Search results for: measurement accuracy
3487 Assessment of Dose: Area Product of Common Radiographic Examinations in Selected Southern Nigerian Hospitals
Authors: Lateef Bamidele
Abstract:
Over the years, radiographic examinations are the most used diagnostic tools in the Nigerian health care system, but most diagnostic examinations carried out do not have records of patient doses. Lack of adequate information on patient doses has been a major hindrance in quantifying the radiological risk associated with radiographic examinations. This study aimed at estimating dose–area product (DAP) of patient examined in X-Ray units in selected hospitals in Southern Nigeria. The standard projections selected are chest posterior-anterior (PA), abdomen anterior-posterior (AP), pelvis AP, pelvis lateral (LAT), skull AP/PA, skull LAT, lumbar spine AP, lumbar spine, LAT. Measurement of entrance surface dose (ESD) was carried out using thermoluminescent dosimeter (TLD). Measured ESDs were converted into DAP using the beam area of patients. The results show that the mean DAP ranged from 0.17 to 18.35 Gycm². The results obtained in this study when compared with those of NRPB-HPE were found to be higher. These are an indication of non optimization of operational conditions.Keywords: dose–area product, radiographic examinations, patient doses, optimization
Procedia PDF Downloads 1773486 The Application and Applicability of Computer System to Financial Management: A Case Study of College of Education, Oju, Benue State, Nigeria
Authors: Agih Ukuru Agih
Abstract:
This work is an appraisal of the application and applicability of computer system to financial management in improving the speed, performance, accuracy, and efficiency of the College of Education, Oju. The computerization of financial management, which is a recent development that has authentic and dedicated balancing of accounting records, would be of enormous benefits to the college. The core objective of this project is to recommend the software that typically matches a computerized institution, making for improved service, reduced fraud, mishandled funds, and financial records in the College of Education, Oju. Considering major globalization impacts in computerized financial management of the college, the study recommends among other things that the College of Education, Oju should endeavor to be positive towards computerized financial management in the institution.Keywords: computer system, balancing, accounting records, computerized financial management
Procedia PDF Downloads 3943485 Exploring Non-Governmental Organizations’ Performance Management: Bahrain Athletics Association as a Case Study
Authors: Nooralhuda Aljlas
Abstract:
In the ever-growing field of non-governmental organizations, the enhancement of performance management and measurement systems has been increasingly acknowledged by political, economic, social, legal, technological and environmental factors. Within Bahrain Athletics Association, such enhancement results from the key factors leading performance management including collaboration, feedback, human resource management, leadership and participative management. The exploratory, qualitative research conducted reviewed performance management theory. As reviewed, the key factors leading performance management were identified. Drawing on a non-governmental organization case study, the key factors leading Bahrain Athletics Association’s performance management were explored. By exploring the key factors leading Bahrain Athletics Association’s performance management, the research study proposed a theoretical framework of the key factors leading performance management in non-governmental organizations in general. The research study recommended further investigation of the role of the two key factors of command and control and leadership, combining military and civilian approaches to enhancing non-governmental organizations’ performance management.Keywords: Bahrain athletics association, exploratory, key factor, performance management
Procedia PDF Downloads 3663484 Uncommon Causes of Acute Abdominal Pain: A Pictorial Essay
Authors: Mahesh Hariharan, Rajan Balasubramaniam, Sharath Kumar Shetty, Shanthala Yadavalli, Mohammed Ahetasham, Sravya Devarapalli
Abstract:
Acute abdomen is one of the most common clinical conditions requiring a radiological investigation. Ultrasound is the primary modality of choice which can diagnose some of the common causes of acute abdomen. However, sometimes the underlying cause for the pain is far more complicated than expected to mandate a high degree of suspicion to suggest further investigation with contrast-enhanced computed tomography or magnetic resonance imaging. Here, we have compiled a comprehensive series of selected cases to highlight the conditions which can be easily overlooked unless carefully sought for. This also emphasizes the importance of multimodality approach to arrive at the final diagnosis with an increased overall diagnostic accuracy which in turn improves patient management and prognosis.Keywords: acute abdomen, contrast-enhanced computed tomography scan, magnetic resonance imaging, plain radiographs, ultrasound
Procedia PDF Downloads 3643483 SEAWIZARD-Multiplex AI-Enabled Graphene Based Lab-On-Chip Sensing Platform for Heavy Metal Ions Monitoring on Marine Water
Authors: M. Moreno, M. Alique, D. Otero, C. Delgado, P. Lacharmoise, L. Gracia, L. Pires, A. Moya
Abstract:
Marine environments are increasingly threatened by heavy metal contamination, including mercury (Hg), lead (Pb), and cadmium (Cd), posing significant risks to ecosystems and human health. Traditional monitoring techniques often fail to provide the spatial and temporal resolution needed for real-time detection of these contaminants, especially in remote or harsh environments. SEAWIZARD addresses these challenges by leveraging the flexibility, adaptability, and cost-effectiveness of printed electronics, with the integration of microfluidics to develop a compact, portable, and reusable sensor platform designed specifically for real-time monitoring of heavy metal ions in seawater. The SEAWIZARD sensor is a multiparametric Lab-on-Chip (LoC) device, a miniaturized system that integrates several laboratory functions into a single chip, drastically reducing sample volumes and improving adaptability. This platform integrates three printed graphene electrodes for the simultaneous detection of Hg, Cd and Pb via square wave voltammetry. These electrodes share the reference and the counter electrodes to improve space efficiency. Additionally, it integrates printed pH and temperature sensors to correct environmental interferences that may impact the accuracy of metal detection. The pH sensor is based on a carbon electrode with iridium oxide electrodeposited while the temperature sensor is graphene based. A protective dielectric layer is printed on top of the sensor to safeguard it in harsh marine conditions. The use of flexible polyethylene terephthalate (PET) as the substrate enables the sensor to conform to various surfaces and operate in challenging environments. One of the key innovations of SEAWIZARD is its integrated microfluidic layer, fabricated from cyclic olefin copolymer (COC). This microfluidic component allows a controlled flow of seawater over the sensing area, allowing for significant improved detection limits compared to direct water sampling. The system’s dual-channel design separates the detection of heavy metals from the measurement of pH and temperature, ensuring that each parameter is measured under optimal conditions. In addition, the temperature sensor is finely tuned with a serpentine-shaped microfluidic channel to ensure precise thermal measurements. SEAWIZARD also incorporates custom electronics that allow for wireless data transmission via Bluetooth, facilitating rapid data collection and user interface integration. Embedded artificial intelligence further enhances the platform by providing an automated alarm system, capable of detecting predefined metal concentration thresholds and issuing warnings when limits are exceeded. This predictive feature enables early warnings of potential environmental disasters, such as industrial spills or toxic levels of heavy metal pollutants, making SEAWIZARD not just a detection tool, but a comprehensive monitoring and early intervention system. In conclusion, SEAWIZARD represents a significant advancement in printed electronics applied to environmental sensing. By combining flexible, low-cost materials with advanced microfluidics, custom electronics, and AI-driven intelligence, SEAWIZARD offers a highly adaptable and scalable solution for real-time, high-resolution monitoring of heavy metals in marine environments. Its compact and portable design makes it an accessible, user-friendly tool with the potential to transform water quality monitoring practices and provide critical data to protect marine ecosystems from contamination-related risks.Keywords: lab-on-chip, printed electronics, real-time monitoring, microfluidics, heavy metal contamination
Procedia PDF Downloads 353482 Artificial Neural Networks with Decision Trees for Diagnosis Issues
Authors: Y. Kourd, D. Lefebvre, N. Guersi
Abstract:
This paper presents a new idea for fault detection and isolation (FDI) technique which is applied to industrial system. This technique is based on Neural Networks fault-free and Faulty behaviors Models (NNFM's). NNFM's are used for residual generation, while decision tree architecture is used for residual evaluation. The decision tree is realized with data collected from the NNFM’s outputs and is used to isolate detectable faults depending on computed threshold. Each part of the tree corresponds to specific residual. With the decision tree, it becomes possible to take the appropriate decision regarding the actual process behavior by evaluating few numbers of residuals. In comparison to usual systematic evaluation of all residuals, the proposed technique requires less computational effort and can be used for on line diagnosis. An application example is presented to illustrate and confirm the effectiveness and the accuracy of the proposed approach.Keywords: neural networks, decision trees, diagnosis, behaviors
Procedia PDF Downloads 5083481 Spatial Audio Player Using Musical Genre Classification
Authors: Jun-Yong Lee, Hyoung-Gook Kim
Abstract:
In this paper, we propose a smart music player that combines the musical genre classification and the spatial audio processing. The musical genre is classified based on content analysis of the musical segment detected from the audio stream. In parallel with the classification, the spatial audio quality is achieved by adding an artificial reverberation in a virtual acoustic space to the input mono sound. Thereafter, the spatial sound is boosted with the given frequency gains based on the musical genre when played back. Experiments measured the accuracy of detecting the musical segment from the audio stream and its musical genre classification. A listening test was performed based on the virtual acoustic space based spatial audio processing.Keywords: automatic equalization, genre classification, music segment detection, spatial audio processing
Procedia PDF Downloads 4293480 Study of Transformer and Motor Winding under Pulsed Power Application
