Search results for: nonlinear load
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3816

Search results for: nonlinear load

1176 A Sensor Placement Methodology for Chemical Plants

Authors: Omid Ataei Nia, Karim Salahshoor

Abstract:

In this paper, a new precise and reliable sensor network methodology is introduced for unit processes and operations using the Constriction Coefficient Particle Swarm Optimization (CPSO) method. CPSO is introduced as a new search engine for optimal sensor network design purposes. Furthermore, a Square Root Unscented Kalman Filter (SRUKF) algorithm is employed as a new data reconciliation technique to enhance the stability and accuracy of the filter. The proposed design procedure incorporates precision, cost, observability, reliability together with importance-of-variables (IVs) as a novel measure in Instrumentation Criteria (IC). To the best of our knowledge, no comprehensive approach has yet been proposed in the literature to take into account the importance of variables in the sensor network design procedure. In this paper, specific weight is assigned to each sensor, measuring a process variable in the sensor network to indicate the importance of that variable over the others to cater to the ultimate sensor network application requirements. A set of distinct scenarios has been conducted to evaluate the performance of the proposed methodology in a simulated Continuous Stirred Tank Reactor (CSTR) as a highly nonlinear process plant benchmark. The obtained results reveal the efficacy of the proposed method, leading to significant improvement in accuracy with respect to other alternative sensor network design approaches and securing the definite allocation of sensors to the most important process variables in sensor network design as a novel achievement.

Keywords: constriction coefficient PSO, importance of variable, MRMSE, reliability, sensor network design, square root unscented Kalman filter

Procedia PDF Downloads 160
1175 A Non-Linear Eddy Viscosity Model for Turbulent Natural Convection in Geophysical Flows

Authors: J. P. Panda, K. Sasmal, H. V. Warrior

Abstract:

Eddy viscosity models in turbulence modeling can be mainly classified as linear and nonlinear models. Linear formulations are simple and require less computational resources but have the disadvantage that they cannot predict actual flow pattern in complex geophysical flows where streamline curvature and swirling motion are predominant. A constitutive equation of Reynolds stress anisotropy is adopted for the formulation of eddy viscosity including all the possible higher order terms quadratic in the mean velocity gradients, and a simplified model is developed for actual oceanic flows where only the vertical velocity gradients are important. The new model is incorporated into the one dimensional General Ocean Turbulence Model (GOTM). Two realistic oceanic test cases (OWS Papa and FLEX' 76) have been investigated. The new model predictions match well with the observational data and are better in comparison to the predictions of the two equation k-epsilon model. The proposed model can be easily incorporated in the three dimensional Princeton Ocean Model (POM) to simulate a wide range of oceanic processes. Practically, this model can be implemented in the coastal regions where trasverse shear induces higher vorticity, and for prediction of flow in estuaries and lakes, where depth is comparatively less. The model predictions of marine turbulence and other related data (e.g. Sea surface temperature, Surface heat flux and vertical temperature profile) can be utilized in short term ocean and climate forecasting and warning systems.

Keywords: Eddy viscosity, turbulence modeling, GOTM, CFD

Procedia PDF Downloads 202
1174 Non-Linear Regression Modeling for Composite Distributions

Authors: Mostafa Aminzadeh, Min Deng

Abstract:

Modeling loss data is an important part of actuarial science. Actuaries use models to predict future losses and manage financial risk, which can be beneficial for marketing purposes. In the insurance industry, small claims happen frequently while large claims are rare. Traditional distributions such as Normal, Exponential, and inverse-Gaussian are not suitable for describing insurance data, which often show skewness and fat tails. Several authors have studied classical and Bayesian inference for parameters of composite distributions, such as Exponential-Pareto, Weibull-Pareto, and Inverse Gamma-Pareto. These models separate small to moderate losses from large losses using a threshold parameter. This research introduces a computational approach using a nonlinear regression model for loss data that relies on multiple predictors. Simulation studies were conducted to assess the accuracy of the proposed estimation method. The simulations confirmed that the proposed method provides precise estimates for regression parameters. It's important to note that this approach can be applied to datasets if goodness-of-fit tests confirm that the composite distribution under study fits the data well. To demonstrate the computations, a real data set from the insurance industry is analyzed. A Mathematica code uses the Fisher information algorithm as an iteration method to obtain the maximum likelihood estimation (MLE) of regression parameters.

Keywords: maximum likelihood estimation, fisher scoring method, non-linear regression models, composite distributions

Procedia PDF Downloads 34
1173 Experimental Study of Water Injection into Manifold on Engine Performance and Emissions in Compression Ignition Engine

Authors: N. Rajmohan, M. R. Swaminathan

Abstract:

The performance of a diesel engine depends mainly on mixing of the fuel and air in the combustion chamber. The diesel engine suffers from significant generation of nitric oxide and particulate matter emission due to incomplete combustion. As the fuel is injected directly into the combustion chamber in conventional diesel engines, spatial distributions of air-fuel ratio vary widely from rich to lean in combustion chamber. The NOx is formed in stoichiometric zone and smoke is generated during diffusion combustion period where the combustion rate becomes slower. One of the effective methods to reduce oxides of nitrogen and particulate matter emissions simultaneously is to reduce the intake charge temperature in diesel engines. Therefore, in the present study, the effect of water injection into intake air on performance and emission characteristic of single cylinder CI engine are carried out at different load and constant speed, with variable water to diesel ratio by mass. The water is injected into intake air by an elementary carburetor.

