Search results for: structural system
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 20985

Search results for: structural system

18345 Structural Equation Modeling Approach: Modeling the Impact of Social Marketing Programs on Combating Female Genital Mutilation in the Sudanese Society

Authors: Nada Abdelsadig Moahamed Saied

Abstract:

Female Genital Mutilation (FGM) and other similar traditional cultural practices pose a significant problem for Sudanese society. Such actions are severe and seriously detrimental to people's health since they are based on false social perceptions. To address these problems, numerous institutions and organizations were compelled to act rapidly. Female circumcision, or FGM, is one of the riskiest practices. It is referred to as the excision of the genitalia. Any surgeries involving the total or partial removal of the external female genitalia for non-medical reasons fall under this category. The results of FGM can vary depending on the kind and degree of the operation. These can be categorized as short-term, mid-term, or long-term issues. Infections, including the Human, blood, discomfort, and difficulty urinating are the immediate effects. FGM is defined by the World Health Organization (WHO) as practices that purposefully damage or modify female genital organs for non-medical purposes. It often takes place between the ages of one and fifteen. The girl's right to decide on important choices affecting her sexual and reproductive health is violated because the act is usually performed without her consent and frequently against her will. UNICEF, the United Nations International Children's Emergency Fund, aggressively combats the issue of FGM in Sudan. Numerous programs were started by NGOs to stop the practice. To our knowledge, no scientific study has been conducted to evaluate the effects of such social marketing techniques on simulating and comprehending society’s feelings surrounding FGM. This study proposes the development of a structural equation model aiming to determine the impact of awareness programs on people’s intentions to adopt the behavior of abandoning FGM based on theoretical models of behavior change. The model incorporates all the relevant factors that contribute to FGM and possible strategic actions to tackle this problem. The theoretical backdrop for FGM is presented in the next section, which also explains the practice's history, justifications, and potential treatments. The methodology section that follows describes the structural equation model. The proposed model, which compiles all the pertinent elements into a single image, is presented in the fourth part. Finally, conclusions are reached, and suggestions for further research are made.

Keywords: social marketing, policy-making, behavioral change, female genital mutilation, culture

Procedia PDF Downloads 74
18344 A Predator-Prey System with Singularity at the Origin

Authors: Nabil Beroual, Tewfik Sari

Abstract:

We consider the Gause-type predator-prey system in the case where the response function is not smooth at the origin. We discuss the conditions under which this system has exactly one stable limit cycle or has a positive stable equilibrium point, and we describe the basin of attraction of the stable limit cycle and the stable equilibrium point, respectively. Our results correct previous results of the existing literature.

Keywords: predator-prey model, response function, singularity, basin of attraction, limit cycle

Procedia PDF Downloads 179
18343 Optimal Sequential Scheduling of Imperfect Maintenance Last Policy for a System Subject to Shocks

Authors: Yen-Luan Chen

Abstract:

Maintenance has a great impact on the capacity of production and on the quality of the products, and therefore, it deserves continuous improvement. Maintenance procedure done before a failure is called preventive maintenance (PM). Sequential PM, which specifies that a system should be maintained at a sequence of intervals with unequal lengths, is one of the commonly used PM policies. This article proposes a generalized sequential PM policy for a system subject to shocks with imperfect maintenance and random working time. The shocks arrive according to a non-homogeneous Poisson process (NHPP) with varied intensity function in each maintenance interval. As a shock occurs, the system suffers two types of failures with number-dependent probabilities: type-I (minor) failure, which is rectified by a minimal repair, and type-II (catastrophic) failure, which is removed by a corrective maintenance (CM). The imperfect maintenance is carried out to improve the system failure characteristic due to the altered shock process. The sequential preventive maintenance-last (PML) policy is defined as that the system is maintained before any CM occurs at a planned time Ti or at the completion of a working time in the i-th maintenance interval, whichever occurs last. At the N-th maintenance, the system is replaced rather than maintained. This article first takes up the sequential PML policy with random working time and imperfect maintenance in reliability engineering. The optimal preventive maintenance schedule that minimizes the mean cost rate of a replacement cycle is derived analytically and determined in terms of its existence and uniqueness. The proposed models provide a general framework for analyzing the maintenance policies in reliability theory.

Keywords: optimization, preventive maintenance, random working time, minimal repair, replacement, reliability

Procedia PDF Downloads 275
18342 Shock-Induced Densification in Glass Materials: A Non-Equilibrium Molecular Dynamics Study

Authors: Richard Renou, Laurent Soulard

Abstract:

