Search results for: virtual hands-on learning
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8090

Search results for: virtual hands-on learning

5450 Early Influences on Teacher Identity: Perspectives from the USA and Northern Ireland

Authors: Martin Hagan

Abstract:

Teacher identity has been recognised as a crucial field of research which supports understanding of the ways in which teachers navigate the complexities of professional life in order to grow in competence, knowledge and practice. As a field of study, teacher identity is concerned with understanding: how identity is defined; how it develops; how teachers make sense of their emerging identity; and how the act of teaching is mediated through the individual teacher’s values, beliefs and sense of professional self. By comparing two particular, socially constructed learning contexts or ‘learning milieu’, one in Northern Ireland and the other in the United States of America, this study aims specifically, to gain better understanding of how teacher identity develops during the initial phase of teacher education. The comparative approach was adopted on the premise that experiences are constructed through interactive, socio-historical and cultural negotiations with others within particular environments, situations and contexts. As such, whilst the common goal is to ‘become’ a teacher, the nuances emerging from the different learning milieu highlight variance in discourse, priorities, practice and influence. A qualitative, interpretative research design was employed to understand the world-constructions of the participants through asking open-ended questions, seeking views and perspectives, examining contexts and eventually deducing meaning. Data were collected using semi structured interviews from a purposive sample of student teachers (n14) in either the first or second year of study in their respective institutions. In addition, a sample of teacher educators (n5) responsible for the design, organisation and management of the programmes were also interviewed. Inductive thematic analysis was then conducted, which highlighted issues related to: the participants’ personal dispositions, prior learning experiences and motivation; the influence of the teacher education programme on the participants’ emerging professional identity; and the extent to which the experiences of working with teachers and pupils in schools in the context of the practicum, challenged and changed perspectives on teaching as a professional activity. The study also highlights the varying degrees of influence exercised by the different roles (tutor, host teacher/mentor, student) within the teacher-learning process across the two contexts. The findings of the study contribute to the understanding of teacher identity development in the early stages of professional learning. By so doing, the research makes a valid contribution to the discourse on initial teacher preparation and can help to better inform teacher educators and policy makers in relation to appropriate strategies, approaches and programmes to support professional learning and positive teacher identity formation.

Keywords: initial teacher education, professional learning, professional growth, teacher identity

Procedia PDF Downloads 73
5449 Risk Assessment and Management Using Machine Learning Models

Authors: Lagnajeet Mohanty, Mohnish Mishra, Pratham Tapdiya, Himanshu Sekhar Nayak, Swetapadma Singh

Abstract:

In the era of global interconnectedness, effective risk assessment and management are critical for organizational resilience. This review explores the integration of machine learning (ML) into risk processes, examining its transformative potential and the challenges it presents. The literature reveals ML's success in sectors like consumer credit, demonstrating enhanced predictive accuracy, adaptability, and potential cost savings. However, ethical considerations, interpretability issues, and the demand for skilled practitioners pose limitations. Looking forward, the study identifies future research scopes, including refining ethical frameworks, advancing interpretability techniques, and fostering interdisciplinary collaborations. The synthesis of limitations and future directions highlights the dynamic landscape of ML in risk management, urging stakeholders to navigate challenges innovatively. This abstract encapsulates the evolving discourse on ML's role in shaping proactive and effective risk management strategies in our interconnected and unpredictable global landscape.

Keywords: machine learning, risk assessment, ethical considerations, financial inclusion

Procedia PDF Downloads 72
5448 Integrating Technology in Teaching and Learning Mathematics

Authors: Larry Wang

Abstract:

The aim of this paper is to demonstrate how an online homework system is integrated in teaching and learning mathematics and how it improves the student success rates in some gateway mathematics courses. WeBWork provided by the Mathematical Association of America is adopted as the online homework system. During the period of 2010-2015, the system was implemented in classes of precalculus, calculus, probability and statistics, discrete mathematics, linear algebra, and differential equations. As a result, the passing rates of the sections with WeBWork are well above other sections without WeBWork (about 7-10% higher). The paper also shows how the WeBWork system was used.

Keywords: gateway mathematics, online grading, pass rate, WeBWorK

Procedia PDF Downloads 299
5447 Analysis of a IncResU-Net Model for R-Peak Detection in ECG Signals

Authors: Beatriz Lafuente Alcázar, Yash Wani, Amit J. Nimunkar

Abstract:

Cardiovascular Diseases (CVDs) are the leading cause of death globally, and around 80% of sudden cardiac deaths are due to arrhythmias or irregular heartbeats. The majority of these pathologies are revealed by either short-term or long-term alterations in the electrocardiogram (ECG) morphology. The ECG is the main diagnostic tool in cardiology. It is a non-invasive, pain free procedure that measures the heart’s electrical activity and that allows the detecting of abnormal rhythms and underlying conditions. A cardiologist can diagnose a wide range of pathologies based on ECG’s form alterations, but the human interpretation is subjective and it is contingent to error. Moreover, ECG records can be quite prolonged in time, which can further complicate visual diagnosis, and deeply retard disease detection. In this context, deep learning methods have risen as a promising strategy to extract relevant features and eliminate individual subjectivity in ECG analysis. They facilitate the computation of large sets of data and can provide early and precise diagnoses. Therefore, the cardiology field is one of the areas that can most benefit from the implementation of deep learning algorithms. In the present study, a deep learning algorithm is trained following a novel approach, using a combination of different databases as the training set. The goal of the algorithm is to achieve the detection of R-peaks in ECG signals. Its performance is further evaluated in ECG signals with different origins and features to test the model’s ability to generalize its outcomes. Performance of the model for detection of R-peaks for clean and noisy ECGs is presented. The model is able to detect R-peaks in the presence of various types of noise, and when presented with data, it has not been trained. It is expected that this approach will increase the effectiveness and capacity of cardiologists to detect divergences in the normal cardiac activity of their patients.

Keywords: arrhythmia, deep learning, electrocardiogram, machine learning, R-peaks

Procedia PDF Downloads 186
5446 Comparative Outlook of Teacher Education in Nigeria and India

Authors: Muhammad Badamasi Abdullahi

Abstract:

Teacher education, both pre- and in-service programs, is offered in many countries of the world by different teacher education institutions as declared in the Policies on Education of the countries. However, differences exist from one country to another as a result of some factors peculiar to them. Notwithstanding, there also exist similarities among them in regard to teacher education. This paper is expected to dig into teacher education programs in Nigeria and India so that areas of similarities and differences would be highlighted as well as provide a venue for possible recommendation of both countries to learn from one another. All this is directed towards providing a no -border approach in enhancing effective teaching and learning.

Keywords: teacher education, teaching and learning, pre-service, in-service

Procedia PDF Downloads 386
5445 Developing Educator Cultural Awareness through Critically Reflective Professional Learning Community Collaboration

Authors: Brooke A. Moore

Abstract:

Developing teachers’ cultural awareness ensures schools are culturally responsive and socially just for diverse and exceptional students. An ideology of ‘normal’ exists in schools, creating boundaries where some students belong and others are marginalized based on difference. It is important that teacher preparation work to create democratic classrooms where teachers foster tolerance of difference and promote critical thinking and social justice. This paper outlines a framework for developing educator cultural awareness through the use of critically reflective professional learning communities (PLCs) drawing from the research on teacher critical reflection, collaborative PLCs, and Engeström’s theory of expansive learning. A case study using the framework was conducted with ten practicing teachers. Participants read and reflected on critical literature to make visible unexamined beliefs, engaged in conversations that pushed them to reflect more deeply and project forward new ideas, and set goals for acting as agents of change in their schools.

Keywords: cultural and linguistic diversity, diversity, special education, teacher beliefs

Procedia PDF Downloads 248
5444 Building Tutor and Tutee Pedagogical Agents to Enhance Learning in Adaptive Educational Games

Authors: Ogar Ofut Tumenayu, Olga Shabalina

Abstract:

This paper describes the application of two types of pedagogical agents’ technology with different functions in an adaptive educational game with the sole aim of improving learning and enhancing interactivities in Digital Educational Games (DEG). This idea could promote the elimination of some problems of DEG, like isolation in game-based learning, by introducing a tutor and tutee pedagogical agents. We present an analysis of a learning companion interacting in a peer tutoring environment as a step toward improving social interactions in the educational game environment. We show that tutor and tutee agents use different interventions and interactive approaches: the tutor agent is engaged in tracking the learner’s activities and inferring the learning state, while the tutee agent initiates interactions with the learner at the appropriate times and in appropriate manners. In order to provide motivation to prevent mistakes and clarity a game task, the tutor agent uses the help dialog tool to provide assistance, while the tutee agent provides collaboration assistance by using the hind tool. We presented our idea on a prototype game called “Pyramid Programming Game,” a 2D game that was developed using Libgdx. The game's Pyramid component symbolizes a programming task that is presented to the player in the form of a puzzle. During gameplay, the Agents can instruct, direct, inspire, and communicate emotions. They can also rapidly alter the instructional pattern in response to the learner's performance and knowledge. The pyramid must be effectively destroyed in order to win the game. The game also teaches and illustrates the advantages of utilizing educational agents such as TrA and TeA to assist and motivate students. Our findings support the idea that the functionality of a pedagogical agent should be dualized into an instructional and learner’s companion agent in order to enhance interactivity in a game-based environment.

