was used to detect the genetic variations among some camel breeds (Majaheim, Safra, Wadah, and Hamara). Actual number of alleles, effective number of alleles, gene diversity, Shannon’s information index and polymorphic bands were calculated for each evaluated camel breed. Neighbor-joining tree that re-constructed for evaluated these camel breeds showed that, Hamara breed is distantly related from the other evaluated camels. In addition, the polymorphic sites, haplotypes and nucleotide diversity were identified for some camelidae cox1 gene sequences (obtained from NCBI). The distance value between C. bactrianus and C. dromedarius (0.072) was relatively low. Analysis of genetic diversity is an important way for conserving Camelus dromedarius genetic resources.Keywords: camel, genetics, ISSR, neighbor-joining
Procedia PDF Downloads 472364 Genetic Diversity and Discovery of Unique SNPs in Five Country Cultivars of Sesamum indicum by Next-Generation Sequencing
Authors: Nam-Kuk Kim, Jin Kim, Soomin Park, Changhee Lee, Mijin Chu, Seong-Hun Lee
Abstract:
In this study, we conducted whole genome re-sequencing of 10 cultivars originated from five countries including Korea, China, India, Pakistan and Ethiopia with Sesamum indicum (Zhongzho No. 13) genome as a reference. Almost 80% of the whole genome sequences of the reference genome could be covered by sequenced reads. Numerous SNP and InDel were detected by bioinformatic analysis. Among these variants, 266,051 SNPs were identified as unique to countries. Pakistan and Ethiopia had high densities of SNPs compared to other countries. Three main clusters (cluster 1: Korea, cluster 2: Pakistan and India, cluster 3: Ethiopia and China) were recovered by neighbor-joining analysis using all variants. Interestingly, some variants were detected in DGAT1 (diacylglycerol O-acyltransferase 1) and FADS (fatty acid desaturase) genes, which are known to be related with fatty acid synthesis and metabolism. These results can provide useful information to understand the regional characteristics and develop DNA markers for origin discrimination of sesame.Keywords: Sesamum indicum, NGS, SNP, DNA marker
Procedia PDF Downloads 327363 Comparative Assessment of ISSR and RAPD Markers among Egyptian Jojoba Shrubs
Authors: Abdelsabour G. A. Khaled, Galal A.R. El-Sherbeny, Ahmed M. Hassanein, Gameel M. G. Aly
Abstract:
Classical methods of identification, based on agronomical characterization, are not always the most accurate way due to the instability of these characteristics under the influence of the different environments. In order to estimate the genetic diversity, molecular markers provided excellent tools. In this study, Genetic variation of nine Egyptian jojoba shrubs was tested using ISSR (inter simple sequences repeats), RAPD (random amplified polymorphic DNA) markers and based on the morphological characterization. The average of the percentage of polymorphism (%P) ranged between 58.17% and 74.07% for ISSR and RAPD markers, respectively. The range of genetic similarity percents among shrubs based on ISSR and RAPD markers were from 82.9 to 97.9% and from 85.5 to 97.8%, respectively. The average of PIC (polymorphism information content) values were 0.19 (ISSR) and 0.24 (RAPD). In the present study, RAPD markers were more efficient than the ISSR markers. Where the RAPD technique exhibited higher marker index (MI) average (1.26) compared to ISSR one (1.11). There was an insignificant correlation between the ISSR and RAPD data (0.076, P > 0.05). The dendrogram constructed by the combined RAPD and ISSR data gave a relatively different clustering pattern.Keywords: correlation, molecular markers, polymorphism, marker index
Procedia PDF Downloads 478362 DNA Barcoding of Tree Endemic Campanula Species From Artvi̇n, Türki̇ye
Authors: Hayal Akyildirim Beğen, Özgür Emi̇nağaoğlu
Abstract:
DNA barcoding is the method of description of species based on gene diversity. In current studies, registration, genetic identification and protection of especially endemic plants pecies are carried out by DNA barcoding techniques. Molecular studies are based on the amplification and sequencing of the barcode gene region by the PCR method. Endemic Campanula choruhensis Kit Tan & Sorger, Campanula troegera Damboldt and Campanula betulifolia K.Koch is widespread in Artvin, Erzurum and around Çoruh valley passing through it. Intense road and dam constructions are carried out in and around the distribution area of this species. This situation harms the habitat of the species and puts its extinction. In this study, the plastid matK barcode gene regions (650 bp) of three Campanula species were created. To make the identification of this species quickly and accurately, gene sequence compared with sequences of other Campanula L. species. As a result of phylogenetic analysis, C. choruhensis is close relative to C. betulifolia. Morphologically, these species were determined to be more similar to each other with flower and leaf characters. C. troegera formed a separate branch.Keywords: campanula, DNA barcoding, endemic, türkiye, artvin