Authors: Arijit Basuray, Saibal Chatterjee
Abstract:
Pulsed Power in the form of Recurrent Surge Generator (RSG) can be used for testing various parameters of Motor or Transformer windings including inter-turn, interlayer insulation. Windings with solid insulation in motor and transformer have many interfaces and undesirable defects, and these defects can be exposed under this nondestructive testing methodology. Due to rapid development in power electronics variable frequency drives (VFD), Dry Type or cast resin Transformer used with PWM Sine wave inverters for solar power, solid insulation system used nowadays are shifting more and more to a high-frequency application. Authors have used the recurrent surge generator for testing winding integrity as well as Partial Discharge(PD) at fast rising voltage enabling PD measurement at closer situation under which the insulation system is supposed to work. Authors have discussed test results on a different system with recurrent surge voltages of different rise time.Keywords: fast rising voltage, partial discharge, pulsed power, recurrent surge generator, solid insulation
Procedia PDF Downloads 2743479 Influence of Machining Process on Surface Integrity of Plasma Coating
Authors: T. Zlámal, J. Petrů, M. Pagáč, P. Krajkovič
Abstract:
For the required function of components with the thermal spray coating, it is necessary to perform additional machining of the coated surface. The paper deals with assessing the surface integrity of Metco 2042, a plasma sprayed coating, after its machining. The selected plasma sprayed coating serves as an abradable sealing coating in a jet engine. Therefore, the spray and its surface must meet high quality and functional requirements. Plasma sprayed coatings are characterized by lamellar structure, which requires a special approach to their machining. Therefore, the experimental part involves the set-up of special cutting tools and cutting parameters under which the applied coating was machined. For the assessment of suitably set machining parameters, selected parameters of surface integrity were measured and evaluated during the experiment. To determine the size of surface irregularities and the effect of the selected machining technology on the sprayed coating surface, the surface roughness parameters Ra and Rz were measured. Furthermore, the measurement of sprayed coating surface hardness by the HR 15 Y method before and after machining process was used to determine the surface strengthening. The changes of strengthening were detected after the machining. The impact of chosen cutting parameters on the surface roughness after the machining was not proven.Keywords: machining, plasma sprayed coating, surface integrity, strengthening
Procedia PDF Downloads 2683478 Development of Performance Measures for the Implementation of Total Quality Management in Indian Industry
Authors: Perminderjit Singh, Sukhvir Singh
Abstract:
Total Quality Management (TQM) refers to management methods used to enhance quality and productivity in business organizations. Total Quality Management (TQM) has become a frequently used term in discussions concerning quality. Total Quality management has brought rise in demands on the organizations policy and the customers have gained more importance in the organizations focus. TQM is considered as an important management tool, which helps the organizations to satisfy their customers. In present research critical success factors includes management commitment, customer satisfaction, continuous improvement, work culture and environment, supplier quality management, training and development, employee satisfaction and product/process design are studied. A questionnaire is developed to implement these critical success factors in implementation of total quality management in Indian industry. Questionnaires filled by consulting different industrial organizations. Data collected from questionnaires is analyzed by descriptive and importance indexes.Keywords: total quality management, critical success factor, employee satisfaction, supplier quality management, customer focus, quality information, quality measurement
Procedia PDF Downloads 4793477 The Impact on the Composition of Survey Refusals΄ Demographic Profile When Implementing Different Classifications
Authors: Eva Tsouparopoulou, Maria Symeonaki
Abstract:
The internationally documented declining survey response rates of the last two decades are mainly attributed to refusals. In fieldwork, a refusal may be obtained not only from the respondent himself/herself, but from other sources on the respondent’s behalf, such as other household members, apartment building residents or administrator(s), and neighborhood residents. In this paper, we investigate how the composition of the demographic profile of survey refusals changes when different classifications are implemented and the classification issues arising from that. The analysis is based on the 2002-2018 European Social Survey (ESS) datasets for Belgium, Germany, and United Kingdom. For these three countries, the size of selected sample units coded as a type of refusal for all nine under investigation rounds was large enough to meet the purposes of the analysis. The results indicate the existence of four different possible classifications that can be implemented and the significance of choosing the one that strengthens the contrasts of the different types of respondents' demographic profiles. Since the foundation of social quantitative research lies in the triptych of definition, classification, and measurement, this study aims to identify the multiplicity of the definition of survey refusals as a methodological tool for the continually growing research on non-response.Keywords: non-response, refusals, European social survey, classification
