Search results for: aeolian sand deposition
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1612

Search results for: aeolian sand deposition

1372 A Study on Finite Element Modelling of Earth Retaining Wall Anchored by Deadman Anchor

Authors: K. S. Chai, S. H. Chan

Abstract:

In this paper, the earth retaining wall anchored by discrete deadman anchor to support excavations in sand is modelled and analysed by finite element analysis. A study is conducted to examine how deadman anchorage system helps in reducing the deflection of earth retaining wall. A simplified numerical model is suggested in order to reduce the simulation duration. A comparison between 3-D and 2-D finite element analyses is illustrated.

Keywords: finite element, earth retaining wall, deadman anchor, sand

Procedia PDF Downloads 477
1371 Using CFRP Sheets and Anchors on Sand-Lightweight Perlite Concrete to Evaluate the Flexural Behaviour of T-Beams

Authors: Mohammed Zaki, Hayder Rasheed

Abstract:

This paper evaluates the flexural response of sand-lightweight Perlite concrete using full-scale reinforced concrete T beams strengthened and anchored with carbon fiber reinforced polymer (CFRP) materials. Four specimens were prepared with the same geometry, steel reinforcements, concrete properties, and span lengths. The anchored beams had a similar number of CFRP sheets but were secured utilizing different arrangements of CFRP fiber anchors. That will allow for effective and easily making comparisons to examine the flexural strengthening behavior of sand-lightweight Perlite concrete beams with anchors. The experimental outcomes were also compared with the numerical study and the comparisons were discussed. The test results showed an improvement in flexural behavior due to the use of CFRP sheets and anchors. Interestingly, the anchored beams recorded similar ultimate strength regardless of the number of CFRP fiber anchors used due to the failure by excessive wide cracks in the concrete.

Keywords: perlite concrete, CFRP fiber anchors, lightweight concrete, full-scale T-beams

Procedia PDF Downloads 82
1370 Template-Assisted Synthesis of IrO2 Nanopores Membrane Electrode Assembly

Authors: Zhuo-Xin Lu, Yan Shi, Chang-Feng Yan, Ying Huang, Yuan Gan, Zhi-Da Wang

Abstract:

With TiO2 nanotube arrays (TNTA) as template, a IrO2 nanopores membrane electrode assembly (MEA) was synthesized by a novel depositi-assemble-etch strategy. By analysing the morphology of IrO2/TNTA and cyclic voltammetry (CV) curve at different deposition cycles, we proposed a reasonable scheme for the process of IrO2 electrodeposition on TNTA. The current density of IrO2/TNTA at 1.5V vs RHE reaches 5.12mA/cm2 after 55 cycles deposition, which shows promising performance for its high OER activity after template removal.

Keywords: electrodeposition, IrO2 nanopores, MEA, OER

Procedia PDF Downloads 442
1369 Development of Column-Filters of Sulfur Limonene Polysulfide to Mercury Removal from Contaminated Effluents

Authors: Galo D. Soria, Jenny S. Casame, Eddy F. Pazmino

Abstract:

In Ecuador, mining operations have significantly impacted water sources. Artisanal mining extensively relies in mercury amalgamation. Mercury is a neurotoxic substance even at low concentrations. The objective of this investigation is to exploit Hg-removal capacity of sulfur-limonene polysulfide (SLP), which is a low-cost polymer, in order to prepare granular media (sand) coated with SLP to be used in laboratory scale column-filtration systems. Preliminary results achieved 85% removal of Hg⁺⁺ from synthetic effluents using 20-cm length and 5-cm diameter columns at 119m/day average pore water velocity. During elution of the column, the SLP-coated sand indicated that Hg⁺⁺ is permanently fixed to the collector surface, in contrast, uncoated sand showed reversible retention in Hg⁺⁺ in the solid phase. Injection of 50 pore volumes decreased Hg⁺⁺ removal to 46%. Ongoing work has been focused in optimizing the synthesis of SLP and the polymer content in the porous media coating process to improve Hg⁺⁺ removal and extend the lifetime of the column-filter.

Keywords: column-filter, mercury, mining, polysulfide, water treatment

Procedia PDF Downloads 141
1368 The Mechanism of Calcium Carbonate Scale Deposition Affected by Carboxymethyl Chitosan

Authors: Genaro Bolívar, Manuel Mas, Maria Tortolero, Jorge Salazar

Abstract:

Due to the extensive use of water injection for oil displacement and pressure maintenance in oil fields, many reservoirs experience the problem of scale deposition when injection water starts to break through. In most cases the scaled-up wells are caused by the formation of sulfate and carbonate scales of calcium and strontium. Due to their relative hardness and low solubility, there are limited processes available for their removal and preventive measures such as the “squeeze” inhibitor treatment have to be taken. It is, therefore, important to gain a proper understanding of the kinetics of scale formation and its detrimental effects on formation damage under both inhibited and uninhibited conditions. Recently, the production of chitosan was started in our country and in the PDVSA-Intevep laboratories was synthesized and evaluated the properties of carboxymethyl chitosan (CMQ) as chelating agent of Ca2 + ions in water injection. In this regard, the characterization of the biopolymer by 13C - NMR, FTIR, TGA, and TM0374-2007 standard laboratory test has demonstrated the ability to remove up to 70% calcium ions in solution and shows a behavior that approaches that of commercial products.

Keywords: carboxymethyl chitosan, scale, calcium carbonate scale deposition, water injection

Procedia PDF Downloads 432
1367 A Failure Criterion for Unsupported Boreholes in Poorly Cemented Granular Formations

Authors: Sam S. Hashemi

Abstract:

The breakage of bonding between sand particles and their dislodgment from the borehole wall are among the main factors resulting in a borehole failure in poorly cemented granular formations. The grain debonding usually precedes the borehole failure and it can be considered as a sign that the onset of the borehole collapse is imminent. Detecting the bonding breakage point and introducing an appropriate failure criterion will play an important role in borehole stability analysis. To study the influence of different factors on the initiation of sand bonding breakage at the borehole wall, a series of laboratory tests was designed and conducted on poorly cemented sand samples. The total absorbed strain energy per volume of material up to the point of the observed particle debonding was computed. The results indicated that the particle bonding breakage point at the borehole wall was reached both before and after the peak strength of the thick-walled hollow cylinder specimens depending on the stress path and cement content. Three different cement contents and two borehole sizes were investigated to study the influence of the bonding strength and scale on the particle dislodgment. Test results showed that the stress path has a significant influence on the onset of the sand bonding breakage. It was shown that for various stress paths, there is a near linear relationship between the absorbed energy and the normal effective mean stress.