Keywords: tutor agent, tutee agent, learner’s companion interaction, agent collaboration

Procedia PDF Downloads 67
5443 Colour and Travel: Design of an Innovative Infrastructure for Travel Applications with Entertaining and Playful Features

Authors: Avrokomi Zavitsanou, Spiros Papadopoulos, Theofanis Alexandridis

Abstract:

This paper presents the research project ‘Colour & Travel’, which is co-funded by the European Union and national resources through the Operational Programme “Competitiveness, Entrepreneurship and Innovation” 2014-2020, under the Single RTDI State Aid Action "RESEARCH - CREATE - INNOVATE". The research project proposes the design of an innovative, playful framework for exploring a variety of travel destinations and creating personalised travel narratives, aiming to entertain, educate, and promote culture and tourism. Gamification of the cultural and touristic environment can enhance its experiential, multi-sensory aspects and broaden the perception of the traveler. The latter's involvement in creating and shaping his personal travel narrations and the possibility of sharing it with others can offer him an alternative, more binding way of getting acquainted with a place. In particular, the paper presents the design of an infrastructure: (a) for the development of interactive travel guides for mobile devices, where sites with specific points of interest will be recommended, with which the user can interact in playful ways and then create his personal travel narratives, (b) for the development of innovative games within virtual reality environment, where the interaction will be offered while the user is moving within the virtual environment; and (c) for an online application where the content will be offered through the browser and the modern 3D imaging technologies (WebGL). The technological products that will be developed within the proposed project can strengthen important sectors of economic and social life, such as trade, tourism, exploitation and promotion of the cultural environment, creative industries, etc. The final applications delivered at the end of the project will guarantee an improved level of service for visitors and will be a useful tool for content creators with increased adaptability, expansibility, and applicability in many regions of Greece and abroad. This paper aims to present the research project by referencing the state of the art and the methodological scheme, ending with a brief reflection on the expected outcome in terms of results.

Keywords: gamification, culture, tourism, AR, VR, applications

Procedia PDF Downloads 143
5442 Cultural Stereotypes in EFL Classrooms and Their Implications on English Language Procedures in Cameroon

Authors: Eric Enongene Ekembe

Abstract:

Recent calls on EFL teaching posit the centrality of context factors and argue for a correlation between effectiveness in teaching with the learners’ culture in the EFL classroom. Context is not everything; it is defined with indicators of learners’ cultural artifacts and stereotypes in meaningful interactions in the language classroom. In keeping with this, it is difficult to universalise pedagogic procedures given that appropriate procedures are context-sensitive- and contexts differ. It is necessary to investigate what counts as cultural specificities or stereotypes of specific learners to reflect on how different language learning contexts affect or are affected by English language teaching procedures, most especially in under-represented cultures, which have appropriated the English language. This paper investigates cultural stereotypes of EFL learners in the culturally diverse Cameroon to examine how they mediate teaching and learning. Data collected on mixed-method basis from 83 EFL teachers and 1321 learners in Cameroon reveal a strong presence of typical cultural artifacts and stereotypes. Statistical analysis and thematic coding demonstrate that teaching procedures in place were insensitive to the cultural artifacts and stereotypes, resulting in trending tension between teachers and learners. The data equally reveal a serious contradiction between the communicative goals of language teaching and learning: what teachers held as effective teaching was diametrically opposed to success in learning. In keeping with this, the paper argues for a ‘decentred’ teacher preparation in Cameroon that is informed by systemic learners’ feedback. On this basis, applied linguistics has the urgent task of exploring dimensions of what actually counts as contextualized practice in ELT.

Keywords: cultural stereotypes, EFL, implications, procedures

Procedia PDF Downloads 129
5441 Predictive Machine Learning Model for Assessing the Impact of Untreated Teeth Grinding on Gingival Recession and Jaw Pain

Authors: Joseph Salim

Abstract:

This paper proposes the development of a supervised machine learning system to predict the consequences of untreated bruxism (teeth grinding) on gingival (gum) recession and jaw pain (most often bilateral jaw pain with possible headaches and limited ability to open the mouth). As a general dentist in a multi-specialty practice, the author has encountered many patients suffering from these issues due to uncontrolled bruxism (teeth grinding) at night. The most effective treatment for managing this problem involves wearing a nightguard during sleep and receiving therapeutic Botox injections to relax the muscles (the masseter muscle) responsible for grinding. However, some patients choose to postpone these treatments, leading to potentially irreversible and costlier consequences in the future. The proposed machine learning model aims to track patients who forgo the recommended treatments and assess the percentage of individuals who will experience worsening jaw pain, gingival (gum) recession, or both within a 3-to-5-year timeframe. By accurately predicting these outcomes, the model seeks to motivate patients to address the root cause proactively, ultimately saving time and pain while improving quality of life and avoiding much costlier treatments such as full-mouth rehabilitation to help recover the loss of vertical dimension of occlusion due to shortened clinical crowns because of bruxism, gingival grafts, etc.

Keywords: artificial intelligence, machine learning, predictive insights, bruxism, teeth grinding, therapeutic botox, nightguard, gingival recession, gum recession, jaw pain

Procedia PDF Downloads 93
5440 A Phishing Email Detection Approach Using Machine Learning Techniques

Authors: Kenneth Fon Mbah, Arash Habibi Lashkari, Ali A. Ghorbani

Abstract:

Phishing e-mails are a security issue that not only annoys online users, but has also resulted in significant financial losses for businesses. Phishing advertisements and pornographic e-mails are difficult to detect as attackers have been becoming increasingly intelligent and professional. Attackers track users and adjust their attacks based on users’ attractions and hot topics that can be extracted from community news and journals. This research focuses on deceptive Phishing attacks and their variants such as attacks through advertisements and pornographic e-mails. We propose a framework called Phishing Alerting System (PHAS) to accurately classify e-mails as Phishing, advertisements or as pornographic. PHAS has the ability to detect and alert users for all types of deceptive e-mails to help users in decision making. A well-known email dataset has been used for these experiments and based on previously extracted features, 93.11% detection accuracy is obtainable by using J48 and KNN machine learning techniques. Our proposed framework achieved approximately the same accuracy as the benchmark while using this dataset.

