Search results for: type classification
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8682

Search results for: type classification

6042 Profit-Based Artificial Neural Network (ANN) Trained by Migrating Birds Optimization: A Case Study in Credit Card Fraud Detection

Authors: Ashkan Zakaryazad, Ekrem Duman

Abstract:

A typical classification technique ranks the instances in a data set according to the likelihood of belonging to one (positive) class. A credit card (CC) fraud detection model ranks the transactions in terms of probability of being fraud. In fact, this approach is often criticized, because firms do not care about fraud probability but about the profitability or costliness of detecting a fraudulent transaction. The key contribution in this study is to focus on the profit maximization in the model building step. The artificial neural network proposed in this study works based on profit maximization instead of minimizing the error of prediction. Moreover, some studies have shown that the back propagation algorithm, similar to other gradient–based algorithms, usually gets trapped in local optima and swarm-based algorithms are more successful in this respect. In this study, we train our profit maximization ANN using the Migrating Birds optimization (MBO) which is introduced to literature recently.

Keywords: neural network, profit-based neural network, sum of squared errors (SSE), MBO, gradient descent

Procedia PDF Downloads 475
6041 The Prevalence of Organized Retail Crime in Riyadh, Saudi Arabia

Authors: Saleh Dabil

Abstract:

This study investigates the level of existence of organized retail crime in supermarkets of Riyadh, Saudi Arabia. The store managers, security managers and general employees were asked about the types of retail crimes occur in the stores. Three independent variables were related to the report of organized retail theft. The independent variables are: (1) the supermarket profile (volume, location, standard and type of the store), (2) the social physical environment of the store (maintenance, cleanness and overall organizational cooperation), (3) the security techniques and loss prevention electronics techniques used. The theoretical framework of this study based on the social disorganization theory. This study concluded that the organized retail theft, in specific, organized theft is moderately apparent in Riyadh stores. The general result showed that the environment of the stores has an effect on the prevalence of organized retail theft with relation to the gender of thieves, age groups, working shift, type of stolen items as well as the number of thieves in one case. Among other reasons, some factors of the organized theft are: economic pressure of customers based on the location of the store. The dealing of theft also was investigated to have a clear picture of stores dealing with organized retail theft. The result showed that mostly, thieves sent without any action and sometimes given written warning. Very few cases dealt with by police. There are other factors in the study can be looked up in the text. This study suggests solving the problem of organized theft; first is ‘the well distributing of the duties and responsibilities between the employees especially for security purposes’. Second is ‘installation of strong security system’ and ‘making well-designed store layout’. Third is ‘giving training for general employees’ and ‘to give periodically security skills training of employees’. There are other suggestions in the study can be looked up in the text.

Keywords: organized crime, retail, theft, loss prevention, store environment

Procedia PDF Downloads 196
6040 Instability Index Method and Logistic Regression to Assess Landslide Susceptibility in County Route 89, Taiwan

Authors: Y. H. Wu, Ji-Yuan Lin, Yu-Ming Liou

Abstract:

This study aims to set up the landslide susceptibility map of County Route 89 at Ren-Ai Township in Nantou County using the Instability Index Method and Logistic regression. Seven susceptibility factors including Slope Angle, Aspect, Elevation, Distance to fold, Distance to River, Distance to Road and Accumulated Rainfall were obtained by GIS based on the Typhoon Toraji landslide area identified by Industrial Technology Research Institute in 2001. To calculate the landslide percentage of each factor and acquire the weight and grade the grid by means of Instability Index Method. In this study, landslide susceptibility can be classified into four grades: high, medium high, medium low and low, in order to determine the advantages and disadvantages of the two models. The precision of this model is verified by classification error matrix and SRC curve. These results suggest that the logistic regression model is a preferred method than instability index in the assessment of landslide susceptibility. It is suitable for the landslide prediction and precaution in this area in the future.

Keywords: instability index method, logistic regression, landslide susceptibility, SRC curve

Procedia PDF Downloads 292
6039 Non-melanoma Nasal Skin Cancer: Literature Review

Authors: Geovanna dos Santos Romeiro, Polintia Rayza Brito da Silva, Luis Henrique Moura, Izadora Moreira Do Amaral, Marília Vitória Pinto Milhomem

Abstract:

Introduction: The nose is one of the most likely sites for the appearance of malignancy on the face. This can be associated with its unique position of exposure to environmental damage, lack of photoprotection and because it is an area susceptible to greater sun exposure. It is already known that the most common type of nasal tumor is basal cell carcinoma. Squamous cell carcinoma is less common but considerably more aggressive, with a tendency to grow rapidly and metastasize. Nasal skin cancer can have a good prognosis, regardless of the type of treatment chosen, i.e., surgery, radiotherapy or electrodissection. However, tumors that are not diagnosed and treated quickly can be harmful and have a greater chance of metastasizing. When curative surgery is performed, therapies and reconstructive surgical procedures are usually required. Objective: The objective is to review the literature on nasal skin tumors and their types and specific locations. Forty-four articles published in Pubmed related to the location of skin cancer in the specific nasal areas region were analyzed. Twelve were excluded for being prior to the year 2000, three with inconclusive results, and one with unbiased conclusions. Results and Conclusion: Regarding the prevalence of types of nasal tumors, basal cell carcinoma comprises the majority, occurring predominantly in the ala, tip and root; squamous cell carcinoma, on the other hand, is more common in the lateral borders and columella. Even so, 2 articles report that the prevalence of metastasis has a higher incidence in squamous cell carcinomas. All of this points to the importance of early location, including regions that are often overlooked in the examination if the patient is wearing glasses. This topic needs further investigation for a greater correlation between anatomy and clinical-surgical implications.