Keywords: engine emission control, oxides of nitrogen, diesel engine, ignition engine

Procedia PDF Downloads 362
1172 Regulated Output Voltage Double Switch Buck-Boost Converter for Photovoltaic Energy Application

Authors: M. Kaouane, A. Boukhelifa, A. Cheriti

Abstract:

In this paper, a new Buck-Boost DC-DC converter is designed and simulated for photovoltaic energy system. The presented Buck-Boost converter has a double switch. Moreover, its output voltage is regulated to a constant value whatever its input is. In the presented work, the Buck-Boost transfers the produced energy from the photovoltaic generator to an R-L load. The converter is controlled by the pulse width modulation technique in a way to have a suitable output voltage, in the other hand, to carry the generator’s power, and put it close to the maximum possible power that can be generated by introducing the right duty cycle of the pulse width modulation signals that control the switches of the converter; each component and each parameter of the proposed circuit is well calculated using the equations that describe each operating mode of the converter. The proposed configuration of Buck-Boost converter has been simulated in Matlab/Simulink environment; the simulation results show that it is a good choice to take in order to maintain the output voltage constant while ensuring a good energy transfer.

Keywords: Buck-Boost converter, switch, photovoltaic, PWM, power, energy transfer

Procedia PDF Downloads 905
1171 An Experimental and Numerical Study on the Pultruded GFRP I-Sections Beams

Authors: Parinaz Arashnia, Farzad Hatami, Saeed Ghaffarpour Jahromi

Abstract:

Using steel in bridges’ construction because of their desired tensile and compressive strength and light weight especially in large spans was widely popular. Disadvantages of steel such as corrosion, buckling and weaknesses in high temperature and unsuitable weld could be solve with using Fibres Reinforced Polymer (FRP) profiles. The FRP is a remarkable class of composite polymers that can improve structural elements behaviour like corrosion resistance, fir resistance with good proofing and electricity and magnetic non-conductor. Nowadays except FRP reinforced bars and laminates, FRP I-beams are made and studied. The main reason for using FRP profiles is, prevent of corrosion and increase the load carrying capacity and durability, especially in large spans in bridges’ deck. In this paper, behaviour of I-section glass fibres reinforced polymer (GFRP) beam is discussed under point loads with numerical models and results has been compared and verified with experimental tests.

Keywords: glass fibres reinforced polymer, composite, I-section beam, durability, finite element method, numerical model

Procedia PDF Downloads 256
1170 Performance of Flat Plate Loop Heat Pipe for Thermal Management of Lithium-Ion Battery in Electric Vehicle Application

Authors: Bambang Ariantara, Nandy Putra, Rangga Aji Pamungkas

Abstract:

The development of electric vehicle batteries has resulted in very high energy density lithium-ion batteries. However, this progress is accompanied by the risk of thermal runaway, which can result in serious accidents. Heat pipes are heat exchangers that are suitable to be applied in electric vehicle battery thermal management for their lightweight, compact size and do not require external power supply. This paper aims to examine experimentally a flat plate loop heat pipe (FPLHP) performance as a heat exchanger in the thermal management system of the lithium-ion battery for electric vehicle application. The heat generation of the battery was simulated using a cartridge heater. Stainless steel screen mesh was used as the capillary wick. Distilled water, alcohol and acetone were used as working fluids with a filling ratio of 60%. It was found that acetone gives the best performance that produces the thermal resistance of 0.22 W/°C with 50 °C evaporator temperature at heat flux load of 1.61 W/cm2.

Keywords: electric vehicle, flat-plate loop heat pipe, lithium-ion battery, thermal management system

Procedia PDF Downloads 352
1169 Numerical Study for Compressive Strength of Basalt Composite Sandwich Infill Panel

Authors: Viriyavudh Sim, Jung Kyu Choi, Yong Ju Kwak, Oh Hyeon Jeon, Woo Young Jung

Abstract:

In this study, we investigated the buckling performance of basalt fiber reinforced polymer (BFRP) sandwich infill panels. Fiber Reinforced Polymer (FRP) is a major evolution for energy dissipation when used as infill material of frame structure, a basic Polymer Matrix Composite (PMC) infill wall system consists of two FRP laminates surrounding an infill of foam core. Furthermore, this type of component is for retrofitting and strengthening frame structure to withstand the seismic disaster. In-plane compression was considered in the numerical analysis with ABAQUS platform to determine the buckling failure load of BFRP infill panel system. The present result shows that the sandwich BFRP infill panel system has higher resistance to buckling failure than those of glass fiber reinforced polymer (GFRP) infill panel system, i.e. 16% increase in buckling resistance capacity.

Keywords: Basalt Fiber Reinforced Polymer (BFRP), buckling performance, FEM analysis, sandwich infill panel

Procedia PDF Downloads 441
1168 Acrochordons and Diabetes Mellitus: A Case Control Study

Authors: Pratistha Shrestha

Abstract:

Background: Acrochordons (Skin tags) are common benign skin tumors usually occurring on the neck and major flexors of older people. These range in size from 1 mm to 1cm in diameter and are skin-colored or brownish. A possible association with diabetes mellitus has been suggested in previous studies, but the result is not conclusive. Objective: The aim of this study was to find out the association of diabetes mellitus with acrochordons. Material and Methods: One hundred and two patients were selected for the study. Among them, 51 (males–23 and females–28) with acrochordons were taken as cases, and 51 with other dermatologic diseases after matching age and sex were taken as controls. The patients were selected from OPD of the Department of Dermatology and Venereology in Universal College of Medical Sciences–Teaching Hospital (UCMS-TH). Blood glucose levels, including both fasting plasma glucose and 2-hour post-glucose load, were determined for both case and control and compared. Results: Patients with acrochordons had a significantly higher frequency of diabetes than the control group (p < 0.001). A total of 48.5% and 40% of patients with acrochordons having diabetes were obese and overweight, respectively. Conclusion: There is an increased risk of diabetes mellitus in patients with acrochordons. With regard to the importance of early diagnosis of diabetes, it is recommended a high level of suspicion for diabetes mellitus in patients with acrochordons.