Lasers are widely used in glass material processing, from waveguide fabrication to channel drilling. The gradual damage of glass optics under UV lasers is also an important issue to be addressed. Glass materials (including metallic glasses) can undergo a permanent densification under laser-induced shock loading. Despite increased interest on interactions between laser and glass materials, little is known about the structural mechanisms involved under shock loading. For example, the densification process in silica glasses occurs between 8 GPa and 30 GPa. Above 30 GPa, the glass material returns to the original density after relaxation. Investigating these unusual mechanisms in silica glass will provide an overall better understanding in glass behaviour. Non-Equilibrium Molecular Dynamics simulations (NEMD) were carried out in order to gain insight on the silica glass microscopic structure under shock loading. The shock was generated by the use of a piston impacting the glass material at high velocity (from 100m/s up to 2km/s). Periodic boundary conditions were used in the directions perpendicular to the shock propagation to model an infinite system. One-dimensional shock propagations were therefore studied. Simulations were performed with the STAMP code developed by the CEA. A very specific structure is observed in a silica glass. Oxygen atoms around Silicon atoms are organized in tetrahedrons. Those tetrahedrons are linked and tend to form rings inside the structure. A significant amount of empty cavities is also observed in glass materials. In order to understand how a shock loading is impacting the overall structure, the tetrahedrons, the rings and the cavities were thoroughly analysed. An elastic behaviour was observed when the shock pressure is below 8 GPa. This is consistent with the Hugoniot Elastic Limit (HEL) of 8.8 GPa estimated experimentally for silica glasses. Behind the shock front, the ring structure and the cavity distribution are impacted. The ring volume is smaller, and most cavities disappear with increasing shock pressure. However, the tetrahedral structure is not affected. The elasticity of the glass structure is therefore related to a ring shrinking and a cavity closing. Above the HEL, the shock pressure is high enough to impact the tetrahedral structure. An increasing number of hexahedrons and octahedrons are formed with the pressure. The large rings break to form smaller ones. The cavities are however not impacted as most cavities are already closed under an elastic shock. After the material relaxation, a significant amount of hexahedrons and octahedrons is still observed, and most of the cavities remain closed. The overall ring distribution after relaxation is similar to the equilibrium distribution. The densification process is therefore related to two structural mechanisms: a change in the coordination of silicon atoms and a cavity closing. To sum up, non-equilibrium molecular dynamics were carried out to investigate silica behaviour under shock loading. Analysing the structure lead to interesting conclusions upon the elastic and the densification mechanisms in glass materials. This work will be completed with a detailed study of the mechanism occurring above 30 GPa, where no sign of densification is observed after the material relaxation.

Keywords: densification, molecular dynamics simulations, shock loading, silica glass

Procedia PDF Downloads 222
18341 Parametric Study of the Structures: Influence of the Shells

Authors: Serikma Mourad, Mezidi Amar

Abstract:

The conception (design) of an earthquake-resistant structure is a complex problem seen the necessity of meeting the requirements of security been imperative by the regulations, and of economy been imperative by the increasing costs of the structures. The resistance of a building in the horizontal actions (shares) is mainly ensured by a mixed brace system; for a concrete building, this system is constituted by frame or shells; or both at the same time. After the earthquake of Boumerdes (May 23; 2003) in Algeria, the studies made by experts, ended in modifications of the Algerian Earthquake-resistant Regulation (AER 99). One of these modifications was to widen the use of shells for the brace system. This modification has create a conflict on the quantities, the positions and the type of the shells at adopt. In the present project, we suggest seeing the effect of the variation of the dimensions, the localization and the conditions of rigidity in extremities of shells. The study will be led on a building (F+5) implanted in zone of seismicity average. To do it, we shall proceed to a classic dynamic study of a structure by using 4 alternatives for shells by varying the lengths and number in order to compare the cost of the structure for 4 dispositions of the shells with a technical-economic study of the brace system by the use of different dispositions of shells and to estimate the quantities of necessary materials (concrete and steel).

Keywords: reinforced concrete, mixed brace system, dynamic analysis, beams, shells

Procedia PDF Downloads 325
18340 Development of an Interactive Display-Control Layout Design System for Trains Based on Train Drivers’ Mental Models

Authors: Hyeonkyeong Yang, Minseok Son, Taekbeom Yoo, Woojin Park

Abstract:

Human error is the most salient contributing factor to railway accidents. To reduce the frequency of human errors, many researchers and train designers have adopted ergonomic design principles for designing display-control layout in rail cab. There exist a number of approaches for designing the display control layout based on optimization methods. However, the ergonomically optimized layout design may not be the best design for train drivers, since the drivers have their own mental models based on their experiences. Consequently, the drivers may prefer the existing display-control layout design over the optimal design, and even show better driving performance using the existing design compared to that using the optimal design. Thus, in addition to ergonomic design principles, train drivers’ mental models also need to be considered for designing display-control layout in rail cab. This paper developed an ergonomic assessment system of display-control layout design, and an interactive layout design system that can generate design alternatives and calculate ergonomic assessment score in real-time. The design alternatives generated from the interactive layout design system may not include the optimal design from the ergonomics point of view. However, the system’s strength is that it considers train drivers’ mental models, which can help generate alternatives that are more friendly and easier to use for train drivers. Also, with the developed system, non-experts in ergonomics, such as train drivers, can refine the design alternatives and improve ergonomic assessment score in real-time.

Keywords: display-control layout design, interactive layout design system, mental model, train drivers

Procedia PDF Downloads 306
18339 Air Classification of Dust from Steel Converter Secondary De-dusting for Zinc Enrichment

Authors: C. Lanzerstorfer

Abstract:

The off-gas from the basic oxygen furnace (BOF), where pig iron is converted into steel, is treated in the primary ventilation system. This system is in full operation only during oxygen-blowing when the BOF converter vessel is in a vertical position. When pig iron and scrap are charged into the BOF and when slag or steel are tapped, the vessel is tilted. The generated emissions during charging and tapping cannot be captured by the primary off-gas system. To capture these emissions, a secondary ventilation system is usually installed. The emissions are captured by a canopy hood installed just above the converter mouth in tilted position. The aim of this study was to investigate the dependence of Zn and other components on the particle size of BOF secondary ventilation dust. Because of the high temperature of the BOF process it can be expected that Zn will be enriched in the fine dust fractions. If Zn is enriched in the fine fractions, classification could be applied to split the dust into two size fractions with a different content of Zn. For this air classification experiments with dust from the secondary ventilation system of a BOF were performed. The results show that Zn and Pb are highly enriched in the finest dust fraction. For Cd, Cu and Sb the enrichment is less. In contrast, the non-volatile metals Al, Fe, Mn and Ti were depleted in the fine fractions. Thus, air classification could be considered for the treatment of dust from secondary BOF off-gas cleaning.