Keywords: borehole stability, experimental studies, poorly cemented sands, total absorbed strain energy

Procedia PDF Downloads 205
1366 Assessment of Conventional Drinking Water Treatment Plants as Removal Systems of Virulent Microsporidia

Authors: M. A. Gad, A. Z. Al-Herrawy

Abstract:

Microsporidia comprises various pathogenic species can infect humans by means of water. Moreover, chlorine disinfection of drinking-water has limitations against this protozoan pathogen. A total of 48 water samples were collected from two drinking water treatment plants having two different filtration systems (slow sand filter and rapid sand filter) during one year period. Samples were collected from inlet and outlet of each plant. Samples were separately filtrated through nitrocellulose membrane (142 mm, 0.45 µm), then eluted and centrifuged. The obtained pellet from each sample was subjected to DNA extraction, then, amplification using genus-specific primer for microsporidia. Each microsporidia-PCR positive sample was performed by two species specific primers for Enterocytozoon bieneusi and Encephalitozoon intestinalis. The results of the present study showed that the percentage of removal for microsporidia through different treatment processes reached its highest rate in the station using slow sand filters (100%), while the removal by rapid sand filter system was 81.8%. Statistically, the two different drinking water treatment plants (slow and rapid) had significant effect for removal of microsporidia. Molecular identification of microsporidia-PCR positive samples using two different primers for Enterocytozoon bieneusi and Encephalitozoon intestinalis showed the presence of the two pervious species in the inlet water of the two stations, while Encephalitozoon intestinalis was detected in the outlet water only. In conclusion, the appearance of virulent microsporidia in treated drinking water may cause potential health threat.

Keywords: removal, efficacy, microsporidia, drinking water treatment plants, PCR

Procedia PDF Downloads 206
1365 The Combined Effect of the Magnetic Field and Ammonium Chlorides on Deposits Zn-Ni Obtained in Different Conditions

Authors: N.Benachour, S. Chouchane, J. P. Chopart

Abstract:

The zinc-nickel deposition on stainless steel substrate was obtained in a chloride bath composed of ZnCl2 (1.8M), NiCl2.6H2O (1.1M), boric acid H3BO3 (1M) and NH4Cl (4M). One configuration was studied the amplitude or field B (0.5 et1T) is parallel to the surface of the working electrodes .the other share the study of various layer was carried out by XRD. The study of the effect of ammonium chloride in combination with the magnetohydrodynamic effect gave several deposits supposedly good physical properties.

Keywords: ammonium chloride, magnetic field, nickel-zinc alloys, co-deposition

Procedia PDF Downloads 268
1364 Micro- and Nanoparticle Transport and Deposition in Elliptic Obstructed Channels by Lattice Boltzmann Method

Authors: Salman Piri

Abstract:

In this study, a two-dimensional lattice Boltzmann method (LBM) was considered for the numerical simulation of fluid flow in a channel. Also, the Lagrangian method was used for particle tracking in one-way coupling. Three hundred spherical particles with specific diameters were released in the channel entry and an elliptical object was placed in the channel for flow obstruction. The effect of gravity, the drag force, the Saffman lift and the Brownian forces were evaluated in the particle motion trajectories. Also, the effect of the geometrical parameter, ellipse aspect ratio, and the flow characteristic or Reynolds number was surveyed for the transport and deposition of particles. Moreover, the influence of particle diameter between 0.01 and 10 µm was investigated. Results indicated that in small Reynolds, more inertial and gravitational trapping occurred on the obstacle surface for particles with larger diameters. Whereas, for nano-particles, influenced by Brownian diffusion and vortices behind the obstacle, the inertial and gravitational mechanisms were insignificant and diffusion was the dominant deposition mechanism. In addition, in Reynolds numbers larger than 400, there was no significant difference between the deposition of finer and larger particles. Also, in higher aspect ratios of the ellipse, more inertial trapping occurred for particles of larger diameter (10 micrometers), while in lower cases, interception and gravitational mechanisms were dominant.

Keywords: ellipse aspect elito, particle tracking diffusion, lattice boltzman method, larangain particle tracking

Procedia PDF Downloads 76
1363 Characterization of Cement Mortar Based on Fine Quartz

Authors: K. Arroudj, M. Lanez, M. N. Oudjit

Abstract:

The introduction of siliceous mineral additions in cement production allows, in addition to the ecological and economic gain, improvement of concrete performance. This improvement is mainly due to the fixing of Portlandite, released during the hydration of cement, by fine siliceous, forming denser calcium silicate hydrates and therefore a more compact cementitious matrix. This research is part of the valuation of the Dune Sand (DS) in the cement industry in Algeria. The high silica content of DS motivated us to study its effect, at ground state, on the properties of mortars in fresh and hardened state. For this purpose, cement pastes and mortars based on ground dune sand (fine quartz) has been analyzed with a replacement to cement of 15%, 20% and 25%. This substitution has reduced the amount of heat of hydration and avoids any risk of initial cracking. In addition, the grinding of the dune sand provides amorphous thin populations adsorbed at the surface of the crystal particles of quartz. Which gives to ground quartz pozzolanic character. This character results an improvement of mechanical strength of mortar (66 MPa in the presence of 25% of ground quartz).