Keywords: skin cancer, melanoma, non-melanoma, surgery

Procedia PDF Downloads 52
6038 Syllogistic Reasoning with 108 Inference Rules While Case Quantities Change

Authors: Mikhail Zarechnev, Bora I. Kumova

Abstract:

A syllogism is a deductive inference scheme used to derive a conclusion from a set of premises. In a categorical syllogisms, there are only two premises and every premise and conclusion is given in form of a quantified relationship between two objects. The different order of objects in premises give classification known as figures. We have shown that the ordered combinations of 3 generalized quantifiers with certain figure provide in total of 108 syllogistic moods which can be considered as different inference rules. The classical syllogistic system allows to model human thought and reasoning with syllogistic structures always attracted the attention of cognitive scientists. Since automated reasoning is considered as part of learning subsystem of AI agents, syllogistic system can be applied for this approach. Another application of syllogistic system is related to inference mechanisms on the Semantic Web applications. In this paper we proposed the mathematical model and algorithm for syllogistic reasoning. Also the model of iterative syllogistic reasoning in case of continuous flows of incoming data based on case–based reasoning and possible applications of proposed system were discussed.

Keywords: categorical syllogism, case-based reasoning, cognitive architecture, inference on the semantic web, syllogistic reasoning

Procedia PDF Downloads 411
6037 Sentiment Analysis: An Enhancement of Ontological-Based Features Extraction Techniques and Word Equations

Authors: Mohd Ridzwan Yaakub, Muhammad Iqbal Abu Latiffi

Abstract:

Online business has become popular recently due to the massive amount of information and medium available on the Internet. This has resulted in the huge number of reviews where the consumers share their opinion, criticisms, and satisfaction on the products they have purchased on the websites or the social media such as Facebook and Twitter. However, to analyze customer’s behavior has become very important for organizations to find new market trends and insights. The reviews from the websites or the social media are in structured and unstructured data that need a sentiment analysis approach in analyzing customer’s review. In this article, techniques used in will be defined. Definition of the ontology and description of its possible usage in sentiment analysis will be defined. It will lead to empirical research that related to mobile phones used in research and the ontology used in the experiment. The researcher also will explore the role of preprocessing data and feature selection methodology. As the result, ontology-based approach in sentiment analysis can help in achieving high accuracy for the classification task.

Keywords: feature selection, ontology, opinion, preprocessing data, sentiment analysis

Procedia PDF Downloads 200
6036 Impact of Implementation of 5S and TPM in Industrial Organizations: A Review

Authors: Jamal Ahmed Hama Kareem, Noraini Abu Talib

Abstract:

The purpose of this paper is to explore the literature on 5S and Total Productive Maintenance (TPM) and the benefits that are to be derived from their implementation. It also seeks to highlight the main phases for implementing both the 5S and the TPM successfully, along with highlighting aspects that are needed for successful implementation of these two techniques simultaneously in the contemporary manufacturing scenario. The literature on classification of 5S and TPM has so far been very limited. The paper reviews a large number of papers in this field and presents the overview of several of implementation practices of 5S and TPM, and the benefits that can be achieved by the implementation of 5S and TPM as a one system by industrial organizations globally. The paper systematically categorizes the published literature and reveals important issues that influence the successful implementation of 5S and TPM in organizations to improve production effectiveness for competitiveness. Further, the paper also highlights various phases suggested by researchers and practitioners, which ensure smooth and effective implementation of the 5S and TPM in industrial organizations. In the end, study puts forth propositions based on the model of the study after extensive review of literature. The paper will be useful to researchers, maintenance professionals and other concerned officials with improving the performance of production processes effectiveness in industrial organizations.

Keywords: 5S, Total Productive Maintenance (TPM), phases of implementation of 5S and TPM, industrial organizations

Procedia PDF Downloads 617
6035 Upcoming Fight Simulation with Smart Shadow

Authors: Ramiz Kuliev, Fuad Kuliev-Smirnov

Abstract:

The 'Shadow Sparring' training exercise is widely used in the training of boxers and martial artists. The main disadvantage of the usual shadow sparring is that the trainer cannot fully control such training and evaluate its results. During the competition, the athlete, preparing for the upcoming fight, imagines the Shadow (upcoming opponent) in accordance with his own imagination. A ‘Smart-Shadow Sparring’ (SSS) is an innovative version of the ‘Shadow Sparring’. During SSS, the fighter will see the Shadow (virtual opponent that moves, defends, and punches) and understand when he misses the punches from the Shadow. The task of a real athlete is to spar with a virtual one, move around, punch in the direction of unprotected areas of the Shadow and dodge his punches. Moves and punches of Shadow are set up before each training. The system will give the coach full information about virtual sparring: (i) how many and what type of punches has the fighter landed, (ii) accuracy of these punches, (iii) how many and what type of virtual punches (punches of Smart-Shadow) has the fighter missed, etc. SSS will be recorded as animated fighting of two fighters and will help the coach to analyze past training. SSS can be configured to fit the physical and technical characteristics of the next real opponent (size, techniques, speed, missed and landed punches, etc.). This will allow to simulate and rehearse the upcoming fight and improve readiness for the next opponent. For amateur fighters, SSS will be reconfigured several times during a tournament, when the real opponent becomes known. SSS can be used in three versions: (1) Digital Shadow: the athlete will see a Shadow on a monitor (2) VR-Shadow: the athlete will see a Shadow in a VR-glasses (3) Smart Shadow: a Shadow will be controlled by artificial intelligence. These technologies are based on the ‘semi-real simulation’ method. The technology allows coaches to train athletes remotely. Simulation of different opponents will help the athletes better prepare for competition. Repeat rehearsals of the upcoming fight will help improve results. SSS can improve results in Boxing, Taekwondo, Karate, and Fencing. 41 sets of medals will be awarded in these sports at the 2020 Olympic Games.