Keywords: air classification, converter dust, recycling, zinc

Procedia PDF Downloads 425
18338 Technical and Economical Feasibility Analysis of Solar Water Pumping System - Case Study in Iran

Authors: A. Gharib, M. Moradi

Abstract:

The technical analysis of using solar energy and electricity for water pumping in the Khuzestan province in Iran is investigated. For this purpose, the ecological conditions such as the weather data, air clearness and sunshine hours are analyzed. The nature of groundwater in the region was examined in terms of depth, static and dynamic head, water pumping rate. Three configurations for solar water pumping system were studied in this thesis; AC solar water pumping with a storage battery, AC solar water pumping with a storage tank, and DC direct solar water pumping.

Keywords: technical and economic feasibility, solar energy, photovoltaic systems, solar water pumping system

Procedia PDF Downloads 571
18337 Robust Fractional Order Controllers for Minimum and Non-Minimum Phase Systems – Studies on Design and Development

Authors: Anand Kishore Kola, G. Uday Bhaskar Babu, Kotturi Ajay Kumar

Abstract:

The modern dynamic systems used in industries are complex in nature and hence the fractional order controllers have been contemplated as a fresh approach to control system design that takes the complexity into account. Traditional integer order controllers use integer derivatives and integrals to control systems, whereas fractional order controllers use fractional derivatives and integrals to regulate memory and non-local behavior. This study provides a method based on the maximumsensitivity (Ms) methodology to discover all resilient fractional filter Internal Model Control - proportional integral derivative (IMC-PID) controllers that stabilize the closed-loop system and deliver the highest performance for a time delay system with a Smith predictor configuration. Additionally, it helps to enhance the range of PID controllers that are used to stabilize the system. This study also evaluates the effectiveness of the suggested controller approach for minimum phase system in comparison to those currently in use which are based on Integral of Absolute Error (IAE) and Total Variation (TV).

Keywords: modern dynamic systems, fractional order controllers, maximum-sensitivity, IMC-PID controllers, Smith predictor, IAE and TV

Procedia PDF Downloads 66
18336 Effect of the Drawbar Force on the Dynamic Characteristics of a Spindle-Tool Holder System

Authors: Jui-Pui Hung, Yu-Sheng Lai, Tzuo-Liang Luo, Kung-Da Wu, Yun-Ji Zhan

Abstract:

This study presented the investigation of the influence of the tool holder interface stiffness on the dynamic characteristics of a spindle tool system. The interface stiffness was produced by drawbar force on the tool holder, which tends to affect the spindle dynamics. In order to assess the influence of interface stiffness on the vibration characteristic of spindle unit, we first created a three dimensional finite element model of a high speed spindle system integrated with tool holder. The key point for the creation of FEM model is the modeling of the rolling interface within the angular contact bearings and the tool holder interface. The former can be simulated by a introducing a series of spring elements between inner and outer rings. The contact stiffness was calculated according to Hertz contact theory and the preload applied on the bearings. The interface stiffness of the tool holder was identified through the experimental measurement and finite element modal analysis. Current results show that the dynamic stiffness was greatly influenced by the tool holder system. In addition, variations of modal damping, static stiffness and dynamic stiffness of the spindle tool system were greatly determined by the interface stiffness of the tool holder which was in turn dependent on the draw bar force applied on the tool holder. Overall, this study demonstrates that identification of the interface characteristics of spindle tool holder is of very importance for the refinement of the spindle tooling system to achieve the optimum machining performance.

Keywords: dynamic stiffness, spindle-tool holder, interface stiffness, drawbar force

Procedia PDF Downloads 398
18335 Development of Energy Management System Based on Internet of Things Technique

Authors: Wen-Jye Shyr, Chia-Ming Lin, Hung-Yun Feng

Abstract:

The purpose of this study was to develop an energy management system for university campuses based on the Internet of Things (IoT) technique. The proposed IoT technique based on WebAccess is used via network browser Internet Explore and applies TCP/IP protocol. The case study of IoT for lighting energy usage management system was proposed. Structure of proposed IoT technique included perception layer, equipment layer, control layer, application layer and network layer.

Keywords: energy management, IoT technique, sensor, WebAccess

Procedia PDF Downloads 335
18334 Analyzing the Performance of Different Cost-Based Methods for the Corrective Maintenance of a System in Thermal Power Plants

Authors: Demet Ozgur-Unluakin, Busenur Turkali, S. Caglar Aksezer

Abstract:

Since the age of industrialization, maintenance has always been a very crucial element for all kinds of factories and plants. With today’s increasingly developing technology, the system structure of such facilities has become more complicated, and even a small operational disruption may return huge losses in profits for the companies. In order to reduce these costs, effective maintenance planning is crucial, but at the same time, it is a difficult task because of the complexity of systems. The most important aspect of correct maintenance planning is to understand the structure of the system, not to ignore the dependencies among the components and as a result, to model the system correctly. In this way, it will be better to understand which component improves the system more when it is maintained. Undoubtedly, proactive maintenance at a scheduled time reduces costs because the scheduled maintenance prohibits high losses in profits. But the necessity of corrective maintenance, which directly affects the situation of the system and provides direct intervention when the system fails, should not be ignored. When a fault occurs in the system, if the problem is not solved immediately and proactive maintenance time is awaited, this may result in increased costs. This study proposes various maintenance methods with different efficiency measures under corrective maintenance strategy on a subsystem of a thermal power plant. To model the dependencies between the components, dynamic Bayesian Network approach is employed. The proposed maintenance methods aim to minimize the total maintenance cost in a planning horizon, as well as to find the most appropriate component to be attacked on, which improves the system reliability utmost. Performances of the methods are compared under corrective maintenance strategy. Furthermore, sensitivity analysis is also applied under different cost values. Results show that all fault effect methods perform better than the replacement effect methods and this conclusion is also valid under different downtime cost values.