Procedia PDF Downloads 873476 Force Feedback Enabled Syringe for Aspiration and Biopsy
Authors: Pelin Su Firat, Sohyung Cho
Abstract:
Biopsy or aspiration procedures are known to be complicated as they involve the penetration of a needle through human tissues, including vital organs. This research presents the design of a force sensor-guided device to be used with syringes and needles for aspiration and biopsy. The development of the device was aimed to help accomplish accurate needle placement and increase the performance of the surgeon in navigating the tool and tracking the target. Specifically, a prototype for a force-sensor embedded syringe has been created using 3D (3-Dimensional) modeling and printing techniques in which two different force sensors were used to provide significant force feedback to users during the operations when needles pernitrate different tissues. From the extensive tests using synthetic tissues, it is shown that the proposed syringe design has accomplished the desired accuracy, efficiency, repeatability, and effectiveness. Further development is desirable through usability tests.Keywords: biopsy, syringe, force sensors, haptic feedback
Procedia PDF Downloads 723475 Mosaic Augmentation: Insights and Limitations
Authors: Olivia A. Kjorlien, Maryam Asghari, Farshid Alizadeh-Shabdiz
Abstract:
The goal of this paper is to investigate the impact of mosaic augmentation on the performance of object detection solutions. To carry out the study, YOLOv4 and YOLOv4-Tiny models have been selected, which are popular, advanced object detection models. These models are also representatives of two classes of complex and simple models. The study also has been carried out on two categories of objects, simple and complex. For this study, YOLOv4 and YOLOv4 Tiny are trained with and without mosaic augmentation for two sets of objects. While mosaic augmentation improves the performance of simple object detection, it deteriorates the performance of complex object detection, specifically having the largest negative impact on the false positive rate in a complex object detection case.Keywords: accuracy, false positives, mosaic augmentation, object detection, YOLOV4, YOLOV4-Tiny
Procedia PDF Downloads 1293474 A Highly Accurate Computer-Aided Diagnosis: CAD System for the Diagnosis of Breast Cancer by Using Thermographic Analysis
Authors: Mahdi Bazarganigilani
Abstract:
Computer-aided diagnosis (CAD) systems can play crucial roles in diagnosing crucial diseases such as breast cancer at the earliest. In this paper, a CAD system for the diagnosis of breast cancer was introduced and evaluated. This CAD system was developed by using spatio-temporal analysis of data on a set of consecutive thermographic images by employing wavelet transformation. By using this analysis, a very accurate machine learning model using random forest was obtained. The final results showed a promising accuracy of 91% in terms of the F1 measure indicator among 200 patients' sample data. The CAD system was further extended to obtain a detailed analysis of the effect of smaller sub-areas of each breast on the occurrence of cancer.Keywords: computer-aided diagnosis systems, thermographic analysis, spatio-temporal analysis, image processing, machine learning
Procedia PDF Downloads 2123473 Fiber-Optic Sensors for Hydrogen Peroxide Vapor Measurement
Authors: H. Akbari Khorami, P. Wild, N. Djilali
Abstract:
This paper reports on the response of a fiber-optic sensing probe to small concentrations of hydrogen peroxide (H2O2) vapor at room temperature. H2O2 has extensive applications in industrial and medical environments. Conversely, H2O2 can be a health hazard by itself. For example, H2O2 induces cellular damage in human cells and its presence can be used to diagnose illnesses such as asthma and human breast cancer. Hence, development of reliable H2O2 sensor is of vital importance to detect and measure this species. Ferric ferrocyanide, referred to as Prussian blue (PB), was deposited on the tip of a multimode optical fiber through the single source precursor technique and served as an indicator of H2O2 in a spectroscopic manner. Sensing tests were performed in H2O2-H2O vapor mixtures with different concentrations of H2O2. The results of sensing tests show the sensor is able to detect H2O2 concentrations in the range of 50.6 ppm to 229.5 ppm. Furthermore, the sensor response to H2O2 concentrations is linear in a log-log scale with the adjacent R-square of 0.93. This sensing behavior allows us to detect and quantify the concentration of H2O2 in the vapor phase.Keywords: chemical deposition, fiber-optic sensor, hydrogen peroxide vapor, prussian blue
Procedia PDF Downloads 3613472 MindFlow: A Collective Intelligence-Based System for Helping Stress Pattern Diagnosis
Authors: Andres Frederic
Abstract:
We present the MindFlow system supporting the detection and the diagnosis of stresses. The heart of the system is a knowledge synthesis engine allowing occupational health stakeholders (psychologists, occupational therapists and human resource managers) to formulate queries related to stress and responding to users requests by recommending a pattern of stress if one exists. The stress pattern diagnosis is based on expert knowledge stored in the MindFlow stress ontology including stress feature vector. The query processing may involve direct access to the MindFlow system by occupational health stakeholders, online communication between the MindFlow system and the MindFlow domain experts, or direct dialog between a occupational health stakeholder and a MindFlow domain expert. The MindFlow knowledge model is generic in the sense that it supports the needs of psychologists, occupational therapists and human resource managers. The system presented in this paper is currently under development as part of a Dutch-Japanese project and aims to assist organisation in the quick diagnosis of stress patterns.Keywords: occupational stress, stress management, physiological measurement, accident prevention