Procedia PDF Downloads 68361 Efficient Motion Estimation by Fast Three Step Search Algorithm
Authors: S. M. Kulkarni, D. S. Bormane, S. L. Nalbalwar
Abstract:
The rapid development in the technology have dramatic impact on the medical health care field. Medical data base obtained with latest machines like CT Machine, MRI scanner requires large amount of memory storage and also it requires large bandwidth for transmission of data in telemedicine applications. Thus, there is need for video compression. As the database of medical images contain number of frames (slices), hence while coding of these images there is need of motion estimation. Motion estimation finds out movement of objects in an image sequence and gets motion vectors which represents estimated motion of object in the frame. In order to reduce temporal redundancy between successive frames of video sequence, motion compensation is preformed. In this paper three step search (TSS) block matching algorithm is implemented on different types of video sequences. It is shown that three step search algorithm produces better quality performance and less computational time compared with exhaustive full search algorithm.Keywords: block matching, exhaustive search motion estimation, three step search, video compression
Procedia PDF Downloads 491360 Alternative Splicing of an Arabidopsis Gene, At2g24600, Encoding Ankyrin-Repeat Protein
Authors: H. Sakamoto, S. Kurosawa, M. Suzuki, S. Oguri
Abstract:
In Arabidopsis, several genes encoding proteins with ankyrin repeats and trans-membrane domains (AtANKTM) have been identified as mediators of biotic and abiotic stress responses. It has been known that the expression of an AtANKTM gene, At2g24600, is induced in response to abiotic stress and that there are four splicing variants derived from this locus. In this study, by RT-PCR and sequencing analysis, an unknown splicing variant of the At2g24600 transcript was identified. Based on differences in the predicted amino acid sequences, the five splicing variants are divided into three groups. The three predicted proteins are highly homologous, yet have different numbers of ankyrin repeats and trans-membrane domains. It is generally considered that ankyrin repeats mediate protein-protein interaction and that the number of trans-membrane domains affects membrane topology of proteins. The protein variants derived from the At2g24600 locus may have different molecular functions each other.Keywords: alternative splicing, ankyrin repeats, trans-membrane domains, arabidopsis
Procedia PDF Downloads 374359 A Corpus-Based Study on the Lexical, Syntactic and Sequential Features across Interpreting Types
Authors: Qianxi Lv, Junying Liang
Abstract:
Among the various modes of interpreting, simultaneous interpreting (SI) is regarded as a ‘complex’ and ‘extreme condition’ of cognitive tasks while consecutive interpreters (CI) do not have to share processing capacity between tasks. Given that SI exerts great cognitive demand, it makes sense to posit that the output of SI may be more compromised than that of CI in the linguistic features. The bulk of the research has stressed the varying cognitive demand and processes involved in different modes of interpreting; however, related empirical research is sparse. In keeping with our interest in investigating the quantitative linguistic factors discriminating between SI and CI, the current study seeks to examine the potential lexical simplification, syntactic complexity and sequential organization mechanism with a self-made inter-model corpus of transcribed simultaneous and consecutive interpretation, translated speech and original speech texts with a total running word of 321960. The lexical features are extracted in terms of the lexical density, list head coverage, hapax legomena, and type-token ratio, as well as core vocabulary percentage. Dependency distance, an index for syntactic complexity and reflective of processing demand is employed. Frequency motif is a non-grammatically-bound sequential unit and is also used to visualize the local function distribution of interpreting the output. While SI is generally regarded as multitasking with high cognitive load, our findings evidently show that CI may impose heavier or taxing cognitive resource differently and hence yields more lexically and syntactically simplified output. In addition, the sequential features manifest that SI and CI organize the sequences from the source text in different ways into the output, to minimize the cognitive load respectively. We reasoned the results in the framework that cognitive demand is exerted both on maintaining and coordinating component of Working Memory. On the one