Keywords: acrochordons, diabetes mellitus, obesity, skin tags

Procedia PDF Downloads 156
1167 Observation on the Performance of Heritage Structures in Kathmandu Valley, Nepal during the 2015 Gorkha Earthquake

Authors: K. C. Apil, Keshab Sharma, Bigul Pokharel

Abstract:

Kathmandu Valley, capital city of Nepal houses numerous historical monuments as well as religious structures which are as old as from the 4th century A.D. The city alone is home to seven UNESCO’s world heritage sites including various public squares and religious sanctums which are often regarded as living heritages by various historians and archeological explorers. Recently on April 25, 2015, the capital city including other nearby locations was struck with Gorkha earthquake of moment magnitude (Mw) 7.8, followed by the strongest aftershock of moment magnitude (Mw) 7.3 on May 12. This study reports structural failures and collapse of heritage structures in Kathmandu Valley during the earthquake and presents preliminary findings as to the causes of failures and collapses. Field reconnaissance was carried immediately after the main shock and the aftershock, in major heritage sites: UNESCO world heritage sites, a number of temples and historic buildings in Kathmandu Durbar Square, Patan Durbar Square, and Bhaktapur Durbar Square. Despite such catastrophe, a significant number of heritage structures stood high, performing very well during the earthquake. Preliminary reports from archeological department suggest that 721 of such structures were severely affected, whereas numbers within the valley only were 444 including 76 structures which were completely collapsed. This study presents recorded accelerograms and geology of Kathmandu Valley. Structural typology and architecture of the heritage structures in Kathmandu Valley are briefly described. Case histories of damaged heritage structures, the patterns, and the failure mechanisms are also discussed in this paper. It was observed that performance of heritage structures was influenced by the multiple factors such as structural and architecture typology, configuration, and structural deficiency, local ground site effects and ground motion characteristics, age and maintenance level, material quality etc. Most of such heritage structures are of masonry type using bricks and earth-mortar as a bonding agent. The walls' resistance is mainly compressive, thus capable of withstanding vertical static gravitational load but not horizontal dynamic seismic load. There was no definitive pattern of damage to heritage structures as most of them behaved as a composite structure. Some structures were extensively damaged in some locations, while structures with similar configuration at nearby location had little or no damage. Out of major heritage structures, Dome, Pagoda (2, 3 or 5 tiered temples) and Shikhara structures were studied with similar variables. Studying varying degrees of damages in such structures, it was found that Shikhara structures were most vulnerable one where Dome structures were found to be the most stable one, followed by Pagoda structures. The seismic performance of the masonry-timber and stone masonry structures were slightly better than that of the masonry structures. Regular maintenance and periodic seismic retrofitting seems to have played pivotal role in strengthening seismic performance of the structure. The study also recommends some key functions to strengthen the seismic performance of such structures through study based on structural analysis, building material behavior and retrofitting details. The result also recognises the importance of documentation of traditional knowledge and its revised transformation in modern technology.

Keywords: Gorkha earthquake, field observation, heritage structure, seismic performance, masonry building

Procedia PDF Downloads 151
1166 Experimental Stress Analysis on Pipeline in Condition of Frost Heave and Thaw Settlement

Authors: Zhiqiang Cheng, Qingliang He, Lu Li, Jie Ren

Abstract:

The safety of pipelines in the condition of frost heave or thaw settlement is necessarily evaluated. A full-scale experiment pipe with the typical structure configuration in station pipeline is constructed, the residual stress is tested with X-ray residual stress device, and the residual stress field of pipe is analyzed. The evolution of pipe strain with pressure in the scope of maximum allowable operation pressure (MAOP) is investigated by both strain gauge and X-ray methods. Load caused by frost heave or thaw settlement is simulated by two ways of lifting jack. The relation of maximum stress of pipe and clearances between supporter and pipe is studied in case of frost heave. The relation of maximum stress of pipe and maximum deformation of pipe on the ground is studied in case of thaw settlement. The study methods and results are valuable for safety assessment of station pipeline according to clearances or deformation in the condition of frost heave or thaw settlement.

Keywords: frost heave, pipeline, stress analysis, thaw settlement

Procedia PDF Downloads 187
1165 Air Dispersion Modeling for Prediction of Accidental Emission in the Atmosphere along Northern Coast of Egypt

Authors: Moustafa Osman

Abstract:

Modeling of air pollutants from the accidental release is performed for quantifying the impact of industrial facilities into the ambient air. The mathematical methods are requiring for the prediction of the accidental scenario in probability of failure-safe mode and analysis consequences to quantify the environmental damage upon human health. The initial statement of mitigation plan is supporting implementation during production and maintenance periods. In a number of mathematical methods, the flow rate at which gaseous and liquid pollutants might be accidentally released is determined from various types in term of point, line and area sources. These emissions are integrated meteorological conditions in simplified stability parameters to compare dispersion coefficients from non-continuous air pollution plumes. The differences are reflected in concentrations levels and greenhouse effect to transport the parcel load in both urban and rural areas. This research reveals that the elevation effect nearby buildings with other structure is higher 5 times more than open terrains. These results are agreed with Sutton suggestion for dispersion coefficients in different stability classes.