Keywords: phishing e-mail, phishing detection, anti phishing, alarm system, machine learning

Procedia PDF Downloads 340
5439 GA3C for Anomalous Radiation Source Detection

Authors: Chia-Yi Liu, Bo-Bin Xiao, Wen-Bin Lin, Hsiang-Ning Wu, Liang-Hsun Huang

Abstract:

In order to reduce the risk of radiation damage that personnel may suffer during operations in the radiation environment, the use of automated guided vehicles to assist or replace on-site personnel in the radiation environment has become a key technology and has become an important trend. In this paper, we demonstrate our proof of concept for autonomous self-learning radiation source searcher in an unknown environment without a map. The research uses GPU version of Asynchronous Advantage Actor-Critic network (GA3C) of deep reinforcement learning to search for radiation sources. The searcher network, based on GA3C architecture, has self-directed learned and improved how search the anomalous radiation source by training 1 million episodes under three simulation environments. In each episode of training, the radiation source position, the radiation source intensity, starting position, are all set randomly in one simulation environment. The input for searcher network is the fused data from a 2D laser scanner and a RGB-D camera as well as the value of the radiation detector. The output actions are the linear and angular velocities. The searcher network is trained in a simulation environment to accelerate the learning process. The well-performance searcher network is deployed to the real unmanned vehicle, Dashgo E2, which mounts LIDAR of YDLIDAR G4, RGB-D camera of Intel D455, and radiation detector made by Institute of Nuclear Energy Research. In the field experiment, the unmanned vehicle is enable to search out the radiation source of the 18.5MBq Na-22 by itself and avoid obstacles simultaneously without human interference.

Keywords: deep reinforcement learning, GA3C, source searching, source detection

Procedia PDF Downloads 114
5438 Design of a 4-DOF Robot Manipulator with Optimized Algorithm for Inverse Kinematics

Authors: S. Gómez, G. Sánchez, J. Zarama, M. Castañeda Ramos, J. Escoto Alcántar, J. Torres, A. Núñez, S. Santana, F. Nájera, J. A. Lopez

Abstract:

This paper shows in detail the mathematical model of direct and inverse kinematics for a robot manipulator (welding type) with four degrees of freedom. Using the D-H parameters, screw theory, numerical, geometric and interpolation methods, the theoretical and practical values of the position of robot were determined using an optimized algorithm for inverse kinematics obtaining the values of the particular joints in order to determine the virtual paths in a relatively short time.

Keywords: kinematics, degree of freedom, optimization, robot manipulator

Procedia PDF Downloads 466
5437 Clinical Feature Analysis and Prediction on Recurrence in Cervical Cancer

Authors: Ravinder Bahl, Jamini Sharma

Abstract:

The paper demonstrates analysis of the cervical cancer based on a probabilistic model. It involves technique for classification and prediction by recognizing typical and diagnostically most important test features relating to cervical cancer. The main contributions of the research include predicting the probability of recurrences in no recurrence (first time detection) cases. The combination of the conventional statistical and machine learning tools is applied for the analysis. Experimental study with real data demonstrates the feasibility and potential of the proposed approach for the said cause.

Keywords: cervical cancer, recurrence, no recurrence, probabilistic, classification, prediction, machine learning

Procedia PDF Downloads 360
5436 Gamification Teacher Professional Development: Engaging Language Learners in STEMS through Game-Based Learning

Authors: Karen Guerrero

Abstract:

Kindergarten-12th grade teachers engaged in teacher professional development (PD) on game-based learning techniques and strategies to support teaching STEMSS (STEM + Social Studies with an emphasis on geography across the curriculum) to language learners. Ten effective strategies have supported teaching content and language in tandem. To provide exiting teacher PD on summer and spring breaks, gamification has integrated these strategies to engage linguistically diverse student populations to provide informal language practice while students engage in the content. Teachers brought a STEMSS lesson to the PD, engaged in a wide variety of games (dice, cards, board, physical, digital, etc.), critiqued the games based on gaming elements, then developed, brainstormed, presented, piloted, and published their game-based STEMSS lessons to share with their colleagues. Pre and post-surveys and focus groups were conducted to demonstrate an increase in knowledge, skills, and self-efficacy in using gamification to teach content in the classroom. Provide an engaging strategy (gamification) to support teaching content and language to linguistically diverse students in the K-12 classroom. Game-based learning supports informal language practice while developing academic vocabulary utilized in the game elements/content focus, building both content knowledge through play and language development through practice. The study also investigated teacher's increase in knowledge, skills, and self-efficacy in using games to teach language learners. Mixed methods were used to investigate knowledge, skills, and self-efficacy prior to and after the gamification teacher training (pre/post) and to understand the content and application of developing and utilizing game-based learning to teach. This study will contribute to the body of knowledge in applying game-based learning theories to the K-12 classroom to support English learners in developing English skills and STEMSS content knowledge.