Keywords: mineralogical structure, pozzolanic reactivity, Quartz, mechanical strength

Procedia PDF Downloads 280
1362 The Effect of Nanoclay on the Hydraulic Conductivity of Clayey Sand Soils

Authors: Javad Saeidaskari, Mohammad Hassan Baziar

Abstract:

Soil structures have been frequently damaged during piping, earthquake and other types of failures. As far as adverse circumstances were developed subsequent to piping or other similar failure types, hydraulic parameters of soil such as hydraulic conductivity should be considered. As a result, acquiring an approach to diminish soil permeability is inevitable. There are many ground improvement methods to reduce seepage, which are classified under soil treatment and stabilization methods. Recently, one of the soil improvement methods is known as nanogeotechnology. This study aims to investigate the influence of Cloisite 30B nanoclay on permeability of compacted clayey sand soils. The samples are prepared by mixing two soil types, including Kaolin clay and Firouzkooh sand, in 1:9 and 1:5 clay:sand (by mass) proportions. In experimental procedure, initially, the optimum water content and maximum dry unit weight of each samples were obtained for compaction. Then, series of permeability tests were conducted by triaxial apparatus on prepared specimens with identical relative density of 95% of maximum dry density and water content of 1% wet of optimum for different weight percentages of nanoclay (1% to 4%). Therefore, in this paper, the effect of time on treated specimen was appraised, as well as two approaches of manual mixing and ball milling were compared to reveal the importance of dispersion issue. The results show that adding nanoclay up to 3%, as its optimum content, causes notable reduction in permeability (1.60e-03 to 5.51e-05 cm/s and 3.32e-04 to 8.44e-07 cm/s in samples with 1:9 and 1:5 mixture proportions, respectively). The hydraulic conductivity of treated clayey sand (1:5 mixture proportion with 3% nanoclay) decreases gradually from 8.44e-07 to 3.00e-07 cm/s within 90 days and then tends to be consistent. The influence of mixing method on permeability results shows that the utilization of ball mill mixing effectively leads to lower values than those of manual mixing, in other words, by adding 3% nanoclay, hydraulic conductivity of specimen declines from 8.44e-07 to 2.00e-07 cm/s. In order to evaluate the interaction between soil particles and, to ensure proper dispersion of nanoparticles through clayey sand mixture, they were magnified by means of scanning electron microscope (SEM). In conclusion, the nanoclay particles in vicinity of moisture can cause soil stabilization to prevent water penetration, which eventually result in lower usage of clay and operation costs.

Keywords: nanoclay, cloisite 30b, clayey sand, hydraulic conductivity

Procedia PDF Downloads 347
1361 Algal Mat Shift to Marsh Domain in Sandy and Muddy Tidal Flat: Examples the Gulf of Gabes, SE Tunisia

Authors: Maher Gzam, Noureddine Elmejdoub, Younes Jedoui

Abstract:

Physical parameters involved in the depositional process on stromatolites, which grow in salt marsh domain, are elucidated in this study. Stromatolites start to grow where surface altimetry of the intertidal flat is high enough to reduce water cover (above mean high tide) and to guarantee a lamellar stream flow. Stromatolite aggrades as a thick laminated layer (stromatolite package) allowing pioneer vascular plants (Salicornia Arabica) to colonize this elevated area (6 cm a.m.s.l). In turn halophytic plant, regularly flooded on spring tide, reduce hydrodynamics velocities causing deposition of sediment, as a result, intertidal zone shift on the flat surface with an expanded marsh domain. This positive feedback invokes self organization between stromatolite growth, vegetation proliferation and deposition of sediment and may be applicable to ancient progradational sequence.

Keywords: stromatolites, marsh, deposition of sediment, aggradation, progradation, gulf of Gabes, Tunisia

Procedia PDF Downloads 331
1360 Engineering Microstructural Evolution during Arc Wire Directed Energy Deposition of Magnesium Alloy (AZ31)

Authors: Nivatha Elangovan, Lakshman Neelakantan, Murugaiyan Amirthalingam

Abstract:

Magnesium and its alloys are widely used for various lightweight engineering and biomedical applications as they render high strength to low weight ratio and excellent corrosion resistance. These alloys possess good bio-compatibility and similar mechanical properties to natural bone. However, manufacturing magnesium alloy components by conventional formative and subtractive methods is challenging due to their poor castability, oxidation potential, and machinability. Therefore, efforts are made to produce complex-design containing magnesium alloy components by additive manufacturing (AM). Arc-wire directed energy deposition (AW-DED), also known as wire arc additive manufacturing (WAAM), is more attractive to produce large volume components with increased productivity than any other AM technique. In this research work, efforts were made to optimise the deposition parameters to build thick-walled (about 10 mm) AZ31 magnesium alloy components by a gas metal arc (GMA) based AW-DED process. By using controlled dip short-circuiting metal transfer in a GMA process, depositions were carried out without defects and spatter formation. Current and voltage waveforms were suitably modified to achieve stable metal transfer. Moreover, the droplet transfer behaviour was analysed using high-speed image analysis and correlated with arc energy. Optical and scanning electron microscopy analyses were carried out to correlate the influence of deposition parameters with the microstructural evolution during deposition. The investigation reveals that by carefully controlling the current-voltage waveform and droplet transfer behaviour, it is possible to stabilise equiaxed grain microstructures in the deposited AZ31 components. The printed component exhibited an improved mechanical property as equiaxed grains improve the ductility and enhance the toughness. The equiaxed grains in the component improved the corrosion-resistant behaviour of other conventionally manufactured components.