Keywords: air pollutants, dispersion modeling, GIS, health effect, urban planning

Procedia PDF Downloads 374
1164 Assessing Flexural Damage Mechanisms Induced by Mesoscopic Buckle Defects in Textile-Reinforced Polymer Matrix Composites Using Acoustic Emission Analysis

Authors: Christopher Okechukwu Ndukwe

Abstract:

This paper investigates and categorizes the flexural damage mechanisms in composite materials caused by mesoscopic out-of-plane buckle defects that occur during the initial stage of the resin transfer molding (RTM) process. The findings of this study have significant practical implications for the manufacturing and use of composite materials, as they provide a deeper understanding of these damage mechanisms and their analysis. During the initial stage of shaping a preform, alterations, and distortions in the reinforcement sample can significantly lead to defects, such as buckling, especially when forming double-curvature geometries. These recurring mesoscopic defects have been investigated using a specialized laboratory bench designed to reproduce buckle defects like those found in complex geometric shapes, such as tetrahedrons. The study examined two sample configurations with buckle defects in the longitudinal and transverse directions alongside a reference sample for comparison. An acoustic emission (AE) system, a well-regarded non-contact method for monitoring structural health, was used to analyze the mechanical behavior of material samples in detail. An unsupervised K-means algorithm was employed to classify the damage mechanisms—such as matrix cracking, interface damage, and fiber breakage linked to the samples' failure. A standard was established based on three AE parameters: absolute energy, amplitude, and the number of AE events. This standard helped identify the origin and sequence of damage propagation. Initially, the results of the AE parameters were superimposed with the flexural loading curves to pinpoint the loading phases during which damage began and the specific points at which the samples ultimately failed. The normalized density of AE events related to different damage mechanisms was evaluated by analyzing the number of AE events within the amplitude domain of the AE signals. The ranges of the identified damage mechanisms in the amplitude plane illustrate the progression and order of load transfer among the elements of the composite material. In the reference sample, the AE event signals corresponding to the three classes of damage mechanisms partially overlap with adjacent signals. In contrast, the two defective sample configurations showed that the overlapping AE event signals for the respective damage mechanisms converged within the intermediate damage mode area at specific points, depending on the sample configuration. The convergence points in the samples with transverse defects were identified relatively earlier than in the other samples. Low and high amplitude ranges characterize the matrix cracking and fiber breakage damage mechanisms. The low amplitude damage occurred over a more extended length, while the high amplitude damage began much earlier. This results in the signals from both damage mechanisms converging at the center of the interface damage zone. This convergence suggests that all individual composite components fail concurrently at specific points in the defective samples, resulting in rapid fragmentation and ultimately contributing to failure. Overall, the results show that mesoscopic out-of-plane buckling in all directions affects the composite's flexural response, with more severe effects observed when the load is applied transversely.

Keywords: acoustic emission, composite reinforcement, damage mechanisms, mesoscopic buckle defects

Procedia PDF Downloads 0
1163 Hysteresis Modeling in Iron-Dominated Magnets Based on a Deep Neural Network Approach

Authors: Maria Amodeo, Pasquale Arpaia, Marco Buzio, Vincenzo Di Capua, Francesco Donnarumma

Abstract:

Different deep neural network architectures have been compared and tested to predict magnetic hysteresis in the context of pulsed electromagnets for experimental physics applications. Modelling quasi-static or dynamic major and especially minor hysteresis loops is one of the most challenging topics for computational magnetism. Recent attempts at mathematical prediction in this context using Preisach models could not attain better than percent-level accuracy. Hence, this work explores neural network approaches and shows that the architecture that best fits the measured magnetic field behaviour, including the effects of hysteresis and eddy currents, is the nonlinear autoregressive exogenous neural network (NARX) model. This architecture aims to achieve a relative RMSE of the order of a few 100 ppm for complex magnetic field cycling, including arbitrary sequences of pseudo-random high field and low field cycles. The NARX-based architecture is compared with the state-of-the-art, showing better performance than the classical operator-based and differential models, and is tested on a reference quadrupole magnetic lens used for CERN particle beams, chosen as a case study. The training and test datasets are a representative example of real-world magnet operation; this makes the good result obtained very promising for future applications in this context.