Keywords: gamification, teacher professional development, STEM, English learners, game-based learning

Procedia PDF Downloads 91
5435 An Investigation on Physics Teachers’ Views Towards Context Based Learning Approach

Authors: Medine Baran, Abdulkadir Maskan, Mehmet Ikbal Yetişir, Mukadder Baran, Azmi Türkan, Şeyma Yaşar

Abstract:

The purpose of this study was to determine the views of physics teachers from several secondary schools in Turkey towards context-based learning approach. In the study, the context-based learning opinion questionnaire developed by the researchers for use as the data collection tool was piloted with 250 physics teachers. The questionnaire examined by the researchers and field experts was initially made up of 53 items. Following the evaluation process of the questionnaire, it included 37 items. In this way, the reliability and validity process of the measurement tool was completed. In the end, the finalized questionnaire was applied to 144 physics teachers from several secondary schools in different cities in Turkey (F:73, M:71). In the study, the participants were determined based on ease of reaching them. The results revealed no remarkable difference between the views of the physics teachers with respect to their gender, region and school. However, when the items in the questionnaire were considered, it was found that the participants interestingly agreed on some of the choices in the items. Depending on this, it was found that there were high levels of differences between the frequencies of those who agreed and those who disagreed with the 16 items in the questionnaire. Therefore, as the following phase of the present study, further research has been planned using the same questions. Based on these questions, which received opposite responses, physics teachers will be asked for their views about the results of the study using the interview technique, one of qualitative research techniques. In this way, the results will be evaluated both by the researchers and by the participants, and the problems and difficulties will be determined. As a result, related suggestions can be put forward.

Keywords: context bases learning, physics teachers, views

Procedia PDF Downloads 373
5434 Integrated Education at Jazan University: Budding Hope for Employability

Authors: Jayanthi Rajendran

Abstract:

Experience is what makes a man perfect. Though we tend to learn many a different things in life through practice still we need to go an extra mile to gain experience which would be profitable only when it is integrated with regular practice. A clear phenomenal idea is that every teacher is a learner. The centralized idea of this paper would focus on the integrated practices carried out among the students of Jizan University which enhances learning through experiences. Integrated practices like student-directed activities, balanced curriculum, phonological based activities and use of consistent language would enlarge the vision and mission of students to earn experience through learning. Students who receive explicit instruction and guidance could practice the skills and strategies through student-directed activities such as peer tutoring and cooperative learning. The second effective practice is to use consistent language. Consistent language provides students a model for talking about the new concepts which also enables them to communicate without hindrances. Phonological awareness is an important early reading skill for all students. Students generally have phonemic awareness in their home language can often transfer that knowledge to a second language. And also a balanced curriculum requires instruction in all the elements of reading. Reading is the most effective skill when both basic and higher-order skills are included on a daily basis. Computer based reading and listening skills will empower students to understand a language in a better way. English language learners can benefit from sound reading instruction even before they are fully proficient in English as long as the instruction is comprehensible. Thus, if students have to be well equipped in learning they should foreground themselves in various integrated practices through multifarious experience for which teachers are moderators and trainers. This type of learning prepares the students for a constantly changing society which helps them to meet the competitive world around them for better employability fulfilling the vision and mission of the institution.

Keywords: consistent language, employability, phonological awareness, balanced curriculum

Procedia PDF Downloads 401
5433 Laban Movement Analysis Using Kinect

Authors: Bernstein Ran, Shafir Tal, Tsachor Rachelle, Studd Karen, Schuster Assaf

Abstract:

Laban Movement Analysis (LMA), developed in the dance community over the past seventy years, is an effective method for observing, describing, notating, and interpreting human movement to enhance communication and expression in everyday and professional life. Many applications that use motion capture data might be significantly leveraged if the Laban qualities will be recognized automatically. This paper presents an automated recognition method of Laban qualities from motion capture skeletal recordings and it is demonstrated on the output of Microsoft’s Kinect V2 sensor.

Keywords: Laban movement analysis, multitask learning, Kinect sensor, machine learning

Procedia PDF Downloads 341
5432 Bridging Healthcare Information Systems and Customer Relationship Management for Effective Pandemic Response

Authors: Sharda Kumari

Abstract:

As the Covid-19 pandemic continues to leave its mark on the global business landscape, companies have had to adapt to new realities and find ways to sustain their operations amid social distancing measures, government restrictions, and heightened public health concerns. This unprecedented situation has placed considerable stress on both employees and employers, underscoring the need for innovative approaches to manage the risks associated with Covid-19 transmission in the workplace. In response to these challenges, the pandemic has accelerated the adoption of digital technologies, with an increasing preference for remote interactions and virtual collaboration. Customer relationship management (CRM) systems have risen to prominence as a vital resource for organizations navigating the post-pandemic world, providing a range of benefits that include acquiring new customers, generating insightful consumer data, enhancing customer relationships, and growing market share. In the context of pandemic management, CRM systems offer three primary advantages: (1) integration features that streamline operations and reduce the need for multiple, costly software systems; (2) worldwide accessibility from any internet-enabled device, facilitating efficient remote workforce management during a pandemic; and (3) the capacity for rapid adaptation to changing business conditions, given that most CRM platforms boast a wide array of remotely deployable business growth solutions, a critical attribute when dealing with a dispersed workforce in a pandemic-impacted environment. These advantages highlight the pivotal role of CRM systems in helping organizations remain resilient and adaptive in the face of ongoing global challenges.

