Search results for: computational neural networks
2928 A Computational Approach for the Prediction of Relevant Olfactory Receptors in Insects
Authors: Zaide Montes Ortiz, Jorge Alberto Molina, Alejandro Reyes
Abstract:
Insects are extremely successful organisms. A sophisticated olfactory system is in part responsible for their survival and reproduction. The detection of volatile organic compounds can positively or negatively affect many behaviors in insects. Compounds such as carbon dioxide (CO2), ammonium, indol, and lactic acid are essential for many species of mosquitoes like Anopheles gambiae in order to locate vertebrate hosts. For instance, in A. gambiae, the olfactory receptor AgOR2 is strongly activated by indol, which accounts for almost 30% of human sweat. On the other hand, in some insects of agricultural importance, the detection and identification of pheromone receptors (PRs) in lepidopteran species has become a promising field for integrated pest management. For example, with the disruption of the pheromone receptor, BmOR1, mediated by transcription activator-like effector nucleases (TALENs), the sensitivity to bombykol was completely removed affecting the pheromone-source searching behavior in male moths. Then, the detection and identification of olfactory receptors in the genomes of insects is fundamental to improve our understanding of the ecological interactions, and to provide alternatives in the integrated pests and vectors management. Hence, the objective of this study is to propose a bioinformatic workflow to enhance the detection and identification of potential olfactory receptors in genomes of relevant insects. Applying Hidden Markov models (Hmms) and different computational tools, potential candidates for pheromone receptors in Tuta absoluta were obtained, as well as potential carbon dioxide receptors in Rhodnius prolixus, the main vector of Chagas disease. This study showed the validity of a bioinformatic workflow with a potential to improve the identification of certain olfactory receptors in different orders of insects.Keywords: bioinformatic workflow, insects, olfactory receptors, protein prediction
Procedia PDF Downloads 1482927 A Novel Probablistic Strategy for Modeling Photovoltaic Based Distributed Generators
Authors: Engy A. Mohamed, Y. G. Hegazy
Abstract:
This paper presents a novel algorithm for modeling photovoltaic based distributed generators for the purpose of optimal planning of distribution networks. The proposed algorithm utilizes sequential Monte Carlo method in order to accurately consider the stochastic nature of photovoltaic based distributed generators. The proposed algorithm is implemented in MATLAB environment and the results obtained are presented and discussed.Keywords: comulative distribution function, distributed generation, Monte Carlo
Procedia PDF Downloads 5832926 Fast and Non-Invasive Patient-Specific Optimization of Left Ventricle Assist Device Implantation
Authors: Huidan Yu, Anurag Deb, Rou Chen, I-Wen Wang
Abstract:
The use of left ventricle assist devices (LVADs) in patients with heart failure has been a proven and effective therapy for patients with severe end-stage heart failure. Due to the limited availability of suitable donor hearts, LVADs will probably become the alternative solution for patient with heart failure in the near future. While the LVAD is being continuously improved toward enhanced performance, increased device durability, reduced size, a better understanding of implantation management becomes critical in order to achieve better long-term blood supplies and less post-surgical complications such as thrombi generation. Important issues related to the LVAD implantation include the location of outflow grafting (OG), the angle of the OG, the combination between LVAD and native heart pumping, uniform or pulsatile flow at OG, etc. We have hypothesized that an optimal implantation of LVAD is patient specific. To test this hypothesis, we employ a novel in-house computational modeling technique, named InVascular, to conduct a systematic evaluation of cardiac output at aortic arch together with other pertinent hemodynamic quantities for each patient under various implantation scenarios aiming to get an optimal implantation strategy. InVacular is a powerful computational modeling technique that integrates unified mesoscale modeling for both image segmentation and fluid dynamics with the cutting-edge GPU parallel computing. It first segments the aortic artery from patient’s CT image, then seamlessly feeds extracted morphology, together with the velocity wave from Echo Ultrasound image of the same patient, to the computation model to quantify 4-D (time+space) velocity and pressure fields. Using one NVIDIA Tesla K40 GPU card, InVascular completes a computation from CT image to 4-D hemodynamics within 30 minutes. Thus it has the great potential to conduct massive numerical simulation and analysis. The systematic evaluation for one patient includes three OG anastomosis (ascending aorta, descending thoracic aorta, and subclavian artery), three combinations of LVAD and native heart pumping (1:1, 1:2, and 1:3), three angles of OG anastomosis (inclined upward, perpendicular, and inclined downward), and two LVAD inflow conditions (uniform and pulsatile). The optimal LVAD implantation is suggested through a comprehensive analysis of the cardiac output and related hemodynamics from the simulations over the fifty-four scenarios. To confirm the hypothesis, 5 random patient cases will be evaluated.Keywords: graphic processing unit (GPU) parallel computing, left ventricle assist device (LVAD), lumped-parameter model, patient-specific computational hemodynamics
Procedia PDF Downloads 1322925 Understanding the Conflict Between Ecological Environment and Human Activities in the Process of Urbanization
Authors: Yazhou Zhou, Yong Huang, Guoqin Ge
Abstract:
In the process of human social development, the coupling and coordinated development among the ecological environment(E), production(P), and living functions(L) is of great significance for sustainable development. This study uses an improved coupling coordination degree model (CCDM) to discover the coordination conflict between E and human settlement environment. The main work of this study is as follows: (1) It is found that in the process of urbanization development of Ya 'an city from 2014 to 2018, the degree of coupling (DOC) value between E, P, and L is high, but the coupling coordination degree (CCD) of the three is low, especially the DOC value of E and the other two has the biggest decline. (2) A more objective weight value is obtained, which can avoid the analysis error caused by subjective judgment weight value.Keywords: ecological environment, coupling coordination degree, neural network, sustainable development