Procedia PDF Downloads 4353471 Development of Scratching Monitoring System Based on Mathematical Model of Unconstrained Bed Sensing Method
Authors: Takuya Sumi, Syoko Nukaya, Takashi Kaburagi, Hiroshi Tanaka, Kajiro Watanabe, Yosuke Kurihara
Abstract:
We propose an unconstrained measurement system for scratching motion based on mathematical model of unconstrained bed sensing method which could measure the bed vibrations due to the motion of the person on the bed. In this paper, we construct mathematical model of the unconstrained bed monitoring system, and we apply the unconstrained bed sensing method to the system for detecting scratching motion. The proposed sensors are placed under the three bed feet. When the person is lying on the bed, the output signals from the sensors are proportional to the magnitude of the vibration due to the scratching motion. Hence, we could detect the subject’s scratching motion from the output signals from ceramic sensors. We evaluated two scratching motions using the proposed system in the validity experiment as follows: First experiment is the subject’s scratching the right side cheek with his right hand, and; second experiment is the subject’s scratching the shin with another foot. As the results of the experiment, we recognized the scratching signals that enable the determination when the scratching occurred. Furthermore, the difference among the amplitudes of the output signals enabled us to estimate where the subject scratched.Keywords: unconstrained bed sensing method, scratching, body movement, itchy, piezoceramics
Procedia PDF Downloads 4163470 Electroencephalogram Signals Controlling a Parallax Boe-Bot Robot
Authors: Nema M. Salem, Hanan A. Altukhaifi, Amal Mukhtar, Reemaz K. Hetaimish
Abstract:
Recently, BCI field of research has gained a lot of interest. Apart from motor neuroprosthetics, many studies showed the possibility of controlling a virtual environment of a videogame using the acquired electroencephalogram signals (EEG) from the gamer. In addition, another study had successfully moved a farm tractor using the human’s EEG signals. This article utilizes the use of EEG signals, as a source of technology, in controlling a Parallax Boe-Bot robot. The commercial Emotive Epoc headset has been used in acquiring the EEG signals from rested subjects. Because the human's visual cortex can successfully differentiate between different colors, the red and green colors are used as visual stimuli for generating EEG signals using the Epoc. Arduino and Labview are used to translate the virtually pressed keys into instructions controlling the motion and rotation of the robot. Optimistic results have been achieved except for minor delay and accuracy in the robot’s response.Keywords: BCI, Emotiv Epoc headset, EEG, Labview, Arduino applications, robot
Procedia PDF Downloads 5233469 Localized Meshfree Methods for Solving 3D-Helmholtz Equation
Authors: Reza Mollapourasl, Majid Haghi
Abstract:
In this study, we develop local meshfree methods known as radial basis function-generated finite difference (RBF-FD) method and Hermite finite difference (RBF-HFD) method to design stencil weights and spatial discretization for Helmholtz equation. The convergence and stability of schemes are investigated numerically in three dimensions with irregular shaped domain. These localized meshless methods incorporate the advantages of the RBF method, finite difference and Hermite finite difference methods to handle the ill-conditioning issue that often destroys the convergence rate of global RBF methods. Moreover, numerical illustrations show that the proposed localized RBF type methods are efficient and applicable for problems with complex geometries. The convergence and accuracy of both schemes are compared by solving a test problem.Keywords: radial basis functions, Hermite finite difference, Helmholtz equation, stability
Procedia PDF Downloads 1023468 Existence of Nano-Organic Carbon Particles below the Size Range of 10 nm in the Indoor Air Environment
Authors: Bireswar Paul, Amitava Datta
Abstract:
Indoor air environment is a big concern in the last few decades in the developing countries, with increased focus on monitoring the air quality. In this work, an experimental study has been conducted to establish the existence of carbon nanoparticles below the size range of 10 nm in the non-sooting zone of a LPG/air partially premixed flame. Mainly, four optical techniques, UV absorption spectroscopy, fluorescence spectroscopy, dynamic light scattering and TEM have been used to characterize and measure the size of carbon nanoparticles in the sampled materials collected from the inner surface of the flame front. The existence of the carbon nanoparticles in the sampled material has been confirmed with the typical nature of the absorption and fluorescence spectra already reported in the literature. The band gap energy shows that the particles are made up of three to six aromatic rings. The size measurement by DLS technique also shows that the particles below the size range of 10 nm. The results of DLS are also corroborated by the TEM image of the same material.