Keywords: healthcare, CRM, customer relationship management, customer experience, digital transformation, pandemic response, patient monitoring, patient management, healthcare automation, electronic health record, patient billing, healthcare information systems, remote workforce, virtual collaboration, resilience, adaptable business models, integration features, CRM in healthcare, telehealth, pandemic management

Procedia PDF Downloads 101
5431 Human Resources and Business Result: An Empirical Approach Based on RBV Theory

Authors: Xhevrie Mamaqi

Abstract:

Organization capacity learning is a process referring to the sum total of individual and collective learning through training programs, experience and experimentation, among others. Today, in-business ongoing training is one of the most important strategies for human capital development and it is crucial to sustain and improve workers’ knowledge and skills. Many organizations, firms and business are adopting a strategy of continuous learning, encouraging employees to learn new skills continually to be innovative and to try new processes and work in order to achieve a competitive advantage and superior business results. This paper uses the Resource Based View and Capacities (RBV) approach to construct a hypothetical relationships model between training and business results. The test of the model is applied on transversal data. A sample of 266 business of Spanish sector service has been selected. A Structural Equation Model (SEM) is used to estimate the relationship between ongoing training, represented by two latent dimension denominated Human and Social Capital resources and economic business results. The coefficients estimated have shown the efficient of some training aspects explaining the variation in business results.

Keywords: business results, human and social capital resources, training, RBV theory, SEM

Procedia PDF Downloads 300
5430 Review of Studies on Agility in Knowledge Management

Authors: Ferdi Sönmez, Başak Buluz

Abstract:

Agility in Knowledge Management (AKM) tries to capture agility requirements and their respective answers within the framework of knowledge and learning for organizations. Since it is rather a new construct, it is difficult to claim that it has been sufficiently discussed and analyzed in practical and theoretical realms. Like the term ‘agile learning’, it is also commonly addressed in the software development and information technology fields and across the related areas where those technologies can be applied. The organizational perspective towards AKM, seems to need some more time to become scholarly mature. Nevertheless, in the literature one can come across some implicit usages of this term occasionally. This research is aimed to explore the conceptual background of agility in KM, re-conceptualize it and extend it to business applications with a special focus on e-business.

Keywords: knowledge management, agility requirements, agility, knowledge

Procedia PDF Downloads 264
5429 3D Plant Growth Measurement System Using Deep Learning Technology

Authors: Kazuaki Shiraishi, Narumitsu Asai, Tsukasa Kitahara, Sosuke Mieno, Takaharu Kameoka

Abstract:

The purpose of this research is to facilitate productivity advances in agriculture. To accomplish this, we developed an automatic three-dimensional (3D) recording system for growth of field crops that consists of a number of inexpensive modules: a very low-cost stereo camera, a couple of ZigBee wireless modules, a Raspberry Pi single-board computer, and a third generation (3G) wireless communication module. Our system uses an inexpensive Web stereo camera in order to keep total costs low. However, inexpensive video cameras record low-resolution images that are very noisy. Accordingly, in order to resolve these problems, we adopted a deep learning method. Based on the results of extended period of time operation test conducted without the use of an external power supply, we found that by using Super-Resolution Convolutional Neural Network method, our system could achieve a balance between the competing goals of low-cost and superior performance. Our experimental results showed the effectiveness of our system.

Keywords: 3D plant data, automatic recording, stereo camera, deep learning, image processing

Procedia PDF Downloads 273
5428 Data Mining in Medicine Domain Using Decision Trees and Vector Support Machine

Authors: Djamila Benhaddouche, Abdelkader Benyettou

Abstract:

In this paper, we used data mining to extract biomedical knowledge. In general, complex biomedical data collected in studies of populations are treated by statistical methods, although they are robust, they are not sufficient in themselves to harness the potential wealth of data. For that you used in step two learning algorithms: the Decision Trees and Support Vector Machine (SVM). These supervised classification methods are used to make the diagnosis of thyroid disease. In this context, we propose to promote the study and use of symbolic data mining techniques.