Keywords: deep neural network, magnetic modelling, measurement and empirical software engineering, NARX

Procedia PDF Downloads 130
1162 Extracting the Coupled Dynamics in Thin-Walled Beams from Numerical Data Bases

Authors: Mohammad A. Bani-Khaled

Abstract:

In this work we use the Discrete Proper Orthogonal Decomposition transform to characterize the properties of coupled dynamics in thin-walled beams by exploiting numerical simulations obtained from finite element simulations. The outcomes of the will improve our understanding of the linear and nonlinear coupled behavior of thin-walled beams structures. Thin-walled beams have widespread usage in modern engineering application in both large scale structures (aeronautical structures), as well as in nano-structures (nano-tubes). Therefore, detailed knowledge in regard to the properties of coupled vibrations and buckling in these structures are of great interest in the research community. Due to the geometric complexity in the overall structure and in particular in the cross-sections it is necessary to involve computational mechanics to numerically simulate the dynamics. In using numerical computational techniques, it is not necessary to over simplify a model in order to solve the equations of motions. Computational dynamics methods produce databases of controlled resolution in time and space. These numerical databases contain information on the properties of the coupled dynamics. In order to extract the system dynamic properties and strength of coupling among the various fields of the motion, processing techniques are required. Time- Proper Orthogonal Decomposition transform is a powerful tool for processing databases for the dynamics. It will be used to study the coupled dynamics of thin-walled basic structures. These structures are ideal to form a basis for a systematic study of coupled dynamics in structures of complex geometry.

Keywords: coupled dynamics, geometric complexity, proper orthogonal decomposition (POD), thin walled beams

Procedia PDF Downloads 418
1161 Towards a Distributed Computation Platform Tailored for Educational Process Discovery and Analysis

Authors: Awatef Hicheur Cairns, Billel Gueni, Hind Hafdi, Christian Joubert, Nasser Khelifa

Abstract:

Given the ever changing needs of the job markets, education and training centers are increasingly held accountable for student success. Therefore, education and training centers have to focus on ways to streamline their offers and educational processes in order to achieve the highest level of quality in curriculum contents and managerial decisions. Educational process mining is an emerging field in the educational data mining (EDM) discipline, concerned with developing methods to discover, analyze and provide a visual representation of complete educational processes. In this paper, we present our distributed computation platform which allows different education centers and institutions to load their data and access to advanced data mining and process mining services. To achieve this, we present also a comparative study of the different clustering techniques developed in the context of process mining to partition efficiently educational traces. Our goal is to find the best strategy for distributing heavy analysis computations on many processing nodes of our platform.

Keywords: educational process mining, distributed process mining, clustering, distributed platform, educational data mining, ProM

Procedia PDF Downloads 454
1160 Controlled Deconstruction and Rehabilitation of Fire Damaged Structure

Authors: Javed Y. Uppal

Abstract:

In this paper, a case study of a 13 storied multi storied main headquarters building of the Lahore Development Authority Lahore Pakistan has been presented, the 9th floor of which caught fire due to short circuiting and the flare spread through air-conditioning ducts to top three floors, and the building remained under fire for 15 hours before it was quenched. Some columns at the upper 3 floors started crumbling down, which were immediately propped. A visual inspection of site was first carried out, followed by onsite material tests and lab tests for residual strengths, which led to the decision of removal of the top 3 floors in a planned sequence of diamond cutting of middle strips, column strips, and shear walls, in panels and their lifting up by overhead cranes. The waffle slabs were stitched and jacketed with low viscosity polymer layer. The damaged bars were supplemented. The cracked columns were jacketed as well. The validity of rehabilitation procedure was established by load deflection behavior tests and long term performance observation over a period of 5 years. The paper concludes that the procedures adopted could be recommended for such events.

Keywords: fire damage, shotcrete, waffle slabs, delamination, drying cracking, jacketing

Procedia PDF Downloads 112
1159 Available Transmission Transfer Efficiency (ATTE) as an Index Measurement for Power Transmission Grid Performance

Authors: Ahmad Abubakar Sadiq, Nwohu Ndubuka Mark, Jacob Tsado, Ahmad Adam Asharaf, Agbachi E. Okenna, Enesi E. Yahaya, Ambafi James Garba

Abstract:

Transmission system performance analysis is vital to proper planning and operations of power systems in the presence of deregulation. Key performance indicators (KPIs) are often used as measure of degree of performance. This paper gives a novel method to determine the transmission efficiency by evaluating the ratio of real power losses incurred from a specified transfer direction. Available Transmission Transfer Efficiency (ATTE) expresses the percentage of real power received resulting from inter-area available power transfer. The Tie line (Rated system path) performance is seen to differ from system wide (Network response) performance and ATTE values obtained are transfer direction specific. The required sending end quantities with specified receiving end ATC and the receiving end power circle diagram are obtained for the tie line analysis. The amount of real power loss load relative to the available transfer capability gives a measure of the transmission grid efficiency.

Keywords: performance, transmission system, real power efficiency, available transfer capability

Procedia PDF Downloads 649
1158 Voltage Problem Location Classification Using Performance of Least Squares Support Vector Machine LS-SVM and Learning Vector Quantization LVQ

Authors: M. Khaled Abduesslam, Mohammed Ali, Basher H. Alsdai, Muhammad Nizam Inayati

Abstract:

This paper presents the voltage problem location classification using performance of Least Squares Support Vector Machine (LS-SVM) and Learning Vector Quantization (LVQ) in electrical power system for proper voltage problem location implemented by IEEE 39 bus New-England. The data was collected from the time domain simulation by using Power System Analysis Toolbox (PSAT). Outputs from simulation data such as voltage, phase angle, real power and reactive power were taken as input to estimate voltage stability at particular buses based on Power Transfer Stability Index (PTSI).The simulation data was carried out on the IEEE 39 bus test system by considering load bus increased on the system. To verify of the proposed LS-SVM its performance was compared to Learning Vector Quantization (LVQ). The results showed that LS-SVM is faster and better as compared to LVQ. The results also demonstrated that the LS-SVM was estimated by 0% misclassification whereas LVQ had 7.69% misclassification.