Keywords: arc wire directed energy deposition, AZ31 magnesium alloy, equiaxed grain, corrosion

Procedia PDF Downloads 117
1359 Delineation of Fracture Zones for Investigation of Groundwater Potentials Using Vertical Electrical Sounding in a Sedimentary Complex Terrain

Authors: M. N. Yahaya, K. A. Salako, U. Z. Magawata

Abstract:

Vertical electrical sounding (VES) method was used to investigate the groundwater potential at the southern part of Gulumbe district, Kebbi State, north-western part of Nigeria. The study was carried out with the aim of determining the subsurface layer’s parameters (resistivity and thickness) and uses the same to characterize the groundwater potential of the study area. The Schlumberger configuration was used for data acquisition. A total number of thirty-three (33) sounding points (VES) were surveyed over six profiles. The software IPI2WIN was used to obtain n-layered geo-electric sections. The geo-electric section drawn from the results of the interpretation revealed that three subsurface layers could be delineated, which comprise of top soil, sand, sandstone, coarse sand, limestone, and gravelly sand. The results of the resistivity sounding were correlated with the lithological logs of nearby boreholes that expose cross-section geologic units around the study area. We found out that the area is dominated by three subsurface layers. The coarse sand layers constituted the aquifer zones in the majority of sounding stations. Thus, this present study concluded that the depth of any borehole in the study area should be located between the depth of 18.5 to 39 m. The study further classified the VES points penetrated based on their conductivity content as highly suitable, suitable, moderately suitably, and poor zones for groundwater exploration. Hence, from this research, we recommended that boreholes can be sited in high conductivity zones across VES 2, 11, 13, 16, 20, 21, 27, and 33, respectively.

Keywords: vertical electrical sounding, resistivity, geo-electric, resistivity, aquifer and groundwater

Procedia PDF Downloads 156
1358 From Core to Hydrocarbon: Reservoir Sedimentology, Facies Analysis and Depositional Model of Early Oligocene Mahuva Formation in Tapti Daman Block, Western Offshore Basin, India

Authors: Almas Rajguru

Abstract:

The Oligocene succession of the Tapti- Daman area is one of the established petroleum plays in Tapti-Daman block of the Mumbai Offshore Basin. Despite good control and production history, the sand geometry and continuity of reservoir character of these sediments are less understood as most reservoirs are thin and fall below seismic resolution. The present work focuses on a detailed analysis of the Early Oligocene Mahuva Formation at the reservoir scale through laboratory studies (sedimentology and biostratigraphy) of core and sidewall cores in integration with electro logs for firming up facies’ distribution, micro-depositional environment and sequence stratigraphy, diagenesis and reservoir characterization from seventeen wells from North Tapti-C-37 area in Tapti Daman Block, WOB. The thick shale/claystone with thin interbeds of sandstone and siltstones of deeper marine in the lower part of Mahuva Fm represents deposition in a transgressive regime. The overlying interbedded sandstone, glauconitic-siltstone/fine-grained sandstone, and thin beds of packstone/grainstone within highly fissile shale were deposited in a prograding tide-dominated delta during late-rise normal regression. Nine litho facies (F1-F9) representing deposition in various microenvironments of the tide-dominated delta are identified based on their characteristic sediment texture, structure and microfacies. Massive, gritty sandstone (F1) with poorly sorted sands lithic fragments with calcareous and Fe-rich matrix represents channel fill sediments. High-angle cross-stratified sandstone (F2) deposited in rapidly shifting/migrating bars under strong tidal currents. F3 records the laterally accreted tidal-channel point bars. F3 (low-angle cross-stratified to parallel bedded sandstone) and F4 (Clean sandstone) are often associated with F2 in a tidal bar complex. F5 (interbedded thin sand and mud) and F6 (bioturbated sandstone) represent tidal flat deposits. High energy open marine carbonate shoals (F8) and fossiliferous sandstone in offshore bars (F7) represent deepening up facies. Shallow marine standstill conditions facilitated the deposition of thick shale (F9) beds. The reservoir facies (F1-F6) are commonly poorly to moderately sorted; bimodal, immature sandstone represented by quartz-wacke. The framework grains are sub-angular to sub-rounded, medium to coarse-grained (occasionally gritty) embedded within argillaceous (kaolinite/chlorite/chamosite) to highly Fe-rich matrix (sideritic). The facies F7 and F8, representing the sandy packstone and grainstone facies, respectively, exhibit poor reservoir characteristics due to sanitization, diagenetic compaction and matrix-filled intergranular spaces. The various diagenetic features such as the presence of authigenic clays (kaolinite/dickite/smectite); ferruginous minerals like siderite, pyrite, hematite and other iron oxides; bioturbations; glauconite; calcite and quartz cementation, precipitation of gypsum, pressure solution and other compaction effects are identified. These diagenetic features, wherever present, have reduced porosity and permeability thereby adversely affecting reservoir quality. Tidal bar sandstones possess good reservoir characteristics such as moderate to good sorting, fair to good porosity and geometry that facilitates efficient lateral extension and vertical thickness of reservoir. The sand bodies of F2, F3 and F4 facies of Well L, M and Q deposited in a tidal bar complex exhibit good reservoir quality represented by relatively cleaner, poorly burrowed, loose, friable sandstone with good porosity. Sandstone facies around these wells could prove a potential hydrocarbon reservoir and could be considered for further exploration.

Keywords: reservoir sedimentology, facies analysis, HST, tide dominated delta, tidal bars

Procedia PDF Downloads 86
1357 Vertical Uplift Capacity of a Group of Equally Spaced Helical Screw Anchors in Sand

Authors: Sanjeev Mukherjee, Satyendra Mittal

Abstract:

This paper presents the experimental investigations on the behaviour of a group of single, double and triple helical screw anchors embedded vertically at the same level in sand. The tests were carried out on one, two, three and four numbers of anchors in sand for different depths of embedment keeping shallow and deep mode of behaviour in mind. The testing program included 48 tests conducted on three model anchors installed in sand whose density kept constant throughout the tests. It was observed that the ultimate pullout load varied significantly with the installation depth of the anchor and the number of anchors. The apparent coefficient of friction (f*) between anchor and soil was also calculated based on the test results. It was found that the apparent coefficient of friction varies between 1.02 and 4.76 for 1, 2, 3, and 4 numbers of single, double and triple helical screw anchors. Plate load tests conducted on model soil showed that the value of ф increases from 35o for virgin soil to 48o for soil with four double screw helical anchors. The graphs of ultimate pullout capacity of a group of two, three and four no. of anchors with respect to one anchor were plotted and design equations have been proposed correlating them. Based on these findings, it has been concluded that the load-displacement relationships for all groups can be reduced to a common curve. A 3-D finite element model, PLAXIS, was used to confirm the results obtained from laboratory tests and the agreement is excellent.