Keywords: dynamic Bayesian networks, maintenance, multi-component systems, reliability

Procedia PDF Downloads 128
18333 Assets and Health: Examining the Asset-Building Theoretical Framework and Psychological Distress

Authors: Einav Srulovici, Michal Grinstein-Weiss, George Knafl, Linda Beeber, Shawn Kneipp, Barbara Mark

Abstract:

Background: The asset-building theoretical framework (ABTF) is acknowledged as the most complete framework thus far for depicting the relationships between asset accumulation (the stock of a household’s saved resources available for future investment) and health outcomes. Although the ABTF takes into consideration the reciprocal relationship between asset accumulation and health, no ABTF based study has yet examined this relationship. Therefore, the purpose of this study was to test the ABTF and psychological distress, focusing on the reciprocal relationship between assets accumulation and psychological distress. Methods: The study employed longitudinal data from 6,295 families from the 2001 and 2007 Panel Study of Income Dynamics data sets. Structural equation modeling (SEM) was used to test the reciprocal relationship between asset accumulation and psychological distress. Results: In general, the data displayed a good fit to the model. The longitudinal SEM found that asset accumulation significantly increased with a decreased in psychological distress over time, while psychological distress significantly increased with an increase in asset accumulation over time, confirming the existence of the hypothesized reciprocal relationship. Conclusions: Individuals who are less psychological distressed might have more energy to engage in activities, such as furthering their education or obtaining better jobs that are in turn associated with greater asset accumulation, while those who have greater assets may invest those assets in riskier investments, resulting in increased psychological distress. The confirmation of this reciprocal relationship highlights the importance of conducting longitudinal studies and testing the reciprocal relationship between asset accumulation and other health outcomes.

Keywords: asset-building theoretical framework, psychological distress, structural equation modeling, reciprocal relationship

Procedia PDF Downloads 394
18332 Hybrid Heat Pump for Micro Heat Network

Authors: J. M. Counsell, Y. Khalid, M. J. Stewart

Abstract:

Achieving nearly zero carbon heating continues to be identified by UK government analysis as an important feature of any lowest cost pathway to reducing greenhouse gas emissions. Heat currently accounts for 48% of UK energy consumption and approximately one third of UK’s greenhouse gas emissions. Heat Networks are being promoted by UK investment policies as one means of supporting hybrid heat pump based solutions. To this effect the RISE (Renewable Integrated and Sustainable Electric) heating system project is investigating how an all-electric heating sourceshybrid configuration could play a key role in long-term decarbonisation of heat.  For the purposes of this study, hybrid systems are defined as systems combining the technologies of an electric driven air source heat pump, electric powered thermal storage, a thermal vessel and micro-heat network as an integrated system.  This hybrid strategy allows for the system to store up energy during periods of low electricity demand from the national grid, turning it into a dynamic supply of low cost heat which is utilized only when required. Currently a prototype of such a system is being tested in a modern house integrated with advanced controls and sensors. This paper presents the virtual performance analysis of the system and its design for a micro heat network with multiple dwelling units. The results show that the RISE system is controllable and can reduce carbon emissions whilst being competitive in running costs with a conventional gas boiler heating system.

Keywords: gas boilers, heat pumps, hybrid heating and thermal storage, renewable integrated and sustainable electric

Procedia PDF Downloads 419
18331 Design of Data Management Software System Supporting Rendezvous and Docking with Various Spaceships

Authors: Zhan Panpan, Lu Lan, Sun Yong, He Xiongwen, Yan Dong, Gu Ming

Abstract:

The function of the two spacecraft docking network, the communication and control of a docking target with various spacecrafts is realized in the space lab data management system. In order to solve the problem of the complex data communication mode between the space lab and various spaceships, and the problem of software reuse caused by non-standard protocol, a data management software system supporting rendezvous and docking with various spaceships has been designed. The software system is based on CCSDS Spcecraft Onboard Interface Service(SOIS). It consists of Software Driver Layer, Middleware Layer and Appliaction Layer. The Software Driver Layer hides the various device interfaces using the uniform device driver framework. The Middleware Layer is divided into three lays, including transfer layer, application support layer and system business layer. The communication of space lab plaform bus and the docking bus is realized in transfer layer. Application support layer provides the inter tasks communitaion and the function of unified time management for the software system. The data management software functions are realized in system business layer, which contains telemetry management service, telecontrol management service, flight status management service, rendezvous and docking management service and so on. The Appliaction Layer accomplishes the space lab data management system defined tasks using the standard interface supplied by the Middleware Layer. On the basis of layered architecture, rendezvous and docking tasks and the rendezvous and docking management service are independent in the software system. The rendezvous and docking tasks will be activated and executed according to the different spaceships. In this way, the communication management functions in the independent flight mode, the combination mode of the manned spaceship and the combination mode of the cargo spaceship are achieved separately. The software architecture designed standard appliction interface for the services in each layer. Different requirements of the space lab can be supported by the use of standard services per layer, and the scalability and flexibility of the data management software can be effectively improved. It can also dynamically expand the number and adapt to the protocol of visiting spaceships. The software system has been applied in the data management subsystem of the space lab, and has been verified in the flight of the space lab. The research results of this paper can provide the basis for the design of the data manage system in the future space station.