Keywords: IEEE 39 bus, least squares support vector machine, learning vector quantization, voltage collapse

Procedia PDF Downloads 442
1157 Agile Implementation of 'PULL' Principles in a Manufacturing Process Chain for Aerospace Composite Parts

Authors: Torsten Mielitz, Dietmar Schulz, York C. Roth

Abstract:

Market forecasts show a significant increase in the demand for aircraft within the next two decades and production rates will be adapted accordingly. Improvements and optimizations in the industrial system are becoming more important to cope with future challenges in manufacturing and assembly. Highest quality standards have to be met for aerospace parts, whereas cost effective production in industrial systems and methodologies are also a key driver. A look at other industries like e.g., automotive shows well established processes to streamline existing manufacturing systems. In this paper, the implementation of 'PULL' principles in an existing manufacturing process chain for a large scale composite part is presented. A nonlinear extrapolation based on 'Little's Law' showed a risk of a significant increase of parts needed in the process chain to meet future demand. A project has been set up to mitigate the risk whereas the methodology has been changed from a traditional milestone approach in the beginning towards an agile way of working in the end in order to facilitate immediate benefits in the shop-floor. Finally, delivery rates could be increased avoiding more semi-finished parts in the process chain (work in progress & inventory) by the successful implementation of the 'PULL' philosophy in the shop-floor between the work stations. Lessons learned during the running project as well as implementation and operations phases are discussed in order to share best practices.

Keywords: aerospace composite part manufacturing, PULL principles, shop-floor implementation, lessons learned

Procedia PDF Downloads 172
1156 The Effect of Connections Form on Seismic Behavior of Portal Frames

Authors: Kiavash Heidarzadeh

Abstract:

The seismic behavior of portal frames is mainly based on the shape of their joints. In these structures, vertical and inclined connections are the two general forms of connections. The shapes of connections can make differences in seismic responses of portal frames. Hence, in this paper, for the first step, the non-linear performance of portal frames with vertical and inclined connections has been investigated by monotonic analysis. Also, the effect of section sizes is considered in this analysis. For comparison, hysteresis curves have been evaluated for two model frames with different forms of connections. Each model has three various sizes of the column and beam. Other geometrical parameters have been considered constant. In the second step, for every model, an appropriate size of sections has been selected from the previous step. Next, the seismic behavior of each model has been analyzed by the time history method under three near-fault earthquake records. Finite element ABAQUS software is used for simulation and analysis of samples. Outputs show that connections form can impact on reaction forces of portal frames under earthquake loads. Also, it is understood that the load capacity in frames with vertical connections is more than the frames with inclined connections.

Keywords: inclined connections, monotonic, portal frames, seismic behavior, time history, vertical connections

Procedia PDF Downloads 223
1155 Simulation and Control of the Flywheel System in the Rotor of a Wind Turbine Using Simulink and OpenFAST for Assessing the Effect on the Mechanical Loads

Authors: Chinazo Onyeka Eziuzo

Abstract:

This work presents the simulation and control of the flywheel system in the rotor of a wind turbine using Simulink and OpenFAST for assessing the effect on the mechanical loads. This concept allows the flywheel system to serve two main tasks: supporting the power system and mitigating the mechanical loads in the wind turbine. These tasks are grouped into four control scenarios; scenario 1 represents steadying the power infeed in the Flywheel, scenario 2 represents steadying power with FW and grid loss, scenario 3 represents mitigating excitations from gravity, and scenario 4 represents damping in-plane blade vibrations. The s-function of the OpenFAST model was used to substitute the given 1st Eigen mode model of the WT. After that, the simulations were run for the above-listed scenarios. Additionally, the effects of the control options on the mechanical loads were assessed, and it was established that the FW system assists in steadying infeed power and mechanical load mitigation.

Keywords: simulation, control, wind turbine, OpenFAST

Procedia PDF Downloads 127
1154 Effect of Joule Heating on Chemically Reacting Micropolar Fluid Flow over Truncated Cone with Convective Boundary Condition Using Spectral Quasilinearization Method

Authors: Pradeepa Teegala, Ramreddy Chetteti

Abstract:

This work emphasizes the effects of heat generation/absorption and Joule heating on chemically reacting micropolar fluid flow over a truncated cone with convective boundary condition. For this complex fluid flow problem, the similarity solution does not exist and hence using non-similarity transformations, the governing fluid flow equations along with related boundary conditions are transformed into a set of non-dimensional partial differential equations. Several authors have applied the spectral quasi-linearization method to solve the ordinary differential equations, but here the resulting nonlinear partial differential equations are solved for non-similarity solution by using a recently developed method called the spectral quasi-linearization method (SQLM). Comparison with previously published work on special cases of the problem is performed and found to be in excellent agreement. The influence of pertinent parameters namely Biot number, Joule heating, heat generation/absorption, chemical reaction, micropolar and magnetic field on physical quantities of the flow are displayed through graphs and the salient features are explored in detail. Further, the results are analyzed by comparing with two special cases, namely, vertical plate and full cone wherever possible.