Keywords: boxing, combat sports, fight simulation, shadow sparring

Procedia PDF Downloads 132
6034 Self-Supervised Pretraining on Sequences of Functional Magnetic Resonance Imaging Data for Transfer Learning to Brain Decoding Tasks

Authors: Sean Paulsen, Michael Casey

Abstract:

In this work we present a self-supervised pretraining framework for transformers on functional Magnetic Resonance Imaging (fMRI) data. First, we pretrain our architecture on two self-supervised tasks simultaneously to teach the model a general understanding of the temporal and spatial dynamics of human auditory cortex during music listening. Our pretraining results are the first to suggest a synergistic effect of multitask training on fMRI data. Second, we finetune the pretrained models and train additional fresh models on a supervised fMRI classification task. We observe significantly improved accuracy on held-out runs with the finetuned models, which demonstrates the ability of our pretraining tasks to facilitate transfer learning. This work contributes to the growing body of literature on transformer architectures for pretraining and transfer learning with fMRI data, and serves as a proof of concept for our pretraining tasks and multitask pretraining on fMRI data.

Keywords: transfer learning, fMRI, self-supervised, brain decoding, transformer, multitask training

Procedia PDF Downloads 90
6033 A Qualitative Description of the Dynamics in the Interactions between Three Populations: Pollinators, Plants, and Herbivores

Authors: Miriam Sosa-Díaz, Faustino Sánchez-Garduño

Abstract:

In population dynamics the study of both, the abundance and the spatial distribution of the populations in a given habitat, is a fundamental issue a From ecological point of view, the determination of the factors influencing such changes involves important problems. In this paper a mathematical model to describe the temporal dynamic and the spatiotemporal dynamic of the interaction of three populations (pollinators, plants and herbivores) is presented. The study we present is carried out by stages: 1. The temporal dynamics and 2. The spatio-temporal dynamics. In turn, each of these stages is developed by considering three cases which correspond to the dynamics of each type of interaction. For instance, for stage 1, we consider three ODE nonlinear systems describing the pollinator-plant, plant-herbivore and plant-pollinator-herbivore, interactions, respectively. In each of these systems different types of dynamical behaviors are reported. Namely, transcritical and pitchfork bifurcations, existence of a limit cycle, existence of a heteroclinic orbit, etc. For the spatiotemporal dynamics of the two mathematical models a novel factor are introduced. This consists in considering that both, the pollinators and the herbivores, move towards those places of the habitat where the plant population density is high. In mathematical terms, this means that the diffusive part of the pollinators and herbivores equations depend on the plant population density. The analysis of this part is presented by considering pairs of populations, i. e., the pollinator-plant and plant-herbivore interactions and at the end the two mathematical model is presented, these models consist of two coupled nonlinear partial differential equations of reaction-diffusion type. These are defined on a rectangular domain with the homogeneous Neumann boundary conditions. We focused in the role played by the density dependent diffusion term into the coexistence of the populations. For both, the temporal and spatio-temporal dynamics, a several of numerical simulations are included.

Keywords: bifurcation, heteroclinic orbits, steady state, traveling wave

Procedia PDF Downloads 298
6032 Correlation of Clinical and Sonographic Findings with Cytohistology for Diagnosis of Ovarian Tumours

Authors: Meenakshi Barsaul Chauhan, Aastha Chauhan, Shilpa Hurmade, Rajeev Sen, Jyotsna Sen, Monika Dalal

Abstract:

Introduction: Ovarian masses are common forms of neoplasm in women and represent 2/3rd of gynaecological malignancies. A pre-operative suggestion of malignancy can guide the gynecologist to refer women with suspected pelvic mass to a gynecological oncologist for appropriate therapy and optimized treatment, which can improve survival. In the younger age group preoperative differentiation into benign or malignant pathology can decide for conservative or radical surgery. Imaging modalities have a definite role in establishing the diagnosis. By using International Ovarian Tumor Analysis (IOTA) classification with sonography, costly radiological methods like Magnetic Resonance Imaging (MRI) / computed tomography (CT) scan can be reduced, especially in developing countries like India. Thus, this study is being undertaken to evaluate the role of clinical methods and sonography for diagnosis of the nature of the ovarian tumor. Material And Methods: This prospective observational study was conducted on 40 patients presenting with ovarian masses, in the Department of Obstetrics and Gynaecology, at a tertiary care center in northern India. Functional cysts were excluded. Ultrasonography and color Doppler were performed on all the cases.IOTA rules were applied, which take into account locularity, size, presence of solid components, acoustic shadow, dopper flow etc . Magnetic Resonance Imaging (MRI) / computed tomography (CT) scans abdomen and pelvis were done in cases where sonography was inconclusive. In inoperable cases, Fine needle aspiration cytology (FNAC) was done. The histopathology report after surgery and cytology report after FNAC was correlated statistically with the pre-operative diagnosis made clinically and sonographically using IOTA rules. Statistical Analysis: Descriptive measures were analyzed by using mean and standard deviation and the Student t-test was applied and the proportion was analyzed by applying the chi-square test. Inferential measures were analyzed by sensitivity, specificity, negative predictive value, and positive predictive value. Results: Provisional diagnosis of the benign tumor was made in 16(42.5%) and of the malignant tumor was made in 24(57.5%) patients on the basis of clinical findings. With IOTA simple rules on sonography, 15(37.5%) were found to be benign, while 23 (57.5%) were found to be malignant and findings were inconclusive in 2 patients (5%). FNAC/Histopathology reported that benign ovarian tumors were 14 (35%) and 26(65%) were malignant, which was taken as the gold standard. The clinical finding alone was found to have a sensitivity of 66.6% and a specificity of 90.9%. USG alone had a sensitivity of 86% and a specificity of 80%. When clinical findings and IOTA simple rules of sonography were combined (excluding inconclusive masses), the sensitivity and specificity were 83.3% and 92.3%, respectively. While including inconclusive masses, sensitivity came out to be 91.6% and specificity was 89.2. Conclusion: IOTA's simple sonography rules are highly sensitive and specific in the prediction of ovarian malignancy and also easy to use and easily reproducible. Thus, combining clinical examination with USG will help in the better management of patients in terms of time, cost and better prognosis. This will also avoid the need for costlier modalities like CT, and MRI.