hand, the information maintained in CI is inherently larger in volume compared to SI. On the other hand, time constraints directly influence the sentence reformulation process. The temporal pressure from the input in SI makes the interpreters only keep a small chunk of information in the focus of attention. Thus, SI interpreters usually produce the output by largely retaining the source structure so as to relieve the information from the working memory immediately after formulated in the target language. Conversely, CI interpreters receive at least a few sentences before reformulation, when they are more self-paced. CI interpreters may thus tend to retain and generate the information in a way to lessen the demand. In other words, interpreters cope with the high demand in the reformulation phase of CI by generating output with densely distributed function words, more content words of higher frequency values and fewer variations, simpler structures and more frequently used language sequences. We consequently propose a revised effort model based on the result for a better illustration of cognitive demand during both interpreting types.Keywords: cognitive demand, corpus-based, dependency distance, frequency motif, interpreting types, lexical simplification, sequential units distribution, syntactic complexity
Procedia PDF Downloads 178358 Elongation Factor 1 Alpha Molecular Phylogenetic Analysis for Anastrepha fraterculus Complex
Authors: Pratibha Srivastava, Ayyamperumal Jeyaprakash, Gary Steck
Abstract:
Exotic, invasive tephritid fruit flies (Diptera: Tephritidae) are a major concern to fruit and vegetable production in the USA. Timely detection and identification of these agricultural pests facilitate the possibility of eradication from newly invaded areas. They spread primarily as larvae in infested fruits carried in commerce or personal baggage. Identification of larval stages to species level is difficult but necessary to determine pest loads and their pathways into the USA. The main focus of this study is the New World genus, Anastrepha. Many of its constituent taxa are pests of major economic importance. This study is significant for national quarantine use, as morphological diagnostics to separate larvae of the various members remain poorly developed. Elongation factor 1 alpha sequences were amplified from Anastrepha fraterculus specimens collected from South America (Ecuador and Peru). Phylogenetic analysis was performed to characterize the Anastrepha fraterculus complex at a molecular level.Keywords: anastrepha, diptera, elongation factor, fruit fly
Procedia PDF Downloads 205357 Efficient Reconstruction of DNA Distance Matrices Using an Inverse Problem Approach
Authors: Boris Melnikov, Ye Zhang, Dmitrii Chaikovskii
Abstract:
We continue to consider one of the cybernetic methods in computational biology related to the study of DNA chains. Namely, we are considering the problem of reconstructing the not fully filled distance matrix of DNA chains. When applied in a programming context, it is revealed that with a modern computer of average capabilities, creating even a small-sized distance matrix for mitochondrial DNA sequences is quite time-consuming with standard algorithms. As the size of the matrix grows larger, the computational effort required increases significantly, potentially spanning several weeks to months of non-stop computer processing. Hence, calculating the distance matrix on conventional computers is hardly feasible, and supercomputers are usually not available. Therefore, we started publishing our variants of the algorithms for calculating the distance between two DNA chains; then, we published algorithms for restoring partially filled matrices, i.e., the inverse problem of matrix processing. In this paper, we propose an algorithm for restoring the distance matrix for DNA chains, and the primary focus is on enhancing the algorithms that shape the greedy function within the branches and boundaries method framework.Keywords: DNA chains, distance matrix, optimization problem, restoring algorithm, greedy algorithm, heuristics
Procedia PDF Downloads 118356 A Topological Approach for Motion Track Discrimination
Authors: Tegan H. Emerson, Colin C. Olson, George Stantchev, Jason A. Edelberg, Michael Wilson
Abstract:
Detecting small targets at range is difficult because there is not enough spatial information present in an image sub-region containing the target to use correlation-based methods to differentiate it from dynamic confusers present in the scene. Moreover, this lack of spatial information also disqualifies the use of most state-of-the-art deep learning image-based classifiers. Here, we use characteristics of target tracks extracted from video sequences as data from which to derive distinguishing topological features that help robustly differentiate targets of interest from confusers. In particular, we calculate persistent homology from time-delayed embeddings of dynamic statistics calculated from motion tracks extracted from a wide field-of-view video stream. In short, we use topological methods to extract features related to target motion dynamics that are useful for classification and disambiguation and show that small targets can be detected at range with high probability.Keywords: motion tracks, persistence images, time-delay embedding, topological data analysis