Keywords: space lab, rendezvous and docking, data management, software system

Procedia PDF Downloads 368
18330 Kinematic of Thrusts and Tectonic Vergence in the Paleogene Orogen of Eastern Iran, Sechangi Area

Authors: Shahriyar Keshtgar, Mahmoud Reza Heyhat, Sasan Bagheri, Ebrahim Gholami, Seyed Naser Raiisosadat

Abstract:

The eastern Iranian range is a Z-shaped sigmoidal outcrop appearing with a NS-trending general strike on the satellite images, has already been known as the Sistan suture zone, recently identified as the product of an orogenic event introduced either by the Paleogene or Sistan orogen names. The flysch sedimentary basin of eastern Iran was filled by a huge volume of fine-grained Eocene turbiditic sediments, smaller amounts of pelagic deposits and Cretaceous ophiolitic slices, which are entirely remnants of older accretionary prisms appeared in a fold-thrust belt developed onto a subduction zone under the Lut/Afghan block, portions of the Cimmerian superterrane. In these ranges, there are Triassic sedimentary and carbonate sequences (equivalent to Nayband and Shotori Formations) along with scattered outcrops of Permian limestones (equivalent to Jamal limestone) and greenschist-facies metamorphic rocks, probably belonging to the basement of the Lut block, which have tectonic contacts with younger rocks. Moreover, the younger Eocene detrital-volcanic rocks were also thrusted onto the Cretaceous or younger turbiditic deposits. The first generation folds (parallel folds) and thrusts with slaty cleavage appeared parallel to the NE edge of the Lut block. Structural analysis shows that the most vergence of thrusts is toward the southeast so that the Permo-Triassic units in Lut have been thrusted on the younger rocks, including older (probably Jurassic) granites. Additional structural studies show that the regional transport direction in this deformation event is from northwest to the southeast where, from the outside to the inside of the orogen in the Sechengi area. Younger thrusts of the second deformation event were either directly formed as a result of the second deformation event, or they were older thrusts that reactivated and folded so that often, two sets or more slickenlines can be recognized on the thrust planes. The recent thrusts have been redistributed in directions nearly perpendicular to the edge of the Lut block and parallel to the axial surfaces of the northwest second generation large-scale folds (radial folds). Some of these younger thrusts follow the out-of-the-syncline thrust system. The both axial planes of these folds and associated penetrative shear cleavage extended towards northwest appeared with both northeast and southwest dips parallel to the younger thrusts. The large-scale buckling with the layer-parallel stress field has created this deformation event. Such consecutive deformation events perpendicular to each other cannot be basically explained by the simple linear orogen models presented for eastern Iran so far and are more consistent with the oroclinal buckling model.

Keywords: thrust, tectonic vergence, orocline buckling, sechangi, eastern iranian ranges

Procedia PDF Downloads 79
18329 Freeform Lens System for Collimation SERS irradiation Radiation Produced by Biolayers which Deposit on High Quality Resonant System

Authors: Iuliia Riabenko, Konstantin Beloshenko, Sergey Shulga, Valeriy Shulga

Abstract:

An optical system has been developed consisting of a TIR lens and an aspherical surface designed to collect Stokes radiation from biomolecules. The freeform material is SYLGARD-184, which provides a low level of noise associated with the luminescence of the substrate. The refractive index of SYLGARD-184 is 1.4028 for a wavelength of 632 nm, the Abbe number is 72, these material parameters make it possible to design the desired shape for the wavelength range of 640-700 nm. The system consists of a TIR lens, inside which is placed a high-quality resonant system consisting of a biomolecule and a metal colloid. This system can be described using the coupled oscillator model. The laser excitation radiation was fed through the base of the TIR lens. The sample was mounted inside the TIR lens at a distance of 8 mm from the base. As a result of Raman scattering of laser radiation, a Stokes bend appeared from the biolayer. The task of this work was that it was necessary to collect this radiation emitted at a 4π steradian angle. For this, an internal aspherical surface was used, which made it possible to defocus the beam emanating from the biolayer and direct its radiation to the borders of the TIR lens at the Brewster angle. The collated beam of Stokes radiation contains 97% of the energy scattered by the biolayer. Thus, a simple scheme was proposed for collecting and collimating the Stokes radiation of biomolecules.

Keywords: TIR lens, freeform material, raman scattering, biolayer, brewster angle

Procedia PDF Downloads 138
18328 Reservoir Potential, Net Pay Zone and 3D Modeling of Cretaceous Clastic Reservoir in Eastern Sulieman Belt Pakistan

Authors: Hadayat Ullah, Pervez Khalid, Saad Ahmed Mashwani, Zaheer Abbasi, Mubashir Mehmood, Muhammad Jahangir, Ehsan ul Haq

Abstract:

The aim of the study is to explore subsurface structures through data that is acquired from the seismic survey to delineate the characteristics of the reservoir through petrophysical analysis. Ghazij Shale of Eocene age is regional seal rock in this field. In this research work, 3D property models of subsurface were prepared by applying Petrel software to identify various lithologies and reservoir fluids distribution throughout the field. The 3D static modeling shows a better distribution of the discrete and continuous properties in the field. This model helped to understand the reservoir properties and enhance production by selecting the best location for future drilling. A complete workflow is proposed for formation evaluation, electrofacies modeling, and structural interpretation of the subsurface geology. Based on the wireline logs, it is interpreted that the thickness of the Pab Sandstone varies from 250 m to 350 m in the entire study area. The sandstone is massive with high porosity and intercalated layers of shales. Faulted anticlinal structures are present in the study area, which are favorable for the accumulation of hydrocarbon. 3D structural models and various seismic attribute models were prepared to analyze the reservoir character of this clastic reservoir. Based on wireline logs and seismic data, clean sand, shaly sand, and shale are marked as dominant facies in the study area. However, clean sand facies are more favorable to act as a potential net pay zone.