Keywords: benign, international ovarian tumor analysis classification, malignant, ovarian tumours, sonography

Procedia PDF Downloads 80
6031 Occupational Safety in Construction Projects

Authors: Heba Elbibas, Esra Gnijeewa, Zedan Hatush

Abstract:

This paper presents research on occupational safety in construction projects, where the importance of safety management in projects was studied, including the preparation of a safety plan and program for each project and the identification of the responsibilities of each party to the contract. The research consists of two parts: 1-Field visits: which were field visits to three construction projects, including building projects, road projects, and tower installation. The safety level of these projects was evaluated through a checklist that includes the most important safety elements in terms of the application of these items in the projects. 2-Preparation of a questionnaire: which included supervisors and engineers and aimed to determine the level of awareness and commitment of different project categories to safety standards. The results showed the following: i) There is a moderate occupational safety policy. ii) The preparation and storage of maintenance reports are not fully complied with. iii) There is a moderate level of training on occupational safety for project workers. iv) The company does not impose penalties on safety violators permanently. v) There is a moderate policy for equipment and machinery safety. vi) Self-injuries occur due to (fatigue, lack of attention, deliberate error, and emotional factors), with a rate of 82.4%.

Keywords: management, safety, occupational safety, classification

Procedia PDF Downloads 106
6030 Feature-Based Summarizing and Ranking from Customer Reviews

Authors: Dim En Nyaung, Thin Lai Lai Thein

Abstract:

Due to the rapid increase of Internet, web opinion sources dynamically emerge which is useful for both potential customers and product manufacturers for prediction and decision purposes. These are the user generated contents written in natural languages and are unstructured-free-texts scheme. Therefore, opinion mining techniques become popular to automatically process customer reviews for extracting product features and user opinions expressed over them. Since customer reviews may contain both opinionated and factual sentences, a supervised machine learning technique applies for subjectivity classification to improve the mining performance. In this paper, we dedicate our work is the task of opinion summarization. Therefore, product feature and opinion extraction is critical to opinion summarization, because its effectiveness significantly affects the identification of semantic relationships. The polarity and numeric score of all the features are determined by Senti-WordNet Lexicon. The problem of opinion summarization refers how to relate the opinion words with respect to a certain feature. Probabilistic based model of supervised learning will improve the result that is more flexible and effective.

Keywords: opinion mining, opinion summarization, sentiment analysis, text mining

Procedia PDF Downloads 332
6029 Chinese Sentence Level Lip Recognition

Authors: Peng Wang, Tigang Jiang

Abstract:

The computer based lip reading method of different languages cannot be universal. At present, for the research of Chinese lip reading, whether the work on data sets or recognition algorithms, is far from mature. In this paper, we study the Chinese lipreading method based on machine learning, and propose a Chinese Sentence-level lip-reading network (CNLipNet) model which consists of spatio-temporal convolutional neural network(CNN), recurrent neural network(RNN) and Connectionist Temporal Classification (CTC) loss function. This model can map variable-length sequence of video frames to Chinese Pinyin sequence and is trained end-to-end. More over, We create CNLRS, a Chinese Lipreading Dataset, which contains 5948 samples and can be shared through github. The evaluation of CNLipNet on this dataset yielded a 41% word correct rate and a 70.6% character correct rate. This evaluation result is far superior to the professional human lip readers, indicating that CNLipNet performs well in lipreading.

Keywords: lipreading, machine learning, spatio-temporal, convolutional neural network, recurrent neural network

Procedia PDF Downloads 128
6028 A New Technology for Metformin Hydrochloride Mucoadhesive Microparticles Preparation Utilizing BÜCHI Nano-Spray Dryer B-90

Authors: Tamer M. Shehata

Abstract:

Objective: Currently, mucoadhesive microparticles acquired a high interest in both research and pharmaceutical technology fields. Recently, BÜCHI lunched its latest fourth generation nano spray dryer B-90 used for nanoparticle production. B-90 offers an elegant technology combined particle engineering and drying in one step. In our laboratory, we successfully developed a new formulation for metformin hydrochloride, mucoadhesive microparticles utilizing B-90 technology for treatment of type 2-diabetis. Method: Gelatin or sodium alginate, natural occurring polymers with mucoadhesive properties, solely or in combination was used in our formulation trials. Preformulation studies (atomization head mesh size, flow rate, head temperature, polymer solution viscosity and surface tension) and postformulation characters (particle size, flowability, surface scan and dissolution profile) were evaluated. Finally, hypoglycemic effect of the selected formula was evaluated in streptozotocin-induced diabetic rats. Spray head with 7 µm hole, flow rate of 3.5 mL/min and head temperature 120 ºC were selected. Polymer viscosity was less than 11.5 cP with surface tension less than 70.1 dyne/cm. Result: Discrete, non aggregated particles and free flowing powders with particle size was less than 2000 nm were obtained. Gelatin and sodium alginate combination in ratio 1:3 were successfully sustained the in vitro release profile of the drug. Hypoglycemic evaluation of the previous formula, showed a significant reduction of blood glucose level over 24 h. Conclusion: B-90 technology can open a new era of , mucoadhesive microparticles preparation offering convenient dosage form that can enhance compliance of type 2 diabetic patients.