Procedia PDF Downloads 114355 The Immunology Evolutionary Relationship between Signal Transducer and Activator of Transcription Genes from Three Different Shrimp Species in Response to White Spot Syndrome Virus Infection
Authors: T. C. C. Soo, S. Bhassu
Abstract:
Unlike the common presence of both innate and adaptive immunity in vertebrates, crustaceans, in particular, shrimps, have been discovered to possess only innate immunity. This further emphasizes the importance of innate immunity within shrimps in pathogenic resistance. Under the study of pathogenic immune challenge, different shrimp species actually exhibit varying degrees of immune resistance towards the same pathogen. Furthermore, even within the same shrimp species, different batches of challenged shrimps can have different strengths of immune defence. Several important pathways are activated within shrimps during pathogenic infection. One of them is JAK-STAT pathway that is activated during bacterial, viral and fungal infections by which STAT(Signal Transducer and Activator of Transcription) gene is the core element of the pathway. Based on theory of Central Dogma, the genomic information is transmitted in the order of DNA, RNA and protein. This study is focused in uncovering the important evolutionary patterns present within the DNA (non-coding region) and RNA (coding region). The three shrimp species involved are Macrobrachium rosenbergii, Penaeus monodon and Litopenaeus vannamei which all possess commercial significance. The shrimp species were challenged with a famous penaeid shrimp virus called white spot syndrome virus (WSSV) which can cause serious lethality. Tissue samples were collected during time intervals of 0h, 3h, 6h, 12h, 24h, 36h and 48h. The DNA and RNA samples were then extracted using conventional kits from the hepatopancreas tissue samples. PCR technique together with designed STAT gene conserved primers were utilized for identification of the STAT coding sequences using RNA-converted cDNA samples and subsequent characterization using various bioinformatics approaches including Ramachandran plot, ProtParam and SWISS-MODEL. The varying levels of immune STAT gene activation for the three shrimp species during WSSV infection were confirmed using qRT-PCR technique. For one sample, three biological replicates with three technical replicates each were used for qRT-PCR. On the other hand, DNA samples were important for uncovering the structural variations within the genomic region of STAT gene which would greatly assist in understanding the STAT protein functional variations. The partially-overlapping primers technique was used for the genomic region sequencing. The evolutionary inferences and event predictions were then conducted through the Bayesian Inference method using all the acquired coding and non-coding sequences. This was supplemented by the construction of conventional phylogenetic trees using Maximum likelihood method. The results showed that adaptive evolution caused STAT gene sequence mutations between different shrimp species which led to evolutionary divergence event. Subsequently, the divergent sites were correlated to the differing expressions of STAT gene. Ultimately, this study assists in knowing the shrimp species innate immune variability and selection of disease resistant shrimps for breeding purpose. The deeper understanding of STAT gene evolution from the perspective of both purifying and adaptive approaches not only can provide better immunological insight among shrimp species, but also can be used as a good reference for immunological studies in humans or other model organisms.Keywords: gene evolution, JAK-STAT pathway, immunology, STAT gene
Procedia PDF Downloads 150354 Self-Supervised Pretraining on Sequences of Functional Magnetic Resonance Imaging Data for Transfer Learning to Brain Decoding Tasks
Authors: Sean Paulsen, Michael Casey
Abstract:
In this work we present a self-supervised pretraining framework for transformers on functional Magnetic Resonance Imaging (fMRI) data. First, we pretrain our architecture on two self-supervised tasks simultaneously to teach the model a general understanding of the temporal and spatial dynamics of human auditory cortex during music listening. Our pretraining results are the first to suggest a synergistic effect of multitask training on fMRI data. Second, we finetune the pretrained models and train additional fresh models on a supervised fMRI classification task. We observe significantly improved accuracy on held-out runs with the finetuned models, which demonstrates the ability of our pretraining tasks to facilitate transfer learning. This work contributes to the growing body of literature on transformer architectures for pretraining and transfer learning with fMRI data, and serves as a proof of concept for our pretraining tasks and multitask pretraining on fMRI data.Keywords: transfer learning, fMRI, self-supervised, brain decoding, transformer, multitask training
Procedia PDF Downloads 90353 Transformers in Gene Expression-Based Classification
Authors: Babak Forouraghi
Abstract:
A genetic circuit is a collection of interacting genes and proteins that enable individual cells to implement and perform vital biological functions such as cell division, growth, death, and signaling. In cell engineering, synthetic gene circuits are engineered networks of genes specifically designed to implement functionalities that are not evolved by nature. These engineered networks enable scientists to tackle complex problems such as engineering cells to produce therapeutics within the patient's body, altering T cells to target cancer-related antigens for treatment, improving antibody production using engineered cells, tissue engineering, and production of genetically modified plants and livestock. Construction of computational models to realize genetic circuits is an especially challenging task since it requires the discovery of flow of genetic information in complex biological systems. Building synthetic biological models is also a time-consuming process with relatively low prediction accuracy for highly complex genetic circuits. The primary goal of this study was to investigate the utility of a pre-trained bidirectional encoder transformer that can accurately predict gene expressions in genetic circuit designs. The main reason behind using transformers is their innate ability (attention mechanism) to take account of the semantic context present in long DNA chains that are heavily dependent on spatial representation of their constituent genes. Previous approaches to gene circuit design, such as CNN and RNN architectures, are unable to capture semantic dependencies in long contexts as required in most real-world applications of synthetic biology. For instance, RNN models (LSTM, GRU), although able to learn long-term dependencies, greatly suffer from vanishing gradient and low-efficiency problem when they sequentially process past states and compresses contextual information into a bottleneck with long input sequences. In other words, these architectures are not equipped with the necessary attention mechanisms to follow a long chain of genes with thousands of tokens. To address the above-mentioned limitations of previous approaches, a transformer model was built in this work as a variation to the existing DNA Bidirectional Encoder Representations from Transformers (DNABERT) model. It is shown that the proposed transformer is capable of capturing contextual information from long input sequences with attention mechanism. In a previous work on genetic circuit design, the traditional approaches to classification and regression, such as Random Forrest, Support Vector Machine, and Artificial Neural Networks, were able to achieve reasonably high R2 accuracy levels of 0.95 to 0.97. However, the transformer model utilized in this work with its attention-based mechanism, was able to achieve a perfect accuracy level of 100%. Further, it is demonstrated that the efficiency of the transformer-based gene expression classifier is not dependent on presence of large amounts of training examples, which may be difficult to compile in many real-world gene circuit designs.Keywords: transformers, generative ai, gene expression design, classification
Procedia PDF Downloads 59352 Error Probability of Multi-User Detection Techniques
Authors: Komal Babbar
Abstract:
Multiuser Detection is the intelligent estimation/demodulation of transmitted bits in the presence of Multiple Access Interference. The authors have presented the Bit-error rate (BER) achieved by linear multi-user detectors: Matched filter (which treats the MAI as AWGN), Decorrelating and MMSE. In this work, authors investigate the bit error probability analysis for Matched filter, decorrelating, and MMSE. This problem arises in several practical CDMA applications where the receiver may not have full knowledge of the number of active users and their signature sequences. In particular, the behavior of MAI at the output of the Multi-user detectors (MUD) is examined under various asymptotic conditions including large signal to noise ratio; large near-far ratios; and a large number of users. In the last section Authors also shows Matlab Simulation results for Multiuser detection techniques i.e., Matched filter, Decorrelating, MMSE for 2 users and 10 users.Keywords: code division multiple access, decorrelating, matched filter, minimum mean square detection (MMSE) detection, multiple access interference (MAI), multiuser detection (MUD)