Keywords: biomedical data, learning, classifier, algorithms decision tree, knowledge extraction

Procedia PDF Downloads 559
5427 A New Learning Automata-Based Algorithm to the Priority-Based Target Coverage Problem in Directional Sensor Networks

Authors: Shaharuddin Salleh, Sara Marouf, Hosein Mohammadi

Abstract:

Directional sensor networks (DSNs) have recently attracted a great deal of attention due to their extensive applications in a wide range of situations. One of the most important problems associated with DSNs is covering a set of targets in a given area and, at the same time, maximizing the network lifetime. This is due to limitation in sensing angle and battery power of the directional sensors. This problem gets more complicated by the possibility that targets may have different coverage requirements. In the present study, this problem is referred to as priority-based target coverage (PTC). As sensors are often densely deployed, organizing the sensors into several cover sets and then activating these cover sets successively is a promising solution to this problem. In this paper, we propose a learning automata-based algorithm to organize the directional sensors into several cover sets in such a way that each cover set could satisfy coverage requirements of all the targets. Several experiments are conducted to evaluate the performance of the proposed algorithm. The results demonstrated that the algorithms were able to contribute to solving the problem.

Keywords: directional sensor networks, target coverage problem, cover set formation, learning automata

Procedia PDF Downloads 414
5426 Rural School English Teacher Motivational Practice on Facilitating Student Motivation

Authors: Hsiao-Wen Hsu

Abstract:

It is generally believed that the teacher’s use of motivational strategies can enhance student motivation, especially in a place like Taiwan where teacher usually dominates student EFL learning. However, only little empirical studies support this claim. This study examined the connection between teachers’ use of motivational teaching practice and observed student motivated behavior in rural junior high schools in Taiwan. The use of motivational strategies by 12 teachers in five recognized rural junior high schools was investigated observed using a classroom observation instrument, the Motivation Orientation of Language Teaching. Meanwhile, post-lesson teacher evaluations accomplished by both the researcher and the teacher were functioning as part of the measure of teacher motivational practice. The data collected through observation scheme follows the real-time coding principle to examine observable teacher motivational practice and learner motivated behaviors. The results support the previous research findings that teachers’ use of motivational strategies is associated with the student motivated behaviors as well as the students’ level of motivation regarding English learning.

Keywords: English learning, motivational strategies, student motivation, teacher motivational practices

Procedia PDF Downloads 407
5425 Impact of the COVID-19 Pandemic and Social Isolation on the Clients’ Experiences in Counselling and their Access to Services: Perspectives of Violence Against Women Program Staff - A Qualitative Study

Authors: Habiba Nahzat, Karen Crow, Lisa Manuel, Maria Huijbregts

Abstract:

Background and Rationale: The World Health Organization (WHO) declared COVID-19 a pandemic on March 11, 2020. Shortly after, the Ontario provincial and Toronto municipal governments also released multiple directives that led to the mass closure of businesses both in the public and private sectors. Recent research has identified connections between Intimate Partner Violence (IPV) and COVID-19 related stressors - especially because of lockdown and social isolation measures. Psychological impacts of lengthy seclusion coupled with disconnection from extended family and diminished support services can take a toll on families at risk and may increase mental health issues and the prevalence of IPV. Research Question: Thus, the purpose of the study was to understand the perspective of the Violence Against Women (VAW) program staff on the impact of the COVID-19 pandemic; we especially wanted to understand staff views of restrictions on clients’ counseling experiences and the ability to access services in general. The study also aimed to examine VAW program staff experiences regarding remote work and explore how the pandemic restriction measures affected the ability of their program operations to support their clients and each other. Method: A cross-sectional, descriptive qualitative study was conducted with a purposive sample of 9 VAW program staff – eight VAW counselors and one VAW manager. Prior to data collection, program staff collaborated in the development of the study purpose, interview questions and methodology. Ethics approval was obtained from the sponsoring organization’s Research Ethics Board. In-depth individual interviews were conducted with study participants using a semi-structured interview questionnaire. Brief demographic information was also collected prior to the interview. Descriptive statistics were used to analyze quantitative data and qualitative data was analyzed by thematic content analysis. Results: Findings from this study indicate that the COVID-19 pandemic restrictions had an adverse impact on clients seeking VAW services based on VAW staff perspectives. Program staff reported a perceived increase in abuse among women, especially in emotional and financial abuse and experiences of isolation and trauma. Findings further highlight the challenges women experienced when trying to access services in general as well as counseling and legal services. This was perceived to be more prominent among newcomers and marginalized women. The study also revealed client and staff challenges when participating in virtual counseling, their innovations and clients’ creativity in accessing needed counseling and how staff over time adapted to providing virtual support during the pandemic. Conclusion and Next Steps: This study builds upon existing evidence on the impact of COVID-19 restrictions on VAW and may inform future research to better understand the association between the COVID-19 pandemic restrictions and VAW on a broader scale and to inform and support possible short-term and long-term changes in the client experience and counselling practice.

Keywords: COVID-19, pandemic, virtual, violence against women (VAW)

Procedia PDF Downloads 189
5424 The Role of Electronic Banking Technology in the Modernization of Algerian Banking System

Authors: Azzi Mohammed Amin

Abstract:

In the last decade Algeria has investigated in a scale of economic reforms including different areas, among these; reforms in the banking system. This was mainly through the implementation of some regulations that facilitate the shift to market economy and guarantee integration into global economy. The most important new ideas that have emerged in this area are perhaps to find a possibility of integrating the so called e-banking. Based on what has already been stated, we will try in this study to highlight the significant role of electronic banking services as novel trends in the modernization and development of Algerian banks.