Keywords: mucoadhesive, microparticles, technology, diabetis

Procedia PDF Downloads 294
6027 Machine Learning Based Gender Identification of Authors of Entry Programs

Authors: Go Woon Kwak, Siyoung Jun, Soyun Maeng, Haeyoung Lee

Abstract:

Entry is an education platform used in South Korea, created to help students learn to program, in which they can learn to code while playing. Using the online version of the entry, teachers can easily assign programming homework to the student and the students can make programs simply by linking programming blocks. However, the programs may be made by others, so that the authors of the programs should be identified. In this paper, as the first step toward author identification of entry programs, we present an artificial neural network based classification approach to identify genders of authors of a program written in an entry. A neural network has been trained from labeled training data that we have collected. Our result in progress, although preliminary, shows that the proposed approach could be feasible to be applied to the online version of entry for gender identification of authors. As future work, we will first use a machine learning technique for age identification of entry programs, which would be the second step toward the author identification.

Keywords: artificial intelligence, author identification, deep neural network, gender identification, machine learning

Procedia PDF Downloads 324
6026 Fast and Accurate Model to Detect Ictal Waveforms in Electroencephalogram Signals

Authors: Piyush Swami, Bijaya Ketan Panigrahi, Sneh Anand, Manvir Bhatia, Tapan Gandhi

Abstract:

Visual inspection of electroencephalogram (EEG) signals to detect epileptic signals is very challenging and time-consuming task even for any expert neurophysiologist. This problem is most challenging in under-developed and developing countries due to shortage of skilled neurophysiologists. In the past, notable research efforts have gone in trying to automate the seizure detection process. However, due to high false alarm detections and complexity of the models developed so far, have vastly delimited their practical implementation. In this paper, we present a novel scheme for epileptic seizure detection using empirical mode decomposition technique. The intrinsic mode functions obtained were then used to calculate the standard deviations. This was followed by probability density based classifier to discriminate between non-ictal and ictal patterns in EEG signals. The model presented here demonstrated very high classification rates ( > 97%) without compromising the statistical performance. The computation timings for each testing phase were also very low ( < 0.029 s) which makes this model ideal for practical applications.

Keywords: electroencephalogram (EEG), epilepsy, ictal patterns, empirical mode decomposition

Procedia PDF Downloads 406
6025 Whole Exome Sequencing Data Analysis of Rare Diseases: Non-Coding Variants and Copy Number Variations

Authors: S. Fahiminiya, J. Nadaf, F. Rauch, L. Jerome-Majewska, J. Majewski

Abstract:

Background: Sequencing of protein coding regions of human genome (Whole Exome Sequencing; WES), has demonstrated a great success in the identification of causal mutations for several rare genetic disorders in human. Generally, most of WES studies have focused on rare variants in coding exons and splicing-sites where missense substitutions lead to the alternation of protein product. Although focusing on this category of variants has revealed the mystery behind many inherited genetic diseases in recent years, a subset of them remained still inconclusive. Here, we present the result of our WES studies where analyzing only rare variants in coding regions was not conclusive but further investigation revealed the involvement of non-coding variants and copy number variations (CNV) in etiology of the diseases. Methods: Whole exome sequencing was performed using our standard protocols at Genome Quebec Innovation Center, Montreal, Canada. All bioinformatics analyses were done using in-house WES pipeline. Results: To date, we successfully identified several disease causing mutations within gene coding regions (e.g. SCARF2: Van den Ende-Gupta syndrome and SNAP29: 22q11.2 deletion syndrome) by using WES. In addition, we showed that variants in non-coding regions and CNV have also important value and should not be ignored and/or filtered out along the way of bioinformatics analysis on WES data. For instance, in patients with osteogenesis imperfecta type V and in patients with glucocorticoid deficiency, we identified variants in 5'UTR, resulting in the production of longer or truncating non-functional proteins. Furthermore, CNVs were identified as the main cause of the diseases in patients with metaphyseal dysplasia with maxillary hypoplasia and brachydactyly and in patients with osteogenesis imperfecta type VII. Conclusions: Our study highlights the importance of considering non-coding variants and CNVs during interpretation of WES data, as they can be the only cause of disease under investigation.

Keywords: whole exome sequencing data, non-coding variants, copy number variations, rare diseases

Procedia PDF Downloads 419
6024 Variability of Energy Efficiency with the Application of Technologies Embedded in Locomotives of a Heavy Haul Railway: Case Study of Vitoria Minas Railway, Brazil

Authors: Eric Wilson Santos Cabral, Marta Monteiro Da Costa Cruz, Rodrigo Pirola Pestana, Vivian Andréa Parreira

Abstract:

In the transportation sector in Brazil, there is a great challenge that is the maintenance of profit in the face of the great variation in the price of diesel. This directly affects the variable cost of transport companies. Within the railways, part of the great challenges is to overcome the annual budget, cargo and ore transported, thus reducing costs compared to previous years, becoming more efficient each year. Within this scenario, the railway companies are looking for effective measures, aiming at reducing the ratio of liter of diesel consumed by KTKB (Kilometer Gross Ton multiplied by thousand). This ratio represents the indicator of energy efficiency of some railroads in Brazil and in other countries. In this study, we sought to analyze the behavior of the energy efficiency indicator on two parts: The first, with the application of technologies used in locomotives, such as the start-stop system of the diesel engine and the system of tracking and monitoring of fuel. The second, evaluation of the behavior of the variation of the type of cargo transported (loading mix). The study focused on locomotive technology will be carried out using statistical analysis, behavioral evaluation in different operating conditions, such as maneuvers for trains, service trains and freight trains. The analysis will also cover the evaluation of the loading mix made using statistical analysis of the existing railroad database, comparing the energy efficiency per loading mine and type of product. With the completion of this study, the railway undertakings should be able to better target decision-making in order to achieve substantial reductions in transport costs.