Keywords: apparent coefficient of friction, helical screw anchor, installation depth, plate load test

Procedia PDF Downloads 551
1356 Monitoring Surface Modification of Polylactide Nonwoven Fabric with Weak Polyelectrolytes

Authors: Sima Shakoorjavan, Dawid Stawski, Somaye Akbari

Abstract:

In this study, great attempts have been made to initially modify polylactide (PLA) nonwoven surface with poly(amidoamine) (PAMMA) dendritic polymer to create amine active sites on PLA surface through aminolysis reaction. Further, layer-by-layer deposition of four layers of two weak polyelectrolytes, including PAMAM as polycation and polyacrylic acid (PAA) as polyanion on activated PLA, was monitored with turbidity analysis of waste-polyelectrolytes after each deposition step. The FTIR-ATR analysis confirmed the successful introduction of amine groups into PLA polymeric chains through the emerging peak around 1650 cm⁻¹ corresponding to N-H bending vibration and a double wide peak at around 3670-3170 cm⁻¹ corresponding to N-H stretching vibration. The adsorption-desorption behavior of (PAMAM) and poly (PAA) deposition was monitored by turbidity test. Turbidity results showed the desorption and removal of the previously deposited layer (second and third layers) upon the desorption of the next layers (third and fourth layers). Also, the importance of proper rinsing after aminolysis of PLA nonwoven fabric was revealed by turbidity test. Regarding the sample with insufficient rinsing process, higher desorption and removal of ungrafted PAMAM from aminolyzed-PLA surface into PAA solution was detected upon the deposition of the first PAA layer. This phenomenon can be due to electrostatic attraction between polycation (PAMAM) and polyanion (PAA). Moreover, the successful layer deposition through LBL was confirmed by the staining test of acid red 1 through spectrophotometry analysis. According to the results, layered PLA with four layers with PAMAM as the top layer showed higher dye absorption (46.7%) than neat (1.2%) and aminolyzed PLA (21.7%). In conclusion, the complicated adsorption-desorption behavior of dendritic polycation and linear polyanion systems was observed. Although desorption and removal of previously adsorbed layers occurred upon the deposition of the next layer, the remaining polyelectrolyte on the substrate is sufficient for the adsorption of the next polyelectrolyte through electrostatic attraction between oppositely charged polyelectrolytes. Also, an increase in dye adsorption confirmed more introduction of PAMAM onto PLA surface through LBL.

Keywords: surface modification, layer-by-layer technique, weak polyelectrolytes, adsorption-desorption behavior

Procedia PDF Downloads 59
1355 Optimization the Conditions of Electrophoretic Deposition Fabrication of Graphene-Based Electrode to Consider Applications in Electro-Optical Sensors

Authors: Sepehr Lajevardi Esfahani, Shohre Rouhani, Zahra Ranjbar

Abstract:

Graphene has gained much attention owing to its unique optical and electrical properties. Charge carriers in graphene sheets (GS) carry out a linear dispersion relation near the Fermi energy and behave as massless Dirac fermions resulting in unusual attributes such as the quantum Hall effect and ambipolar electric field effect. It also exhibits nondispersive transport characteristics with an extremely high electron mobility (15000 cm2/(Vs)) at room temperature. Recently, several progresses have been achieved in the fabrication of single- or multilayer GS for functional device applications in the fields of optoelectronic such as field-effect transistors ultrasensitive sensors and organic photovoltaic cells. In addition to device applications, graphene also can serve as reinforcement to enhance mechanical, thermal, or electrical properties of composite materials. Electrophoretic deposition (EPD) is an attractive method for development of various coatings and films. It readily applied to any powdered solid that forms a stable suspension. The deposition parameters were controlled in various thicknesses. In this study, the graphene electrodeposition conditions were optimized. The results were obtained from SEM, Ohm resistance measuring technique and AFM characteristic tests. The minimum sheet resistance of electrodeposited reduced graphene oxide layers is achieved at conditions of 2 V in 10 s and it is annealed at 200 °C for 1 minute.

Keywords: electrophoretic deposition (EPD), graphene oxide (GO), electrical conductivity, electro-optical devices

Procedia PDF Downloads 182
1354 Reactive Sputter Deposition of Titanium Nitride on Silicon Using a Magnetized Sheet Plasma Source

Authors: Janella Salamania, Marcedon Fernandez, Matthew Villanueva Henry Ramos

Abstract:

Titanium nitrite (TiN) a popular functional and decorative coating because of its golden yellow color, high hardness and superior wear resistance. It is also being studied as a diffusion barrier in integrated circuits due to its known chemical stability and low resistivity. While there have been numerous deposition methods done for TiN, most required the heating of substrates at high temperatures. In this work, TiN films are deposited on silicon (111) and (100) substrates without substrate heating using a patented magnetized sheet plasma source. Films were successfully deposited without substrate heating at various target bias, while maintaining a constant 25% N2 to Ar ratio, and deposition of time of 30 minutes. The resulting films exhibited a golden yellow color which is characteristic of TiN. X-ray diffraction patterns show the formation of TiN predominantly oriented in the (111) direction regardless of substrate used. EDX data also confirms the 1:1 stoichiometry of titanium an nitrogen. Ellipsometry measurements estimate the thickness to range from 28 nm to 33 nm. SEM images were also taken to observe the morphology of the film.