Keywords: cretaceous, pab sandstone, petrophysics, electrofacies, hydrocarbon

Procedia PDF Downloads 143
18327 Research and Development of Intelligent Cooling Channels Design System

Authors: Q. Niu, X. H. Zhou, W. Liu

Abstract:

The cooling channels of injection mould play a crucial role in determining the productivity of moulding process and the product quality. It’s not a simple task to design high quality cooling channels. In this paper, an intelligent cooling channels design system including automatic layout of cooling channels, interference checking and assembly of accessories is studied. Automatic layout of cooling channels using genetic algorithm is analyzed. Through integrating experience criteria of designing cooling channels, considering the factors such as the mould temperature and interference checking, the automatic layout of cooling channels is implemented. The method of checking interference based on distance constraint algorithm and the function of automatic and continuous assembly of accessories are developed and integrated into the system. Case studies demonstrate the feasibility and practicality of the intelligent design system.

Keywords: injection mould, cooling channel, intelligent design, automatic layout, interference checking

Procedia PDF Downloads 440
18326 Dynamic Response of Structure-Raft-Pile-Soil with Respect to System Frequency

Authors: B. Razmi, F. Rafiee, M. Baziar, A. Saeedi Azizkandi

Abstract:

In the present research, a series of 3-D finite element numerical modeling was performed to study the effect of system frequency and excitation specifications on the internal forces of the piled raft (PR) system in a dry sand layer. The results of numerical simulations were first compared with those associated with centrifuge tests. The natural frequency of superstructure, modeled on the piled raft foundation, was smaller than the natural frequency of the fixed-base super-structure. This difference was greater for super-structures with higher frequencies. In PR systems, the excitation with a frequency close to the system frequency produced the largest responses. Furthermore, based on the results of presented numerical analyses, ignoring the interactions and characteristics of all components of a pile-raft-structure, may lead to highly uneconomical design.

Keywords: centrifuge test, excitation frequency, natural frequency of super-structure, piled raft foundation, 3-D finite element model

Procedia PDF Downloads 118
18325 Honor Endorsement from the Perspective of System Justification and Regulatory Focus Orientation

Authors: Gülçin Akbas Uslu

Abstract:

Honor cultures put importance on the sexual purity of women. Women are expected to avoid acts that may spoil their honor. The emphasis on honor leads to the subordination of women and the dominance of men. In order to protect and clean honor, women are exposed to physical and psychological violence. Therefore, understanding the motivations driving people to endorse honor bears importance. For this purpose, this study aims to explore honor endorsement from the joint perspective of System Justification Theory (SJT) and Regulatory Focus Theory (RFT). SJT asserts that people have a tendency to support and rationalize the system. The motivation to maintain the system may be a factor in the endorsement of honor. RFT proposes two distinct regulatory processes, namely promotion and prevention focus. Having a dominant prevention focus, such as a deep concern for responsibilities, risk avoidance, and minimizing negative outcomes, may have a role in honor. Data were collected conveniently from 366 participants (216 women; 150 men). Participants filled out Honor Endorsement Index, Honor Based System Justification Scale and Regulatory Focus Orientation Scale Results revealed that both regulatory focus and system justification play a role in understanding honor. One-way ANOVA findings showed that individuals with a dominant prevention focus endorse honor beliefs more than individuals with a dominant promotion focus. Besides, regression analysis revealed that prevention focus and system justification significantly and positively predict honor. Results provide clarifications for why honor has an important meaning in individuals’ life and why honor-based violence is approved. These findings bear great importance in Turkey, where emphasis on honor is high and can be used in reducing people’s adherence to honor, which is based on women’s sexuality and men’s power over women.

Keywords: honor, system justification theory, regulatory focus theory, prevention focus

Procedia PDF Downloads 154
18324 Intelligent Rheumatoid Arthritis Identification System Based Image Processing and Neural Classifier

Authors: Abdulkader Helwan

Abstract:

Rheumatoid joint inflammation is characterized as a perpetual incendiary issue which influences the joints by hurting body tissues Therefore, there is an urgent need for an effective intelligent identification system of knee Rheumatoid arthritis especially in its early stages. This paper is to develop a new intelligent system for the identification of Rheumatoid arthritis of the knee utilizing image processing techniques and neural classifier. The system involves two principle stages. The first one is the image processing stage in which the images are processed using some techniques such as RGB to gryascale conversion, rescaling, median filtering, background extracting, images subtracting, segmentation using canny edge detection, and features extraction using pattern averaging. The extracted features are used then as inputs for the neural network which classifies the X-ray knee images as normal or abnormal (arthritic) based on a backpropagation learning algorithm which involves training of the network on 400 X-ray normal and abnormal knee images. The system was tested on 400 x-ray images and the network shows good performance during that phase, resulting in a good identification rate 97%.

Keywords: rheumatoid arthritis, intelligent identification, neural classifier, segmentation, backpropoagation

Procedia PDF Downloads 533
18323 Hands-off Parking: Deep Learning Gesture-based System for Individuals with Mobility Needs

Authors: Javier Romera, Alberto Justo, Ignacio Fidalgo, Joshue Perez, Javier Araluce

Abstract:

Nowadays, individuals with mobility needs face a significant challenge when docking vehicles. In many cases, after parking, they encounter insufficient space to exit, leading to two undesired outcomes: either avoiding parking in that spot or settling for improperly placed vehicles. To address this issue, the following paper presents a parking control system employing gestural teleoperation. The system comprises three main phases: capturing body markers, interpreting gestures, and transmitting orders to the vehicle. The initial phase is centered around the MediaPipe framework, a versatile tool optimized for real-time gesture recognition. MediaPipe excels at detecting and tracing body markers, with a special emphasis on hand gestures. Hands detection is done by generating 21 reference points for each hand. Subsequently, after data capture, the project employs the MultiPerceptron Layer (MPL) for indepth gesture classification. This tandem of MediaPipe's extraction prowess and MPL's analytical capability ensures that human gestures are translated into actionable commands with high precision. Furthermore, the system has been trained and validated within a built-in dataset. To prove the domain adaptation, a framework based on the Robot Operating System (ROS), as a communication backbone, alongside CARLA Simulator, is used. Following successful simulations, the system is transitioned to a real-world platform, marking a significant milestone in the project. This real vehicle implementation verifies the practicality and efficiency of the system beyond theoretical constructs.