Keywords: railway transport, energy efficiency, railway technology, fuel consumption

Procedia PDF Downloads 304
6023 Frequent Itemset Mining Using Rough-Sets

Authors: Usman Qamar, Younus Javed

Abstract:

Frequent pattern mining is the process of finding a pattern (a set of items, subsequences, substructures, etc.) that occurs frequently in a data set. It was proposed in the context of frequent itemsets and association rule mining. Frequent pattern mining is used to find inherent regularities in data. What products were often purchased together? Its applications include basket data analysis, cross-marketing, catalog design, sale campaign analysis, Web log (click stream) analysis, and DNA sequence analysis. However, one of the bottlenecks of frequent itemset mining is that as the data increase the amount of time and resources required to mining the data increases at an exponential rate. In this investigation a new algorithm is proposed which can be uses as a pre-processor for frequent itemset mining. FASTER (FeAture SelecTion using Entropy and Rough sets) is a hybrid pre-processor algorithm which utilizes entropy and rough-sets to carry out record reduction and feature (attribute) selection respectively. FASTER for frequent itemset mining can produce a speed up of 3.1 times when compared to original algorithm while maintaining an accuracy of 71%.

Keywords: rough-sets, classification, feature selection, entropy, outliers, frequent itemset mining

Procedia PDF Downloads 437
6022 Testing of Infill Walls with Joint Reinforcement Subjected to in Plane Lateral Load

Authors: J. Martin Leal-Graciano, Juan J. Pérez-Gavilán, A. Reyes-Salazar, J. H. Castorena, J. L. Rivera-Salas

Abstract:

The experimental results about the global behavior of twelve 1:2 scaled reinforced concrete frame subject to in-plane lateral load are presented. The main objective was to generate experimental evidence about the use of steel bars within mortar bed-joints as shear reinforcement in infill walls. Similar to the Canadian and New Zealand standards, the Mexican code includes specifications for this type of reinforcement. However, these specifications were obtained through experimental studies of load-bearing walls, mainly confined walls. Little information is found in the existing literature about the effects of joint reinforcement on the seismic behavior of infill masonry walls. Consequently, the Mexican code establishes the same equations to estimate the contribution of joint reinforcement for both confined walls and infill walls. A confined masonry construction and a reinforced concrete frame infilled with masonry walls have similar appearances. However, substantial differences exist between these two construction systems, which are mainly related to the sequence of construction and to how these structures support vertical and lateral loads. To achieve the objective established, ten reinforced concrete frames with masonry infill walls were built and tested in pairs, having both specimens in the pair identical characteristics except that one of them included joint reinforcement. The variables between pairs were the type of units, the size of the columns of the frame and the aspect ratio of the wall. All cases included tie-columns and tie-beams on the perimeter of the wall to anchor the joint reinforcement. Also, two bare frame with identical characteristic to the infilled frames were tested. The purpose was to investigate the effects of the infill wall on the behavior of the system to in-plane lateral load. In addition, the experimental results were compared with the prediction of the Mexican code. All the specimens were tested in cantilever under reversible cyclic lateral load. To simulate gravity load, constant vertical load was applied on the top of the columns. The results indicate that the contribution of the joint reinforcement to lateral strength depends on the size of the columns of the frame. Larger size columns produce a failure mode that is predominantly a sliding mode. Sliding inhibits the production of new inclined cracks, which are necessary to activate (deform) the joint reinforcement. Regarding the effects of joint reinforcement in the performance of confined masonry walls, many facts were confirmed for infill walls: this type of reinforcement increases the lateral strength of the wall, produces a more distributed cracking and reduces the width of the cracks. Moreover, it reduces the ductility demand of the system at maximum strength. The prediction of the lateral strength provided by the Mexican code is property in some cases; however, the effect of the size of the columns on the contribution of joint reinforcement needs to be better understood.

Keywords: experimental study, Infill wall, Infilled frame, masonry wall

Procedia PDF Downloads 77
6021 The Phenomena of Virtual World Adoption: Antecedents and Consequences of Virtual World Experience

Authors: Norita Ahmad, Reza Barkhi, Xiaobo Xu

Abstract:

We design an experimental study to learn about the cognitive implications of the use of avatars in a Virtual World (VW) (i.e., Second Life). The results support our proposed model, where a positive flow experience with VW influences the attitude towards VW, in turn influencing intention to use VW. Furthermore, VW flow experience can itself be impacted by perceived peer influence, familiarity with VW, and personality of the individuals behind the avatars in VW.

Keywords: avatar, flow experience, personality type, second life, virtual world

Procedia PDF Downloads 598
6020 The Effectiveness of Intervention Methods for Repetitive Behaviors in Preschool Children with Autism Spectrum Disorder: A Systematic Review

Authors: Akane Uda, Ami Tabata, Mi An, Misa Komaki, Ryotaro Ito, Mayumi Inoue, Takehiro Sasai, Yusuke Kusano, Toshihiro Kato

Abstract:

Early intervention is recommended for children with autism spectrum disorder (ASD), and an increasing number of children have received support and intervention before school age in recent years. In this study, we systematically reviewed preschool interventions focused on repetitive behaviors observed in children with ASD, which are often observed at younger ages. Inclusion criteria were as follows : (1) Child of preschool status (age ≤ 7 years) with a diagnosis of ASD (including autism, Asperger's, and pervasive developmental disorder) or a parent (caregiver) with a preschool child with ASD, (2) Physician-confirmed diagnosis of ASD (autism, Asperger's, and pervasive developmental disorder), (3) Interventional studies for repetitive behaviors, (4) Original articles published within the past 10 years (2012 or later), (5) Written in English and Japanese. Exclusion criteria were as follows: (1) Systematic reviews or meta-analyses, (2) Conference reports or books. We carefully scrutinized databases to remove duplicate references and used a two-step screening process to select papers. The primary screening included close scrutiny of titles and abstracts to exclude articles that did not meet the eligibility criteria. During the secondary screening, we carefully read the complete text to assess eligibility, which was double-checked by six members at the laboratory. Disagreements were resolved through consensus-based discussion. Our search yielded 304 papers, of which nine were included in the study. The level of evidence was as follows: three randomized controlled trials (level 2), four pre-post studies (level 4b), and two case reports (level 5). Seven articles selected for this study described the effectiveness of interventions. Interventions for repetitive behaviors in preschool children with ASD were categorized as five interventions that directly involved the child and four educational programs for caregivers and parents. Studies that directly intervened with children used early intensive intervention based on applied behavior analysis (Early Start Denver Model, Early Intensive Behavioral Intervention, and the Picture Exchange Communication System) and individualized education based on sensory integration. Educational interventions for caregivers included two methods; (a) education regarding combined methods and practices of applied behavior analysis in addition to classification and coping methods for repetitive behaviors, and (b) education regarding evaluation methods and practices based on children’s developmental milestones in play. With regard to the neurophysiological basis of repetitive behaviors, environmental factors are implicated as possible contributors. We assumed that applied behavior analysis was shown to be effective in reducing repetitive behaviors because analysis focused on the interaction between the individual and the environment. Additionally, with regard to educational interventions for caregivers, the intervention was shown to promote behavioral change in children based on the caregivers' understanding of the classification of repetitive behaviors and the children’s developmental milestones in play and adjustment of the person-environment context led to a reduction in repetitive behaviors.