Keywords: chemical reaction, convective boundary condition, joule heating, micropolar fluid, spectral quasilinearization method

Procedia PDF Downloads 346
1153 INRAM-3DCNN: Multi-Scale Convolutional Neural Network Based on Residual and Attention Module Combined with Multilayer Perceptron for Hyperspectral Image Classification

Authors: Jianhong Xiang, Rui Sun, Linyu Wang

Abstract:

In recent years, due to the continuous improvement of deep learning theory, Convolutional Neural Network (CNN) has played a great superior performance in the research of Hyperspectral Image (HSI) classification. Since HSI has rich spatial-spectral information, only utilizing a single dimensional or single size convolutional kernel will limit the detailed feature information received by CNN, which limits the classification accuracy of HSI. In this paper, we design a multi-scale CNN with MLP based on residual and attention modules (INRAM-3DCNN) for the HSI classification task. We propose to use multiple 3D convolutional kernels to extract the packet feature information and fully learn the spatial-spectral features of HSI while designing residual 3D convolutional branches to avoid the decline of classification accuracy due to network degradation. Secondly, we also design the 2D Inception module with a joint channel attention mechanism to quickly extract key spatial feature information at different scales of HSI and reduce the complexity of the 3D model. Due to the high parallel processing capability and nonlinear global action of the Multilayer Perceptron (MLP), we use it in combination with the previous CNN structure for the final classification process. The experimental results on two HSI datasets show that the proposed INRAM-3DCNN method has superior classification performance and can perform the classification task excellently.

Keywords: INRAM-3DCNN, residual, channel attention, hyperspectral image classification

Procedia PDF Downloads 79
1152 Sectoral Energy Consumption in South Africa and Its Implication for Economic Growth

Authors: Kehinde Damilola Ilesanmi, Dev Datt Tewari

Abstract:

South Africa is in its post-industrial era moving from the primary and secondary sector to the tertiary sector. The study investigated the impact of the disaggregated energy consumption (coal, oil, and electricity) on the primary, secondary and tertiary sectors of the economy between 1980 and 2012 in South Africa. Using vector error correction model, it was established that South Africa is an energy dependent economy, and that energy (especially electricity and oil) is a limiting factor of growth. This implies that implementation of energy conservation policies may hamper economic growth. Output growth is significantly outpacing energy supply, which has necessitated load shedding. To meet up the excess energy demand, there is a need to increase the generating capacity which will necessitate increased investment in the electricity sector as well as strategic steps to increase oil production. There is also need to explore more renewable energy sources, in order to meet the growing energy demand without compromising growth and environmental sustainability. Policy makers should also pursue energy efficiency policies especially at sectoral level of the economy.

Keywords: causality, economic growth, energy consumption, hypothesis, sectoral output

Procedia PDF Downloads 470
1151 Multiparametric Optimization of Water Treatment Process for Thermal Power Plants

Authors: Balgaisha Mukanova, Natalya Glazyrina, Sergey Glazyrin

Abstract:

The formulated problem of optimization of the technological process of water treatment for thermal power plants is considered in this article. The problem is of multiparametric nature. To optimize the process, namely, reduce the amount of waste water, a new technology was developed to reuse such water. A mathematical model of the technology of wastewater reuse was developed. Optimization parameters were determined. The model consists of a material balance equation, an equation describing the kinetics of ion exchange for the non-equilibrium case and an equation for the ion exchange isotherm. The material balance equation includes a nonlinear term that depends on the kinetics of ion exchange. A direct problem of calculating the impurity concentration at the outlet of the water treatment plant was numerically solved. The direct problem was approximated by an implicit point-to-point computation difference scheme. The inverse problem was formulated as relates to determination of the parameters of the mathematical model of the water treatment plant operating in non-equilibrium conditions. The formulated inverse problem was solved. Following the results of calculation the time of start of the filter regeneration process was determined, as well as the period of regeneration process and the amount of regeneration and wash water. Multi-parameter optimization of water treatment process for thermal power plants allowed decreasing the amount of wastewater by 15%.

Keywords: direct problem, multiparametric optimization, optimization parameters, water treatment

Procedia PDF Downloads 387
1150 Reinforcement Learning for Robust Missile Autopilot Design: TRPO Enhanced by Schedule Experience Replay

Authors: Bernardo Cortez, Florian Peter, Thomas Lausenhammer, Paulo Oliveira

Abstract:

Designing missiles’ autopilot controllers have been a complex task, given the extensive flight envelope and the nonlinear flight dynamics. A solution that can excel both in nominal performance and in robustness to uncertainties is still to be found. While Control Theory often debouches into parameters’ scheduling procedures, Reinforcement Learning has presented interesting results in ever more complex tasks, going from videogames to robotic tasks with continuous action domains. However, it still lacks clearer insights on how to find adequate reward functions and exploration strategies. To the best of our knowledge, this work is a pioneer in proposing Reinforcement Learning as a framework for flight control. In fact, it aims at training a model-free agent that can control the longitudinal non-linear flight dynamics of a missile, achieving the target performance and robustness to uncertainties. To that end, under TRPO’s methodology, the collected experience is augmented according to HER, stored in a replay buffer and sampled according to its significance. Not only does this work enhance the concept of prioritized experience replay into BPER, but it also reformulates HER, activating them both only when the training progress converges to suboptimal policies, in what is proposed as the SER methodology. The results show that it is possible both to achieve the target performance and to improve the agent’s robustness to uncertainties (with low damage on nominal performance) by further training it in non-nominal environments, therefore validating the proposed approach and encouraging future research in this field.