Keywords: coatings, nitrides, coatings, reactive magnetron sputtering, thin films

Procedia PDF Downloads 338
1353 The Dependence of the Liquid Application on the Coverage of the Sprayed Objects in Terms of the Characteristics of the Sprayed Object during Spraying

Authors: Beata Cieniawska, Deta Łuczycka, Katarzyna Dereń

Abstract:

When assessing the quality of the spraying procedure, three indicators are used: uneven distribution of precipitation of liquid sprayed, degree of coverage of sprayed surfaces, and deposition of liquid spraying However, there is a lack of information on the relationship between the quality parameters of the procedure. Therefore, the research was carried out at the Institute of Agricultural Engineering of Wrocław University of Environmental and Life Sciences. The aim of the study was to determine the relationship between the degree of coverage of sprayed surfaces and the deposition of liquid in the aspect of the parametric characteristics of the protected plant using selected single and double stream nozzles. Experiments were conducted under laboratory conditions. The carrier of nozzles acted as an independent self-propelled sprayer used for spraying, whereas the parametric characteristics of plants were determined using artificial plants as the ratio of the vertical projection surface and the horizontal projection surface. The results and their analysis showed a strong and very strong correlation between the analyzed parameters in terms of the characteristics of the sprayed object.

Keywords: degree of coverage, deposition of liquid, nozzle, spraying

Procedia PDF Downloads 330
1352 Impact of Prolonged Sodium Hypochlorite Cleaning on Silicon Carbide Ultrafiltration Membranes Prepared via Low-Pressure Chemical Vapor Deposition

Authors: Asif Jan

Abstract:

Sodium hypochlorite (NaClO) is a common cleaning agent for ultrafiltration (UF) membranes. While its detrimental effects on polymeric membranes are well-documented, its impact on ceramic membranes remains less explored. This study investigates the chemical stability of silicon carbide (SiC) UF membranes prepared using low-pressure chemical vapor deposition (LP-CVD) during prolonged NaClO exposure. SiC UF membranes were fabricated via LP-CVD at two different temperature and pressure conditions. LP-CVD offers the advantage of SiC membrane fabrication at significantly lower temperatures (700-900°C) compared to conventional methods. The membranes were subjected to 200 hours of NaClO aging to assess their resilience. Before and after aging, we evaluated the properties and performance of the SiC UF membranes to identify optimal LP-CVD conditions. Our findings show that SiC UF membranes produced at 860°C via LP-CVD exhibit exceptional resistance to NaClO aging, whereas those prepared at 750°C experience significant deterioration. This highlights the crucial role of precise LP-CVD parameters in ensuring the robustness and long-term performance of SiC membranes in harsh chemical cleaning environments.

Keywords: ceramic membranes, ultrafiltration membranes, wastewater treatment, chemical vapor deposition

Procedia PDF Downloads 84
1351 The Transport of Coexisting Nanoscale Zinc Oxide Particles, Cu(Ⅱ) and Cr(Ⅵ) Ions in Simulated Landfill Leachate

Authors: Xiaoyu Li, Wenchuan Ding, Yujia Yia

Abstract:

As the nanoscale zinc oxide particles (nano-ZnO) accumulate in the landfill, nano-ZnO will enter the landfill leachate and come into contact with the heavy metal ions in leachate, which will change their transport process in the landfill and, furthermore, affect each other's environmental fate and toxicity. In this study, we explored the transport of co-existing nano-ZnO, Cu(II) and Cr(VI) ions by column experiments under different stages of landfill leachate conditions (flow rate, pH, ionic strength, humic acid). The results show that Cu(II) inhibits the transport of nano-ZnO in the quartz sand column by increasing the surface potential of nano-ZnO, and nano-ZnO increases the retention of Cu(II) in the quartz sand column by adsorbing Cu(II) ions. Cr(VI) promotes the transport of nano-ZnO in the quartz sand column by neutralizing the surface potential of the nano-ZnO which reduces electrostatic attraction between nZnO and quartz sand, but the nano-ZnO has no effect on the transport of Cr(VI). The nature of landfill leachates such as flow rate, pH, ionic strength (IS) and humic acid (HA) has a certain effect on the transport of coexisting nano-ZnO and heavy metal ions. For leachate containing Cu(II) and Cr(VI) ions, at the initial stage of landfilling, the pH of leachate is acidic, ionic strength value is high, the humic acid concentration is low, and the transportability of nano-ZnO is weak. As the landfill age increased, the pH value in the leachate gradually increases, when the ions are raised to alkaline, these ions are trending to precipitated or adsorbed to the solid wastes in landfill, which resulting in low IS value of leachate. At the same time, more refractory organic matter gradually increases such as HA, which provides repulsive steric effects, so the nano-ZnO is more likely to migrate. Overall, the Cr(VI) can promote the transport of nano-ZnO more than Cu(II).

Keywords: heavy metal ions, landfill leachate, nano-ZnO, transport

Procedia PDF Downloads 131
1350 An Investigation into Mechanical Properties of Laser Fabricated 308LSi Stainless Steel Walls by Wire Feedstock

Authors: Taiwo Ebenezer Abioye, Alexis Medrano-Tellez, Peter Kayode Farayibi, Peter Kayode Oke,

Abstract:

Laser metal deposition by wire feedstock has been established as a process which can provide a high material deposition rate with good quality. Sound mechanical properties of the deposited parts are the pre-requisites for the real applications of this process. This paper investigates the laser metal deposition of 308LSi stainless steel wire within a process window. Single tracks and multiple layer thin-walls of 308LSi stainless steel wire were deposited on 304 stainless steel substrate. The grain structures of the built walls were examined using optical microscopy. The mechanical properties of the built walls including the micro-hardness and tensile properties along the transverse and longitudinal directions were investigated using Vickers hardness tester and tensile test machine. Long columnar grains were found growing in the wall building direction (transverse) and nucleation were observed at the boundary between two deposited layers due to remelting of the previously deposited layers. The results showed that the hardness values of the deposited walls (ranging between 194 HV and 167 HV) decreased from the track-substrate interface to the top of the wall. The ultimate tensile strength (UTS) of the wall (518 ± 7 MPa) showed dependence on wall building directions.