Keywords: indoor air, carbon nanoparticle, lpg, partially premixed flame, optical techniques
Procedia PDF Downloads 2773467 Modelling Railway Noise Over Large Areas, Assisted by GIS
Authors: Conrad Weber
Abstract:
The modelling of railway noise over large projects areas can be very time consuming in terms of preparing the noise models and calculation time. An open-source GIS program has been utilised to assist with the modelling of operational noise levels for 675km of railway corridor. A range of GIS algorithms were utilised to break up the noise model area into manageable calculation sizes. GIS was utilised to prepare and filter a range of noise modelling inputs, including building files, land uses and ground terrain. A spreadsheet was utilised to manage the accuracy of key input parameters, including train speeds, train types, curve corrections, bridge corrections and engine notch settings. GIS was utilised to present the final noise modelling results. This paper explains the noise modelling process and how the spreadsheet and GIS were utilised to accurately model this massive project efficiently.Keywords: noise, modeling, GIS, rail
Procedia PDF Downloads 1233466 Trainability of Executive Functions during Preschool Age Analysis of Inhibition of 5-Year-Old Children
Authors: Christian Andrä, Pauline Hähner, Sebastian Ludyga
Abstract:
Introduction: In the recent past, discussions on the importance of physical activity for child development have contributed to a growing interest in executive functions, which refer to cognitive processes. By controlling, modulating and coordinating sub-processes, they make it possible to achieve superior goals. Major components include working memory, inhibition and cognitive flexibility. While executive functions can be trained easily in school children, there are still research deficits regarding the trainability during preschool age. Methodology: This quasi-experimental study with pre- and post-design analyzes 23 children [age: 5.0 (mean value) ± 0.7 (standard deviation)] from four different sports groups. The intervention group was made up of 13 children (IG: 4.9 ± 0.6), while the control group consisted of ten children (CG: 5.1 ± 0.9). Between pre-test and post-test, children from the intervention group participated special games that train executive functions (i.e., changing rules of the game, introduction of new stimuli in familiar games) for ten units of their weekly sports program. The sports program of the control group was not modified. A computer-based version of the Eriksen Flanker Task was employed in order to analyze the participants’ inhibition ability. In two rounds, the participants had to respond 50 times and as fast as possible to a certain target (direction of sight of a fish; the target was always placed in a central position between five fish). Congruent (all fish have the same direction of sight) and incongruent (central fish faces opposite direction) stimuli were used. Relevant parameters were response time and accuracy. The main objective was to investigate whether children from the intervention group show more improvement in the two parameters than the children from the control group. Major findings: The intervention group revealed significant improvements in congruent response time (pre: 1.34 s, post: 1.12 s, p<.01), while the control group did not show any statistically relevant difference (pre: 1.31 s, post: 1.24 s). Likewise, the comparison of incongruent response times indicates a comparable result (IG: pre: 1.44 s, post: 1.25 s, p<.05 vs. CG: pre: 1.38 s, post: 1.38 s). In terms of accuracy for congruent stimuli, the intervention group showed significant improvements (pre: 90.1 %, post: 95.9 %, p<.01). In contrast, no significant improvement was found for the control group (pre: 88.8 %, post: 92.9 %). Vice versa, the intervention group did not display any significant results for incongruent stimuli (pre: 74.9 %, post: 83.5 %), while the control group revealed a significant difference (pre: 68.9 %, post: 80.3 %, p<.01). The analysis of three out of four criteria demonstrates that children who took part in a special sports program improved more than children who did not. The contrary results for the last criterion could be caused by the control group’s low results from the pre-test. Conclusion: The findings illustrate that inhibition can be trained as early as in preschool age. The combination of familiar games with increased requirements for attention and control processes appears to be particularly suitable.Keywords: executive functions, flanker task, inhibition, preschool children
Procedia PDF Downloads 2543465 Eco Scale: A Tool for Assessing the Greenness of Pharmaceuticals Analysis
Authors: Heba M. Mohamed
Abstract:
Owing to scientific and public concern about health and environment and seeking for a better quality of life; “Green”, “Environmentally” and “Eco” friendly practices have been presented and implemented in different research areas. Subsequently, researchers’ attention is drawn in the direction of greening the analytical methodologies and taking the Green Analytical Chemistry principles (GAC) into consideration. It is of high importance to appraise the environmental impact of each of the implemented green approaches. Compared to the other traditional green metrics (E-factor, Atom economy and the process profile), the eco scale is the optimum choice to assess the environmental impact of the analytical procedures used for pharmaceuticals analysis. For analytical methodologies, Eco-Scale is calculated by allotting penalty points to any factor of the used analytical procedure which disagree and not match with the model green analysis, where the perfect green analysis has its Eco-Scale value of 100. In this work, calculation and comparison of the Eco-Scale for some of the reported green analytical methods was done, to accentuate their greening potentials. Where the different scores can reveal how green the method is, compared to the ideal value. The study emphasizes that greenness measurement is not only about the waste quantity determination but also dictates a holistic scheme, considering all factors.Keywords: eco scale, green analysis, environmentally friendly, pharmaceuticals analysis
Procedia PDF Downloads 4423464 Healthcare Data Mining Innovations
Authors: Eugenia Jilinguirian