Keywords: autism spectrum disorder, early intervention, repetitive behaviors, systematic review

Procedia PDF Downloads 140
6019 Keypoint Detection Method Based on Multi-Scale Feature Fusion of Attention Mechanism

Authors: Xiaoxiao Li, Shuangcheng Jia, Qian Li

Abstract:

Keypoint detection has always been a challenge in the field of image recognition. This paper proposes a novelty keypoint detection method which is called Multi-Scale Feature Fusion Convolutional Network with Attention (MFFCNA). We verified that the multi-scale features with the attention mechanism module have better feature expression capability. The feature fusion between different scales makes the information that the network model can express more abundant, and the network is easier to converge. On our self-made street sign corner dataset, we validate the MFFCNA model with an accuracy of 97.8% and a recall of 81%, which are 5 and 8 percentage points higher than the HRNet network, respectively. On the COCO dataset, the AP is 71.9%, and the AR is 75.3%, which are 3 points and 2 points higher than HRNet, respectively. Extensive experiments show that our method has a remarkable improvement in the keypoint recognition tasks, and the recognition effect is better than the existing methods. Moreover, our method can be applied not only to keypoint detection but also to image classification and semantic segmentation with good generality.

Keywords: keypoint detection, feature fusion, attention, semantic segmentation

Procedia PDF Downloads 119
6018 Assessment of Groundwater Chemistry and Quality Characteristics in an Alluvial Aquifer and a Single Plane Fractured-Rock Aquifer in Bloemfontein, South Africa

Authors: Modreck Gomo

Abstract:

The evolution of groundwater chemistry and its quality is largely controlled by hydrogeochemical processes and their understanding is therefore important for groundwater quality assessments and protection of the water resources. A study was conducted in Bloemfontein town of South Africa to assess and compare the groundwater chemistry and quality characteristics in an alluvial aquifer and single-plane fractured-rock aquifers. 9 groundwater samples were collected from monitoring boreholes drilled into the two aquifer systems during a once-off sampling exercise. Samples were collected through low-flow purging technique and analysed for major ions and trace elements. In order to describe the hydrochemical facies and identify dominant hydrogeochemical processes, the groundwater chemistry data are interpreted using stiff diagrams and principal component analysis (PCA), as complimentary tools. The fitness of the groundwater quality for domestic and irrigation uses is also assessed. Results show that the alluvial aquifer is characterised by a Na-HCO3 hydrochemical facie while fractured-rock aquifer has a Ca-HCO3 facie. The groundwater in both aquifers originally evolved from the dissolution of calcite rocks that are common on land surface environments. However the groundwater in the alluvial aquifer further goes through another evolution as driven by cation exchange process in which Na in the sediments exchanges with Ca2+ in the Ca-HCO3 hydrochemical type to result in the Na-HCO3 hydrochemical type. Despite the difference in the hydrogeochemical processes between the alluvial aquifer and single-plane fractured-rock aquifer, this did not influence the groundwater quality. The groundwater in the two aquifers is very hard as influenced by the elevated magnesium and calcium ions that evolve from dissolution of carbonate minerals which typically occurs in surface environments. Based on total dissolved levels (600-900 mg/L), groundwater quality of the two aquifer systems is classified to be of fair quality. The negative potential impacts of the groundwater quality for domestic uses are highlighted.

Keywords: alluvial aquifer, fractured-rock aquifer, groundwater quality, hydrogeochemical processes

Procedia PDF Downloads 204
6017 Boundary Feedback Stabilization of an Overhead Crane Model

Authors: Abdelhadi Elharfi

Abstract:

A problem of boundary feedback (exponential) stabilization of an overhead crane model represented by a PDE is considered. For any $r>0$, the exponential stability at the desired decay rate $r$ is solved in semi group setting by a collocated-type stabiliser of a target system combined with a term involving the solution of an appropriate PDE.