Keywords: gesture detection, mediapipe, multiperceptron layer, robot operating system

Procedia PDF Downloads 100
18322 Real-Time Multi-Vehicle Tracking Application at Intersections Based on Feature Selection in Combination with Color Attribution

Authors: Qiang Zhang, Xiaojian Hu

Abstract:

In multi-vehicle tracking, based on feature selection, the tracking system efficiently tracks vehicles in a video with minimal error in combination with color attribution, which focuses on presenting a simple and fast, yet accurate and robust solution to the problem such as inaccurately and untimely responses of statistics-based adaptive traffic control system in the intersection scenario. In this study, a real-time tracking system is proposed for multi-vehicle tracking in the intersection scene. Considering the complexity and application feasibility of the algorithm, in the object detection step, the detection result provided by virtual loops were post-processed and then used as the input for the tracker. For the tracker, lightweight methods were designed to extract and select features and incorporate them into the adaptive color tracking (ACT) framework. And the approbatory online feature selection algorithms are integrated on the mature ACT system with good compatibility. The proposed feature selection methods and multi-vehicle tracking method are evaluated on KITTI datasets and show efficient vehicle tracking performance when compared to the other state-of-the-art approaches in the same category. And the system performs excellently on the video sequences recorded at the intersection. Furthermore, the presented vehicle tracking system is suitable for surveillance applications.

Keywords: real-time, multi-vehicle tracking, feature selection, color attribution

Procedia PDF Downloads 163
18321 The Influence of Human Movement on the Formation of Adaptive Architecture

Authors: Rania Raouf Sedky

Abstract:

Adaptive architecture relates to buildings specifically designed to adapt to their residents and their environments. To design a biologically adaptive system, we can observe how living creatures in nature constantly adapt to different external and internal stimuli to be a great inspiration. The issue is not just how to create a system that is capable of change but also how to find the quality of change and determine the incentive to adapt. The research examines the possibilities of transforming spaces using the human body as an active tool. The research also aims to design and build an effective dynamic structural system that can be applied on an architectural scale and integrate them all into the creation of a new adaptive system that allows us to conceive a new way to design, build and experience architecture in a dynamic manner. The main objective was to address the possibility of a reciprocal transformation between the user and the architectural element so that the architecture can adapt to the user, as the user adapts to architecture. The motivation is the desire to deal with the psychological benefits of an environment that can respond and thus empathize with human emotions through its ability to adapt to the user. Adaptive affiliations of kinematic structures have been discussed in architectural research for more than a decade, and these issues have proven their effectiveness in developing kinematic structures, responsive and adaptive, and their contribution to 'smart architecture'. A wide range of strategies have been used in building complex kinetic and robotic systems mechanisms to achieve convertibility and adaptability in engineering and architecture. One of the main contributions of this research is to explore how the physical environment can change its shape to accommodate different spatial displays based on the movement of the user’s body. The main focus is on the relationship between materials, shape, and interactive control systems. The intention is to develop a scenario where the user can move, and the structure interacts without any physical contact. The soft form of shifting language and interaction control technology will provide new possibilities for enriching human-environmental interactions. How can we imagine a space in which to construct and understand its users through physical gestures, visual expressions, and response accordingly? How can we imagine a space whose interaction depends not only on preprogrammed operations but on real-time feedback from its users? The research also raises some important questions for the future. What would be the appropriate structure to show physical interaction with the dynamic world? This study concludes with a strong belief in the future of responsive motor structures. We imagine that they are developing the current structure and that they will radically change the way spaces are tested. These structures have obvious advantages in terms of energy performance and the ability to adapt to the needs of users. The research highlights the interface between remote sensing and a responsive environment to explore the possibility of an interactive architecture that adapts to and responds to user movements. This study ends with a strong belief in the future of responsive motor structures. We envision that it will improve the current structure and that it will bring a fundamental change to the way in which spaces are tested.

Keywords: adaptive architecture, interactive architecture, responsive architecture, tensegrity

Procedia PDF Downloads 157
18320 Finite Element Analysis of a Glass Facades Supported by Pre-Tensioned Cable Trusses

Authors: Khair Al-Deen Bsisu, Osama Mahmoud Abuzeid

Abstract:

Significant technological advances have been achieved in the design and building construction of steel and glass in the last two decades. The metal glass support frame has been replaced by further sophisticated technological solutions, for example, the point fixed glazing systems. The minimization of the visual mass has reached extensive possibilities through the evolution of technology in glass production and the better understanding of the structural potential of glass itself, the technological development of bolted fixings, the introduction of the glazing support attachments of the glass suspension systems and the use for structural stabilization of cables that reduce to a minimum the amount of metal used. The variability of solutions of tension structures, allied to the difficulties related to geometric and material non-linear behavior, usually overrules the use of analytical solutions, letting numerical analysis as the only general approach to the design and analysis of tension structures. With the characteristics of low stiffness, lightweight, and small damping, tension structures are obviously geometrically nonlinear. In fact, analysis of cable truss is not only one of the most difficult nonlinear analyses because the analysis path may have rigid-body modes, but also a time consuming procedure. Non-linear theory allowing for large deflections is used. The flexibility of supporting members was observed to influence the stresses in the pane considerably in some cases. No other class of architectural structural systems is as dependent upon the use of digital computers as are tensile structures. Besides complexity, the process of design and analysis of tension structures presents a series of specificities, which usually lead to the use of special purpose programs, instead of general purpose programs (GPPs), such as ANSYS. In a special purpose program, part of the design know how is embedded in program routines. It is very probable that this type of program will be the option of the final user, in design offices. GPPs offer a range of types of analyses and modeling options. Besides, traditional GPPs are constantly being tested by a large number of users, and are updated according to their actual demands. This work discusses the use of ANSYS for the analysis and design of tension structures, such as cable truss structures under wind and gravity loadings. A model to describe the glass panels working in coordination with the cable truss was proposed. Under the proposed model, a FEM model of the glass panels working in coordination with the cable truss was established.