Abstract:
In the healthcare industry, data mining is essential since it transforms the field by collecting useful data from large datasets. Data mining is the process of applying advanced analytical methods to large patient records and medical histories in order to identify patterns, correlations, and trends. Healthcare professionals can improve diagnosis accuracy, uncover hidden linkages, and predict disease outcomes by carefully examining these statistics. Additionally, data mining supports personalized medicine by personalizing treatment according to the unique attributes of each patient. This proactive strategy helps allocate resources more efficiently, enhances patient care, and streamlines operations. However, to effectively apply data mining, however, and ensure the use of private healthcare information, issues like data privacy and security must be carefully considered. Data mining continues to be vital for searching for more effective, efficient, and individualized healthcare solutions as technology evolves.Keywords: data mining, healthcare, big data, individualised healthcare, healthcare solutions, database
Procedia PDF Downloads 683463 Online Monitoring Rheological Property of Polymer Melt during Injection Molding
Authors: Chung-Chih Lin, Chien-Liang Wu
Abstract:
The detection of the polymer melt state during manufacture process is regarded as an efficient way to control the molded part quality in advance. Online monitoring rheological property of polymer melt during processing procedure provides an approach to understand the melt state immediately. Rheological property reflects the polymer melt state at different processing parameters and is very important in injection molding process especially. An approach that demonstrates how to calculate rheological property of polymer melt through in-process measurement, using injection molding as an example, is proposed in this study. The system consists of two sensors and a data acquisition module can process the measured data, which are used for the calculation of rheological properties of polymer melt. The rheological properties of polymer melt discussed in this study include shear rate and viscosity which are investigated with respect to injection speed and melt temperature. The results show that the effect of injection speed on the rheological properties is apparent, especially for high melt temperature and should be considered for precision molding process.Keywords: injection molding, melt viscosity, shear rate, monitoring
Procedia PDF Downloads 3833462 MPC of Single Phase Inverter for PV System
Authors: Irtaza M. Syed, Kaamran Raahemifar
Abstract:
This paper presents a model predictive control (MPC) of a utility interactive (UI) single phase inverter (SPI) for a photovoltaic (PV) system at residential/distribution level. The proposed model uses single-phase phase locked loop (PLL) to synchronize SPI with the grid and performs MPC control in a dq reference frame. SPI model consists of boost converter (BC), maximum power point tracking (MPPT) control, and a full bridge (FB) voltage source inverter (VSI). No PI regulators to tune and carrier and modulating waves are required to produce switching sequence. Instead, the operational model of VSI is used to synthesize sinusoidal current and track the reference. Model is validated using a three kW PV system at the input of UI-SPI in Matlab/Simulink. Implementation and results demonstrate simplicity and accuracy, as well as reliability of the model.Keywords: phase locked loop, voltage source inverter, single phase inverter, model predictive control, Matlab/Simulink
Procedia PDF Downloads 5343461 The Significant Effect of Wudu’ and Zikr in the Controlling of Emotional Pressure Using Biofeedback Emwave Technique
Authors: Mohd Anuar Awang Idris, Muhammad Nubli Abdul Wahab, Nora Yusma Mohamed Yusoff
Abstract:
Wudu’ (Ablution) and Zikr are amongst some of the spiritual tools which may help an individual control his mind, emotion and attitude. These tools are deemed to be able to deliver a positive impact on an individual’s psychophysiology. The main objective of this research is to determine the effects of Wudu’ (Ablution) and Zikr therapy using the biofeedback emWave application and technology. For this research, 13 students were selected as samples from the students’ representative body at the University Tenaga National, Malaysia. The DASS (Depression Anxiety Stress Scale) questionnaire was used to help with the assessment and measurement of each student’s ability in controlling his or her emotions before and after the therapies. The biofeedback emWave technology was utilized to monitor the student’s psychophysiology level. In addition, the data obtained from the Heart rate variability (HRV) test have also been used to affirm that Wudu’ and Zikr had had significant impacts on the student’s success in controlling his or her emotional pressure.Keywords: biofeedback EmWave, emotion, psychophysiology, wudu’, zikr
Procedia PDF Downloads 2073460 Development and Implementation of An "Electric Island" Monitoring Infrastructure for Promoting Energy Efficiency in Schools
Authors: Vladislav Grigorovitch, Marina Grigorovitch, David Pearlmutter, Erez Gal
Abstract:
The concept of “electric island” is involved with achieving the balance between the self-power generation ability of each educational institution and energy consumption demand. Photo-Voltaic (PV) solar system installed on the roofs of educational buildings is a common way to absorb the available solar energy and generate electricity for self-consumption and even for returning to the grid. The main objective of this research is to develop and implement an “electric island” monitoring infrastructure for promoting energy efficiency in educational buildings. A microscale monitoring methodology will be developed to provide a platform to estimate energy consumption performance classified by rooms and subspaces rather than the more common macroscale monitoring of the whole building. The monitoring platform will be established on the experimental sites, enabling an estimation and further analysis of the variety of environmental and physical conditions. For each building, separate measurement configurations will be applied taking into account the specific requirements, restrictions, location and infrastructure issues. The direct