Keywords: banking technology, Internet banks, modernization of banks, virtual banks

Procedia PDF Downloads 439
5423 Simple Ways to Enhance the Security of Web Services

Authors: Majid Azarniush, Soroush Mokallaei

Abstract:

Although robust security software, including anti-viruses, anti spy wares, anti-spam and firewalls, are amalgamated with new technologies such as Safe Zone, Hybrid Cloud, Sand Box etc., and it can be said that they have managed to prepare highest level of security against viruses, spy wares and other malwares in 2012, but in fact hackers' attacks to websites are increasingly becoming more and more complicated. Because of security matters and developments, it can be said that it was expected to happen so. Here in this work, we try to point out to some functional and vital notes to enhance security on the web enabling the user to browse safely in no limit web world and to use virtual space securely.

Keywords: firewalls, security, web services, software

Procedia PDF Downloads 512
5422 Teachers' Design and Implementation of Collaborative Learning Tasks in Higher Education

Authors: Bing Xu, Kerry Lee, Jason M. Stephen

Abstract:

Collaborative learning (CL) has been regarded as a way to facilitate students to gain knowledge and improve social skills. In China, lecturers in higher education institutions have commonly adopted CL in their daily practice. However, such a strategy could not be effective when it is designed and applied in an inappropriate way. Previous research hardly focused on how CL was applied in Chinese universities. This present study aims to gain a deep understanding of how Chinese lecturers design and implement CL tasks. The researchers interviewed ten lecturers from different faculties in various universities in China and usedGroup Learning Activity Instructional Design (GLAID) framework to analyse the data. We found that not all lecturers pay enough attention to eight essential components (proposed by GLAID) when they designed CL tasks, especially the components of Structure and Guidance. Meanwhile, only a small part of lecturers made formative assessment to help students improve learning. We also discuss the strengths and limitations and CL design and further provide suggestions to the lecturers who intend to use CL in class. Research Objectives: The aims of the present research are threefold. We intend to 1) gain a deep understanding of how Chinese lecturers design and implement collaborative learning (CL) tasks, 2) find strengths and limitations of CL design in higher education, and 3) give suggestions about how to improve the design and implement. Research Methods: This research adopted qualitative methods. We applied the semi-structured interview method to interview ten Chinese lecturers about how they designed and implemented CL tasks in their courses. There were 9 questions in the interview protocol focusing on eight components of GLAID. Then, underpinning the GLAID framework, we utilized the coding reliability thematic analysis method to analyse the research data. The coding work was done by two PhD students whose research fields are CL, and the Cohen’s Kappa was 0.772 showing the inter-coder reliability was good. Contribution: Though CL has been commonly adopted in China, few studies have paid attention to the details about how lecturers designed and implemented CL tasks in practice. This research addressed such a gap and found not lecturers were aware of how to design CL and felt it difficult to structure the task and guide the students on collaboration, and further ensure student engagement in CL. In summary, this research advocates for teacher training; otherwise, students may not gain the expected learning outcomes.

Keywords: collaborative learning, higher education, task design, GLAID framework

Procedia PDF Downloads 99
5421 Virtual Approach to Simulating Geotechnical Problems under Both Static and Dynamic Conditions

Authors: Varvara Roubtsova, Mohamed Chekired

Abstract:

Recent studies on the numerical simulation of geotechnical problems show the importance of considering the soil micro-structure. At this scale, soil is a discrete particle medium where the particles can interact with each other and with water flow under external forces, structure loads or natural events. This paper presents research conducted in a virtual laboratory named SiGran, developed at IREQ (Institut de recherche d’Hydro-Quebec) for the purpose of investigating a broad range of problems encountered in geotechnics. Using Discrete Element Method (DEM), SiGran simulated granular materials directly by applying Newton’s laws to each particle. The water flow was simulated by using Marker and Cell method (MAC) to solve the full form of Navier-Stokes’s equation for non-compressible viscous liquid. In this paper, examples of numerical simulation and their comparisons with real experiments have been selected to show the complexity of geotechnical research at the micro level. These examples describe transient flows into a porous medium, interaction of particles in a viscous flow, compacting of saturated and unsaturated soils and the phenomenon of liquefaction under seismic load. They also provide an opportunity to present SiGran’s capacity to compute the distribution and evolution of energy by type (particle kinetic energy, particle internal elastic energy, energy dissipated by friction or as a result of viscous interaction into flow, and so on). This work also includes the first attempts to apply micro discrete results on a macro continuum level where the Smoothed Particle Hydrodynamics (SPH) method was used to resolve the system of governing equations. The material behavior equation is based on the results of simulations carried out at a micro level. The possibility of combining three methods (DEM, MAC and SPH) is discussed.

Keywords: discrete element method, marker and cell method, numerical simulation, multi-scale simulations, smoothed particle hydrodynamics

Procedia PDF Downloads 302