Keywords: laser metal deposition, ultimate tensile strength, hardness, wall, microstructure

Procedia PDF Downloads 402
1349 A Practice Model for Quality Improvement in Concrete Block Mini Plants Based on Merapi Volcanic Sand

Authors: Setya Winarno

Abstract:

Due to abundant Merapi volcanic sand in Yogyakarta City, many local people have utilized it for mass production of concrete blocks through mini plants although their products are low in quality. This paper presents a practice model for quality improvement in this situation in order to supply the current customer interest in good quality of construction material. The method of this research was to investigate a techno economic evaluation through laboratory test and interview. Samples of twenty existing concrete blocks made by local people had only 19.4 kg/cm2 in average compression strength which was lower than the minimum Indonesian standard of 25 kg/cm2. Through repeat testing in laboratory for fulfilling the standard, the concrete mix design of water cement ratio should not be more than 0.64 by weight basis. The proportion of sand as aggregate content should not be more than 9 parts to 1 part by volume of Portland cement. Considering the production cost, the basic price was Rp 1,820 for each concrete block, comparing to Rp 2,000 as a normal competitive market price. At last, the model describes (a) maximum water cement ratio is 0.64, (b) maximum proportion of sand and cement is 1:9, (c) the basic price is about Rp. 1,820.00 and (d) strategies to win the competitive market on mass production of concrete blocks are focus in quality, building relationships with consumer, rapid respond to customer need, continuous innovation by product diversification, promotion in social media, and strict financial management.

Keywords: concrete block, good quality, improvement model, diversification

Procedia PDF Downloads 513
1348 Effect of Particle Aspect Ratio and Shape Factor on Air Flow inside Pulmonary Region

Authors: Pratibha, Jyoti Kori

Abstract:

Particles in industry, harvesting, coal mines, etc. may not necessarily be spherical in shape. In general, it is difficult to find perfectly spherical particle. The prediction of movement and deposition of non spherical particle in distinct airway generation is much more difficult as compared to spherical particles. Moreover, there is extensive inflexibility in deposition between ducts of a particular generation and inside every alveolar duct since particle concentrations can be much bigger than the mean acinar concentration. Consequently, a large number of particles fail to be exhaled during expiration. This study presents a mathematical model for the movement and deposition of those non-spherical particles by using particle aspect ratio and shape factor. We analyse the pulsatile behavior underneath sinusoidal wall oscillation due to periodic breathing condition through a non-Darcian porous medium or inside pulmonary region. Since the fluid is viscous and Newtonian, the generalized Navier-Stokes equation in two-dimensional coordinate system (r, z) is used with boundary-layer theory. Results are obtained for various values of Reynolds number, Womersley number, Forchsheimer number, particle aspect ratio and shape factor. Numerical computation is done by using finite difference scheme for very fine mesh in MATLAB. It is found that the overall air velocity is significantly increased by changes in aerodynamic diameter, aspect ratio, alveoli size, Reynolds number and the pulse rate; while velocity is decreased by increasing Forchheimer number.

Keywords: deposition, interstitial lung diseases, non-Darcian medium, numerical simulation, shape factor

Procedia PDF Downloads 183
1347 Direct Electrophoretic Deposition of Hierarchical Structured Electrode Supercapacitor Application

Authors: Jhen-Ting Huang, Chia-Chia Chang, Hu-Cheng Weng, An-Ya Lo

Abstract:

In this study, Co3O4-CNT-Graphene composite electrode was deposited by electrophoretic deposition (EPD) method, where micro polystyrene spheres (PSs) were added for co-deposition. Applied with heat treatment, a hierarchical porosity is left in the electrode which is beneficial for supercapacitor application. In terms of charge and discharge performance, we discussed the optimal CNT/Graphene ratio, macroporous ratio, and the effect of Co3O4 addition on electrode capacitance. For materials characterization, scanning electron microscope (SEM), X-ray diffraction, and BET were applied, while cyclic voltammetry (CV) and chronopotentiometry (CP) measurements, and Ragone plot were applied as in-situ analyses. Based on this, the effects of PS amount on the structure, porosity and their effect on capacitance of the electrodes were investigated. Finally, the full device performance was examined with charge-discharge and electron impedance spectrum (EIS) methods. The results show that the EPD coating with hierarchical porosity was successfully demonstrated in this study. As a result, the capacitance was greatly enhanced by 2.6 times with the hierarchical structure.

Keywords: supercapacitor, nanocarbon tub, graphene, metal oxide

Procedia PDF Downloads 136
1346 Comparison of Tribological and Mechanical Properties of White Metal Produced by Laser Cladding and Conventional Methods

Authors: Jae-Il Jeong, Hoon-Jae Park, Jung-Woo Cho, Yang-Gon Kim, Jin-Young Park, Joo-Young Oh, Si-Geun Choi, Seock-Sam Kim, Young Tae Cho, Chan Gyu Kim, Jong-Hyoung Kim

Abstract:

Bearing component has strongly required to decrease vibration and wear to achieve high durability and life time. In the industry field, bearing durability is improved by surface treatment on the bearing surface by centrifugal casting or gravity casting production method. However, this manufacturing method has caused problems such as long processing time, defect rate, and health harmful effect. To solve this problem, there is a laser cladding deposition treatment, which provides fast processing and food adhesion. Therefore, optimum conditions of white metal laser deposition should be studied to minimize bearing contact axis wear using laser cladding techniques. In this study, we deposit a soft white metal layer on SCM440, which is mainly used for shaft and bolt. On laser deposition process, the laser power and powder feed rate and laser head speed factors are controlled to find out the optimal conditions. We also measure hardness using micro Vickers, analyze FE-SEM (Field Emission Scanning Electron Microscope) and EDS (Energy Dispersive Spectroscopy) to study the mechanical properties and surface characteristics with various parameters change. Furthermore, this paper suggests the optimum condition of laser cladding deposition to apply in industrial fields. This work was supported by the Industrial Innovation Project of the Korea Evaluation Institute of Industrial Technology (KEIT) granted financial resource from the Ministry of Trade, Industry & Energy, Republic of Korea (Research no. 10051653).