results of the measurements will be analyzed to provide deeper understanding of the impact of environmental conditions and sustainability construction standards, not only on the energy demand of public building, but also on the energy consumption habits of the children that study in those schools and the educational and administrative staff that is responsible for providing the thermal comfort conditions and healthy studying atmosphere for the children. A monitoring methodology being developed in this research is providing online access to real-time data of Interferential Therapy (IFTs) from any mobile phone or computer by simply browsing the dedicated website, providing powerful tools for policy makers for better decision making while developing PV production infrastructure to achieve “electric islands” in educational buildings. A detailed measurement configuration was technically designed based on the specific conditions and restriction of each of the pilot buildings. A monitoring and analysis methodology includes a large variety of environmental parameters inside and outside the schools to investigate the impact of environmental conditions both on the energy performance of the school and educational abilities of the children. Indoor measurements are mandatory to acquire the energy consumption data, temperature, humidity, carbon dioxide and other air quality conditions in different parts of the building. In addition to that, we aim to study the awareness of the users to the energy consideration and thus the impact on their energy consumption habits. The monitoring of outdoor conditions is vital for proper design of the off-grid energy supply system and validation of its sufficient capacity. The suggested outcomes of this research include: 1. both experimental sites are designed to have PV production and storage capabilities; 2. Developing an online information feedback platform. The platform will provide consumer dedicated information to academic researchers, municipality officials and educational staff and students; 3. Designing an environmental work path for educational staff regarding optimal conditions and efficient hours for operating air conditioning, natural ventilation, closing of blinds, etc.Keywords: sustainability, electric island, IOT, smart building
Procedia PDF Downloads 1803459 Application of Statistical Linearized Models for Investigations of Digital Dynamic Pulse-Frequency Control Systems
Authors: B. H. Aitchanov, Sh. K. Aitchanova, O. A. Baimuratov
Abstract:
This paper is focused on dynamic pulse-frequency modulation (DPFM) control systems. Currently, the control law based on DPFM control signals is widely used in direct digital control subsystems introduced in the automated control systems of technological processes. Statistical analysis of automatic control systems is reduced to its construction of functional relationships between the statistical characteristics of the errors processes and input processes. Structural and dynamic Volterra models of digital pulse-frequency control systems can be used to develop methods for generating the dependencies, differing accuracy, requiring the amount of information about the statistical characteristics of input processes and computing labor intensity of their use.Keywords: digital dynamic pulse-frequency control systems, dynamic pulse-frequency modulation, control object, discrete filter, impulse device, microcontroller
Procedia PDF Downloads 4953458 Application of Deep Learning Algorithms in Agriculture: Early Detection of Crop Diseases
Authors: Manaranjan Pradhan, Shailaja Grover, U. Dinesh Kumar
Abstract:
Farming community in India, as well as other parts of the world, is one of the highly stressed communities due to reasons such as increasing input costs (cost of seeds, fertilizers, pesticide), droughts, reduced revenue leading to farmer suicides. Lack of integrated farm advisory system in India adds to the farmers problems. Farmers need right information during the early stages of crop’s lifecycle to prevent damage and loss in revenue. In this paper, we use deep learning techniques to develop an early warning system for detection of crop diseases using images taken by farmers using their smart phone. The research work leads to building a smart assistant using analytics and big data which could help the farmers with early diagnosis of the crop diseases and corrective actions. The classical approach for crop disease management has been to identify diseases at crop level. Recently, ImageNet Classification using the convolutional neural network (CNN) has been successfully used to identify diseases at individual plant level. Our model uses convolution filters, max pooling, dense layers and dropouts (to avoid overfitting). The models are built for binary classification (healthy or not healthy) and multi class classification (identifying which disease). Transfer learning is used to modify the weights of parameters learnt through ImageNet dataset and apply them on crop diseases, which reduces number of epochs to learn. One shot learning is used to learn from very few images, while data augmentation techniques are used to improve accuracy with images taken from farms by using techniques such as rotation, zoom, shift and blurred images. Models built using combination of these techniques are more robust for deploying in the real world. Our model is validated using tomato crop. In India, tomato is affected by 10 different diseases. Our model achieves an accuracy of more than 95% in correctly classifying the diseases. The main contribution of our research is to create a personal assistant for farmers for managing plant disease, although the model was validated using tomato crop, it can be easily extended to other crops. The advancement of technology in computing and availability of large data has made possible the success of deep learning applications in computer vision, natural language processing, image recognition, etc. With these robust models and huge smartphone penetration, feasibility of implementation of these models is high resulting in timely advise to the farmers and thus increasing the farmers' income and reducing the input costs.Keywords: analytics in agriculture, CNN, crop disease detection, data augmentation, image recognition, one shot learning, transfer learning
Procedia PDF Downloads 121