Procedia PDF Downloads 527351 Molecular Characterization of Chicken B Cell Marker (ChB6) in Native Chicken of Poonch Region from International Borders of India and Pakistan
Authors: Mandeep Singh Azad.Dibyendu Chakraborty, Vikas Vohra
Abstract:
Introduction: Poonch is one of the remotest districts of the Jammu and Kashmir (UT) and situated on international borders. This native poultry population in these areas is quite hardy and thrives well in adverse climatic conditions. Till date, no local breed from this area (Jammu Province) has been characterized thus present study was undertaken with the main objectives of molecular characterization of ChB6 gene in local native chicken of Poonch region located at international borders between India and Pakistan. The chicken B-cell marker (ChB6) gene has been proposed as a candidate gene in regulating B-cell development. Material and Method: RNA was isolated by Blood RNA Purification Kit (HiPura) and Trizol method from whole blood samples. Positive PCR products with size 1110 bp were selected for further purification, sequencing and analysis. The amplified PCR product was sequenced by Sangers dideoxy chain termination method. The obtained sequence of ChB6 gene of Poonchi chicken were compared by MEGAX software. BioEdit software was used to construct phylogenic tree, and Neighbor Joining method was used to infer evolutionary history. In order to compute evolutionary distance Maximum Composite Likelihood method was used. Results: The positively amplified samples of ChB6 genes were then subjected to Sanger sequencing with “Primer Walking. The sequences were then analyzed using MEGA X and BioEdit software. The sequence results were compared with other reported sequence from different breed of chicken and with other species obtained from the NCBI (National Center for Biotechnology Information). ClustalW method using MEGA X software was used for multiple sequence alignment. The sequence results of ChB6 gene of Poonchi chicken was compared with Centrocercus urophasianus, G. gallus mRNA for B6.1 protein, G. gallus mRNA for B6.2, G. gallus mRNA for B6.3, Gallus gallus B6.1, Halichoeres bivittatus, Miniopterus fuliginosus Ferringtonia patagonica, Tympanuchus phasianellus. The genetic distances were 0.2720, 0.0000, 0.0245, 0.0212, 0.0147, 1.6461, 2.2394, 2.0070 and 0.2363 for ChB6 gene of Poonchi chicken sequence with other sequences in the present study respectively. Sequencing results showed variations between different species. It was observed that AT content were higher then GC content for ChB6 gene. The lower AT content suggests less thermostable. It was observed that there was no sequence difference within the Poonchi population for ChB6 gene. The high homology within chicken population indicates the conservation of ChB6 gene. The maximum difference was observed with Miniopterus fuliginosus (Eastern bent-wing bat) followed by Ferringtonia patagonica and Halichoeres bivittatus. Conclusion: Genetic variation is the essential component for genetic improvement. The results of immune related gene Chb6 shows between population genetic variability. Therefore, further association studies of this gene with some prevalent diseases in large population would be helpful to identify disease resistant/ susceptible genotypes in the indigenous chicken population.Keywords: ChB6, sequencing, ClustalW, genetic distance, poonchi chicken, SNP
Procedia PDF Downloads 70350 Physical and Mechanical Phenomena Associated with Rock Failure in Brazilian Disc Specimens
Authors: Hamid Reza Nejati, Amin Nazerigivi, Ahmad Reza Sayadi
Abstract:
Failure mechanism of rocks is one of the fundamental aspects to study rock engineering stability. Rock is a material that contains flaws, initial damage, micro-cracks, etc. Failure of rock structure is largely due to tensile stress and was influenced by various parameters. In the present study, the effect of brittleness and loading rate on the physical and mechanical phenomena produced in rock during loading sequences is considered. For this purpose, Acoustic Emission (AE) technique is used to monitor fracturing process of three rock types (onyx marble, sandstone and soft limestone) with different brittleness and sandstone samples under different loading rate. The results of experimental tests revealed that brittleness and loading rate have a significant effect on the mode and number of induced fracture in rocks. An increase in rock brittleness increases the frequency of induced cracks, and the number of tensile fracture decreases when loading rate increases.Keywords: brittleness, loading rate, acoustic emission, tensile fracture, shear fracture
Procedia PDF Downloads 475