Keywords: feedback stabilization, semi group and generator, overhead crane system

Procedia PDF Downloads 406
6016 Empowering Leaders: Strategies for Effective Management in a Changing World

Authors: Shahid Ali

Abstract:

Leadership and management are essential components of running successful organizations. Both concepts are closely related but serve different purposes in the overall management of a company. Leadership focuses on inspiring and motivating employees towards a common goal, while management involves coordinating and directing resources to achieve organizational objectives efficiently. Objectives of Leadership and Management: Inspiring and motivating employees: A key objective of leadership is to inspire and motivate employees to work towards achieving the organization’s goals. Effective leaders create a vision that employees can align with and provide the necessary motivation to drive performance. Setting goals and objectives: Both leadership and management play a crucial role in setting goals and objectives for the organization. Leaders create a vision for the future, while managers develop plans to achieve specific objectives within the given timeframe. Implementing strategies: Leaders come up with innovative strategies to drive the organization forward, while managers are responsible for implementing these strategies effectively. Together, leadership and management ensure that the organization’s plans are executed efficiently. Contributions of Leadership and Management: Employee Engagement: Effective leadership and management can increase employee engagement and satisfaction. When employees feel motivated and inspired by their leaders, they are more likely to be engaged in their work and contribute to the organization’s success. Organizational Success: Good leadership and management are essential for navigating the challenges and changes that organizations face. By setting clear goals, inspiring employees, and making strategic decisions, leaders and managers can drive organizational success. Talent Development: Leaders and managers are responsible for identifying and developing talent within the organization. By providing feedback, training, and coaching, they can help employees reach their full potential and contribute effectively to the organization. Research Type: The research on leadership and management is typically quantitative and qualitative in nature. Quantitative research involves the collection and analysis of numerical data to understand the impact of leadership and management practices on organizational outcomes. This type of research often uses surveys, questionnaires, and statistical analysis to measure variables such as employee satisfaction, performance, and organizational success. Qualitative research, on the other hand, involves exploring the subjective experiences and perspectives of individuals related to leadership and management. This type of research may include interviews, observations, and case studies to gain a deeper understanding of how leadership and management practices influence organizational behavior and outcomes. In conclusion, leadership and management play a critical role in the success of organizations. Through effective leadership and management practices, organizations can inspire and motivate employees, set goals, and implement strategies to achieve their objectives. Research on leadership and management helps to understand the impact of these practices on organizational outcomes and provides valuable insights for improving leadership and management practices in the future.

Keywords: empowering, leadership, management, adaptability

Procedia PDF Downloads 50
6015 Impact Evaluation of Discriminant Analysis on Epidemic Protocol in Warships’s Scenarios

Authors: Davi Marinho de Araujo Falcão, Ronaldo Moreira Salles, Paulo Henrique Maranhão

Abstract:

Disruption Tolerant Networks (DTN) are an evolution of Mobile Adhoc Networks (MANET) and work good in scenarioswhere nodes are sparsely distributed, with low density, intermittent connections and an end-to-end infrastructure is not possible to guarantee. Therefore, DTNs are recommended for high latency applications that can last from hours to days. The maritime scenario has mobility characteristics that contribute to a DTN network approach, but the concern with data security is also a relevant aspect in such scenarios. Continuing the previous work, which evaluated the performance of some DTN protocols (Epidemic, Spray and Wait, and Direct Delivery) in three warship scenarios and proposed the application of discriminant analysis, as a classification technique for secure connections, in the Epidemic protocol, thus, the current article proposes a new analysis of the directional discriminant function with opening angles smaller than 90 degrees, demonstrating that the increase in directivity influences the selection of a greater number of secure connections by the directional discriminant Epidemic protocol.

Keywords: DTN, discriminant function, epidemic protocol, security, tactical messages, warship scenario

Procedia PDF Downloads 191
6014 Defects Classification of Stator Coil Generators by Phase Resolve Partial Discharge

Authors: Chun-Yao Lee, Nando Purba, Benny Iskandar

Abstract:

This paper proposed a phase resolve partial discharge (PRPD) shape method to classify types of defect stator coil generator by using off-line PD measurement instrument. The recorded PRPD, by using the instruments MPD600, can illustrate the PRPD patterns of partial discharge of unit’s defects. In the paper, two of large units, No.2 and No.3, in Inalum hydropower plant, North Sumatera, Indonesia is adopted in the experimental measurement. The proposed PRPD shape method is to mark auxiliary lines on the PRPD patterns. The shapes of PRPD from two units are marked with the proposed method. Then, four types of defects in IEC 60034-27 standard is adopted to classify the defect types of the two units, which types are microvoids (S1), delamination tape layer (S2), slot defect (S3) and internal delamination (S4). Finally, the two units are actually inspected to validate the availability of the proposed PRPD shape method.

Keywords: partial discharge (PD), stator coil, defect, phase resolve pd (PRPD)

Procedia PDF Downloads 258
6013 Optimization of Acid Treatments by Assessing Diversion Strategies in Carbonate and Sandstone Formations

Authors: Ragi Poyyara, Vijaya Patnana, Mohammed Alam

Abstract:

When acid is pumped into damaged reservoirs for damage removal/stimulation, distorted inflow of acid into the formation occurs caused by acid preferentially traveling into highly permeable regions over low permeable regions, or (in general) into the path of least resistance. This can lead to poor zonal coverage and hence warrants diversion to carry out an effective placement of acid. Diversion is desirably a reversible technique of temporarily reducing the permeability of high perm zones, thereby forcing the acid into lower perm zones. The uniqueness of each reservoir can pose several challenges to engineers attempting to devise optimum and effective diversion strategies. Diversion techniques include mechanical placement and/or chemical diversion of treatment fluids, further sub-classified into ball sealers, bridge plugs, packers, particulate diverters, viscous gels, crosslinked gels, relative permeability modifiers (RPMs), foams, and/or the use of placement techniques, such as coiled tubing (CT) and the maximum pressure difference and injection rate (MAPDIR) methodology. It is not always realized that the effectiveness of diverters greatly depends on reservoir properties, such as formation type, temperature, reservoir permeability, heterogeneity, and physical well characteristics (e.g., completion type, well deviation, length of treatment interval, multiple intervals, etc.). This paper reviews the mechanisms by which each variety of diverter functions and discusses the effect of various reservoir properties on the efficiency of diversion techniques. Guidelines are recommended to help enhance productivity from zones of interest by choosing the best methods of diversion while pumping an optimized amount of treatment fluid. The success of an overall acid treatment often depends on the effectiveness of the diverting agents.

Keywords: diversion, reservoir, zonal coverage, carbonate, sandstone

Procedia PDF Downloads 432