Keywords: laser deposition, bearing, white metal, mechanical properties

Procedia PDF Downloads 258
1345 Methodology for Various Sand Cone Testing

Authors: Abel S. Huaynacho, Yoni D. Huaynacho

Abstract:

The improvement of procedure test ASTM D1556, plays an important role in the developing of testing in field to obtain a higher quality of data QA/QC. The traditional process takes a considerable amount of time for only one test. Even making various testing are tasks repeating and it takes a long time to obtain better results. Moreover, if the adequate tools the help these testing are not properly managed, the improvement in the development for various testing could be stooped. This paper presents an optimized process for various testing ASTM D1556 which uses an initial standard process to another one the uses a simpler and improved management tools.

Keywords: cone sand test, density bulk, ASTM D1556, QA/QC

Procedia PDF Downloads 132
1344 Settlement Prediction in Cape Flats Sands Using Shear Wave Velocity – Penetration Resistance Correlations

Authors: Nanine Fouche

Abstract:

The Cape Flats is a low-lying sand-covered expanse of approximately 460 square kilometres, situated to the southeast of the central business district of Cape Town in the Western Cape of South Africa. The aeolian sands masking this area are often loose and compressible in the upper 1m to 1.5m of the surface, and there is a general exceedance of the maximum allowable settlement in these sands. The settlement of shallow foundations on Cape Flats sands is commonly predicted using the results of in-situ tests such as the SPT or DPSH due to the difficulty of retrieving undisturbed samples for laboratory testing. Varying degrees of accuracy and reliability are associated with these methods. More recently, shear wave velocity (Vs) profiles obtained from seismic testing, such as continuous surface wave tests (CSW), are being used for settlement prediction. Such predictions have the advantage of considering non-linear stress-strain behaviour of soil and the degradation of stiffness with increasing strain. CSW tests are rarely executed in the Cape Flats, whereas SPT’s are commonly performed. For this reason, and to facilitate better settlement predictions in Cape Flats sand, equations representing shear wave velocity (Vs) as a function of SPT blow count (N60) and vertical effective stress (v’) were generated by statistical regression of site investigation data. To reveal the most appropriate method of overburden correction, analyses were performed with a separate overburden term (Pa/σ’v) as well as using stress corrected shear wave velocity and SPT blow counts (correcting Vs. and N60 to Vs1and (N1)60respectively). Shear wave velocity profiles and SPT blow count data from three sites masked by Cape Flats sands were utilised to generate 80 Vs-SPT N data pairs for analysis. Investigated terrains included sites in the suburbs of Athlone, Muizenburg, and Atlantis, all underlain by windblown deposits comprising fine and medium sand with varying fines contents. Elastic settlement analysis was also undertaken for the Cape Flats sands, using a non-linear stepwise method based on small-strain stiffness estimates, which was obtained from the best Vs-N60 model and compared to settlement estimates using the general elastic solution with stiffness profiles determined using Stroud’s (1989) and Webb’s (1969) SPT N60-E transformation models. Stroud’s method considers strain level indirectly whereasWebb’smethod does not take account of the variation in elastic modulus with strain. The expression of Vs. in terms of N60 and Pa/σv’ derived from the Atlantis data set revealed the best fit with R2 = 0.83 and a standard error of 83.5m/s. Less accurate Vs-SPT N relations associated with the combined data set is presumably the result of inversion routines used in the analysis of the CSW results showcasing significant variation in relative density and stiffness with depth. The regression analyses revealed that the inclusion of a separate overburden term in the regression of Vs and N60, produces improved fits, as opposed to the stress corrected equations in which the R2 of the regression is notably lower. It is the correction of Vs and N60 to Vs1 and (N1)60 with empirical constants ‘n’ and ‘m’ prior to regression, that introduces bias with respect to overburden pressure. When comparing settlement prediction methods, both Stroud’s method (considering strain level indirectly) and the small strain stiffness method predict higher stiffnesses for medium dense and dense profiles than Webb’s method, which takes no account of strain level in the determination of soil stiffness. Webb’s method appears to be suitable for loose sands only. The Versak software appears to underestimate differences in settlement between square and strip footings of similar width. In conclusion, settlement analysis using small-strain stiffness data from the proposed Vs-N60 model for Cape Flats sands provides a way to take account of the non-linear stress-strain behaviour of the sands when calculating settlement.

Keywords: sands, settlement prediction, continuous surface wave test, small-strain stiffness, shear wave velocity, penetration resistance

Procedia PDF Downloads 173
1343 Performance Evaluation of Filtration System for Groundwater Recharging Well in the Presence of Medium Sand-Mixed Storm Water

Authors: Krishna Kumar Singh, Praveen Jain

Abstract:

The collection of storm water runoff and forcing it into the groundwater is the need of the hour to sustain the ground water table. However, the runoff entraps various types of sediments and other floating objects whose removal are essential to avoid pollution of ground water and blocking of pores of aquifer. However, it requires regular cleaning and maintenance due to the problem of clogging. To evaluate the performance of filter system consisting of coarse sand (CS), gravel (G) and pebble (P) layers, a laboratory experiment was conducted in a rectangular column. The effect of variable thickness of CS, G and P layers of the filtration unit of the recharge shaft on the recharge rate and the sediment concentration of effluent water were evaluated. Medium sand (MS) of three particle sizes, viz. 0.150–0.300 mm (T1), 0.300–0.425 mm (T2) and 0.425–0.600 mm of thickness 25 cm, 30 cm, and 35 cm respectively in the top layer of the filter system and having seven influent sediment concentrations of 250–3,000 mg/l were used for the experimental study. The performance was evaluated in terms of recharge rates and clogging time. The results indicated that 100 % suspended solids were entrapped in the upper 10 cm layer of MS, the recharge rates declined sharply for influent concentrations of more than 1,000 mg/l. All treatments with a higher thickness of MS media indicated recharge rate slightly more than that of all treatment with a lower thickness of MS media respectively. The performance of storm water infiltration systems was highly dependent on the formation of a clogging layer at the filter. An empirical relationship has been derived between recharge rates, inflow sediment load, size of MS and thickness of MS with using MLR.

Keywords: groundwater, medium sand-mixed storm water filter, inflow sediment load

Procedia PDF Downloads 388