Keywords: Reinforcement Learning, flight control, HER, missile autopilot, TRPO

Procedia PDF Downloads 264
1149 Crashworthiness Optimization of an Automotive Front Bumper in Composite Material

Authors: S. Boria

Abstract:

In the last years, the crashworthiness of an automotive body structure can be improved, since the beginning of the design stage, thanks to the development of specific optimization tools. It is well known how the finite element codes can help the designer to investigate the crashing performance of structures under dynamic impact. Therefore, by coupling nonlinear mathematical programming procedure and statistical techniques with FE simulations, it is possible to optimize the design with reduced number of analytical evaluations. In engineering applications, many optimization methods which are based on statistical techniques and utilize estimated models, called meta-models, are quickly spreading. A meta-model is an approximation of a detailed simulation model based on a dataset of input, identified by the design of experiments (DOE); the number of simulations needed to build it depends on the number of variables. Among the various types of meta-modeling techniques, Kriging method seems to be excellent in accuracy, robustness and efficiency compared to other ones when applied to crashworthiness optimization. Therefore the application of such meta-model was used in this work, in order to improve the structural optimization of a bumper for a racing car in composite material subjected to frontal impact. The specific energy absorption represents the objective function to maximize and the geometrical parameters subjected to some design constraints are the design variables. LS-DYNA codes were interfaced with LS-OPT tool in order to find the optimized solution, through the use of a domain reduction strategy. With the use of the Kriging meta-model the crashworthiness characteristic of the composite bumper was improved.

Keywords: composite material, crashworthiness, finite element analysis, optimization

Procedia PDF Downloads 256
1148 Investigation of Gas Tungsten Arc Welding Parameters on Residual Stress of Heat Affected Zone in Inconel X750 Super Alloy Welding Using Finite Element Method

Authors: Kimia Khoshdel Vajari, Saber Saffar

Abstract:

Reducing the residual stresses caused by welding is desirable for the industry. The effect of welding sequence, as well as the effect of yield stress on the number of residual stresses generated in Inconel X750 superalloy sheets and beams, have been investigated. The finite element model used in this research is a three-dimensional thermal and mechanical model, and the type of analysis is indirect coupling. This analysis is done in two stages. First, thermal analysis is performed, and then the thermal changes of the first analysis are used as the applied load in the second analysis. ABAQUS has been used for modeling, and the Dflux subroutine has been used in the Fortran programming environment to move the arc and the molten pool. The results of this study show that the amount of tensile residual stress in symmetric, discontinuous, and symmetric-discontinuous welds is reduced to a maximum of 27%, 54%, and 37% compared to direct welding, respectively. The results also show that the amount of residual stresses created by welding increases linearly with increasing yield stress with a slope of 40%.

Keywords: residual stress, X750 superalloy, finite element, welding, thermal analysis

Procedia PDF Downloads 118
1147 Digital Twin for a Floating Solar Energy System with Experimental Data Mining and AI Modelling

Authors: Danlei Yang, Luofeng Huang

Abstract:

The integration of digital twin technology with renewable energy systems offers an innovative approach to predicting and optimising performance throughout the entire lifecycle. A digital twin is a continuously updated virtual replica of a real-world entity, synchronised with data from its physical counterpart and environment. Many digital twin companies today claim to have mature digital twin products, but their focus is primarily on equipment visualisation. However, the core of a digital twin should be its model, which can mirror, shadow, and thread with the real-world entity, which is still underdeveloped. For a floating solar energy system, a digital twin model can be defined in three aspects: (a) the physical floating solar energy system along with environmental factors such as solar irradiance and wave dynamics, (b) a digital model powered by artificial intelligence (AI) algorithms, and (c) the integration of real system data with the AI-driven model and a user interface. The experimental setup for the floating solar energy system, is designed to replicate real-ocean conditions of floating solar installations within a controlled laboratory environment. The system consists of a water tank that simulates an aquatic surface, where a floating catamaran structure supports a solar panel. The solar simulator is set up in three positions: one directly above and two inclined at a 45° angle in front and behind the solar panel. This arrangement allows the simulation of different sun angles, such as sunrise, midday, and sunset. The solar simulator is positioned 400 mm away from the solar panel to maintain consistent solar irradiance on its surface. Stability for the floating structure is achieved through ropes attached to anchors at the bottom of the tank, which simulates the mooring systems used in real-world floating solar applications. The floating solar energy system's sensor setup includes various devices to monitor environmental and operational parameters. An irradiance sensor measures solar irradiance on the photovoltaic (PV) panel. Temperature sensors monitor ambient air and water temperatures, as well as the PV panel temperature. Wave gauges measure wave height, while load cells capture mooring force. Inclinometers and ultrasonic sensors record heave and pitch amplitudes of the floating system’s motions. An electric load measures the voltage and current output from the solar panel. All sensors collect data simultaneously. Artificial neural network (ANN) algorithms are central to developing the digital model, which processes historical and real-time data, identifies patterns, and predicts the system’s performance in real time. The data collected from various sensors are partly used to train the digital model, with the remaining data reserved for validation and testing. The digital twin model combines the experimental setup with the ANN model, enabling monitoring, analysis, and prediction of the floating solar energy system's operation. The digital model mirrors the functionality of the physical setup, running in sync with the experiment to provide real-time insights and predictions. It provides useful industrial benefits, such as informing maintenance plans as well as design and control strategies for optimal energy efficiency. In long term, this digital twin will help improve overall solar energy yield whilst minimising the operational costs and risks.

Keywords: digital twin, floating solar energy system, experiment setup, artificial intelligence

Procedia PDF Downloads 8