Keywords: Glass Construction material, Facades, Finite Element, Pre-Tensioned Cable Truss

Procedia PDF Downloads 280
18319 A Hybrid Recommendation System Based on Association Rules

Authors: Ahmed Mohammed Alsalama

Abstract:

Recommendation systems are widely used in e-commerce applications. The engine of a current recommendation system recommends items to a particular user based on user preferences and previous high ratings. Various recommendation schemes such as collaborative filtering and content-based approaches are used to build a recommendation system. Most of the current recommendation systems were developed to fit a certain domain such as books, articles, and movies. We propose a hybrid framework recommendation system to be applied on two-dimensional spaces (User x Item) with a large number of Users and a small number of Items. Moreover, our proposed framework makes use of both favorite and non-favorite items of a particular user. The proposed framework is built upon the integration of association rules mining and the content-based approach. The results of experiments show that our proposed framework can provide accurate recommendations to users.

Keywords: data mining, association rules, recommendation systems, hybrid systems

Procedia PDF Downloads 453
18318 Self-Tuning Power System Stabilizer Based on Recursive Least Square Identification and Linear Quadratic Regulator

Authors: J. Ritonja

Abstract:

Available commercial applications of power system stabilizers assure optimal damping of synchronous generator’s oscillations only in a small part of operating range. Parameters of the power system stabilizer are usually tuned for the selected operating point. Extensive variations of the synchronous generator’s operation result in changed dynamic characteristics. This is the reason that the power system stabilizer tuned for the nominal operating point does not satisfy preferred damping in the overall operation area. The small-signal stability and the transient stability of the synchronous generators have represented an attractive problem for testing different concepts of the modern control theory. Of all the methods, the adaptive control has proved to be the most suitable for the design of the power system stabilizers. The adaptive control has been used in order to assure the optimal damping through the entire synchronous generator’s operating range. The use of the adaptive control is possible because the loading variations and consequently the variations of the synchronous generator’s dynamic characteristics are, in most cases, essentially slower than the adaptation mechanism. The paper shows the development and the application of the self-tuning power system stabilizer based on recursive least square identification method and linear quadratic regulator. Identification method is used to calculate the parameters of the Heffron-Phillips model of the synchronous generator. On the basis of the calculated parameters of the synchronous generator’s mathematical model, the synthesis of the linear quadratic regulator is carried-out. The identification and the synthesis are implemented on-line. In this way, the self-tuning power system stabilizer adapts to the different operating conditions. A purpose of this paper is to contribute to development of the more effective power system stabilizers, which would replace currently used linear stabilizers. The presented self-tuning power system stabilizer makes the tuning of the controller parameters easier and assures damping improvement in the complete operating range. The results of simulations and experiments show essential improvement of the synchronous generator’s damping and power system stability.

Keywords: adaptive control, linear quadratic regulator, power system stabilizer, recursive least square identification

Procedia PDF Downloads 248
18317 Role of mHealth in Effective Response to Disaster

Authors: Mohammad H. Yarmohamadian, Reza Safdari, Nahid Tavakoli

Abstract:

In recent years, many countries have suffered various natural disasters. Disaster response continues to face the challenges in health care sector in all countries. Information and communication management is a significant challenge in disaster scene. During the last decades, rapid advances in information technology have led to manage information effectively and improve communication in health care setting. Information technology is a vital solution for effective response to disasters and emergencies so that if an efficient ICT-based health information system is available, it will be highly valuable in such situation. Of that, mobile technology represents a nearly computing technology infrastructure that is accessible, convenient, inexpensive and easy to use. Most projects have not yet reached the deployment stage, but evaluation exercises show that mHealth should allow faster processing and transport of patients, improved accuracy of triage and better monitoring of unattended patients at a disaster scene. Since there is a high prevalence of cell phones among world population, it is expected the health care providers and managers to take measures for applying this technology for improvement patient safety and public health in disasters. At present there are challenges in the utilization of mhealth in disasters such as lack of structural and financial issues in our country. In this paper we will discuss about benefits and challenges of mhealth technology in disaster setting considering connectivity, usability, intelligibility, communication and teaching for implementing this technology for disaster response.

Keywords: information technology, mhealth, disaster, effective response

Procedia PDF Downloads 440
18316 Optimal Power Exchange of Multi-Microgrids with Hierarchical Coordination

Authors: Beom-Ryeol Choi, Won-Poong Lee, Jin-Young Choi, Young-Hak Shin, Dong-Jun Won

Abstract:

A Microgrid (MG) has a major role in power system. There are numerous benefits, such as ability to reduce environmental impact and enhance the reliability of a power system. Hence, Multi-MG (MMG) consisted of multiple MGs is being studied intensively. This paper proposes the optimal power exchange of MMG with hierarchical coordination. The whole system architecture consists of two layers: 1) upper layer including MG of MG Center (MoMC) which is in charge of the overall management and coordination and 2) lower layer comprised of several Microgrid-Energy Management Systems (MG-EMSs) which make a decision for own schedule. In order to accomplish the optimal power exchange, the proposed coordination algorithm is applied to MMG system. The objective of this process is to achieve optimal operation for improving economics under the grid-connected operation. The simulation results show how the output of each MG can be changed through coordination algorithm.

Keywords: microgrids, multi-microgrids, power exchange, hierarchical coordination

Procedia PDF Downloads 372