Procedia PDF Downloads 792924 Solving LWE by Pregressive Pumps and Its Optimization
Authors: Leizhang Wang, Baocang Wang
Abstract:
General Sieve Kernel (G6K) is considered as currently the fastest algorithm for the shortest vector problem (SVP) and record holder of open SVP challenge. We study the lattice basis quality improvement effects of the Workout proposed in G6K, which is composed of a series of pumps to solve SVP. Firstly, we use a low-dimensional pump output basis to propose a predictor to predict the quality of high-dimensional Pumps output basis. Both theoretical analysis and experimental tests are performed to illustrate that it is more computationally expensive to solve the LWE problems by using a G6K default SVP solving strategy (Workout) than these lattice reduction algorithms (e.g. BKZ 2.0, Progressive BKZ, Pump, and Jump BKZ) with sieving as their SVP oracle. Secondly, the default Workout in G6K is optimized to achieve a stronger reduction and lower computational cost. Thirdly, we combine the optimized Workout and the Pump output basis quality predictor to further reduce the computational cost by optimizing LWE instances selection strategy. In fact, we can solve the TU LWE challenge (n = 65, q = 4225, = 0:005) 13.6 times faster than the G6K default Workout. Fourthly, we consider a combined two-stage (Preprocessing by BKZ- and a big Pump) LWE solving strategy. Both stages use dimension for free technology to give new theoretical security estimations of several LWE-based cryptographic schemes. The security estimations show that the securities of these schemes with the conservative Newhope’s core-SVP model are somewhat overestimated. In addition, in the case of LAC scheme, LWE instances selection strategy can be optimized to further improve the LWE-solving efficiency even by 15% and 57%. Finally, some experiments are implemented to examine the effects of our strategies on the Normal Form LWE problems, and the results demonstrate that the combined strategy is four times faster than that of Newhope.Keywords: LWE, G6K, pump estimator, LWE instances selection strategy, dimension for free
Procedia PDF Downloads 592923 Structure Clustering for Milestoning Applications of Complex Conformational Transitions
Authors: Amani Tahat, Serdal Kirmizialtin
Abstract:
Trajectory fragment methods such as Markov State Models (MSM), Milestoning (MS) and Transition Path sampling are the prime choice of extending the timescale of all atom Molecular Dynamics simulations. In these approaches, a set of structures that covers the accessible phase space has to be chosen a priori using cluster analysis. Structural clustering serves to partition the conformational state into natural subgroups based on their similarity, an essential statistical methodology that is used for analyzing numerous sets of empirical data produced by Molecular Dynamics (MD) simulations. Local transition kernel among these clusters later used to connect the metastable states using a Markovian kinetic model in MSM and a non-Markovian model in MS. The choice of clustering approach in constructing such kernel is crucial since the high dimensionality of the biomolecular structures might easily confuse the identification of clusters when using the traditional hierarchical clustering methodology. Of particular interest, in the case of MS where the milestones are very close to each other, accurate determination of the milestone identity of the trajectory becomes a challenging issue. Throughout this work we present two cluster analysis methods applied to the cis–trans isomerism of dinucleotide AA. The choice of nucleic acids to commonly used proteins to study the cluster analysis is two fold: i) the energy landscape is rugged; hence transitions are more complex, enabling a more realistic model to study conformational transitions, ii) Nucleic acids conformational space is high dimensional. A diverse set of internal coordinates is necessary to describe the metastable states in nucleic acids, posing a challenge in studying the conformational transitions. Herein, we need improved clustering methods that accurately identify the AA structure in its metastable states in a robust way for a wide range of confused data conditions. The single linkage approach of the hierarchical clustering available in GROMACS MD-package is the first clustering methodology applied to our data. Self Organizing Map (SOM) neural network, that also known as a Kohonen network, is the second data clustering methodology. The performance comparison of the neural network as well as hierarchical clustering method is studied by means of computing the mean first passage times for the cis-trans conformational rates. Our hope is that this study provides insight into the complexities and need in determining the appropriate clustering algorithm for kinetic analysis. Our results can improve the effectiveness of decisions based on clustering confused empirical data in studying conformational transitions in biomolecules.Keywords: milestoning, self organizing map, single linkage, structure clustering
Procedia PDF Downloads 2222922 Modelling of Heat Generation in a 18650 Lithium-Ion Battery Cell under Varying Discharge Rates
Authors: Foo Shen Hwang, Thomas Confrey, Stephen Scully, Barry Flannery
Abstract:
Thermal characterization plays an important role in battery pack design. Lithium-ion batteries have to be maintained between 15-35 °C to operate optimally. Heat is generated (Q) internally within the batteries during both the charging and discharging phases. This can be quantified using several standard methods. The most common method of calculating the batteries heat generation is through the addition of both the joule heating effects and the entropic changes across the battery. In addition, such values can be derived by identifying the open-circuit voltage (OCV), nominal voltage (V), operating current (I), battery temperature (T) and the rate of change of the open-circuit voltage in relation to temperature (dOCV/dT). This paper focuses on experimental characterization and comparative modelling of the heat generation rate (Q) across several current discharge rates (0.5C, 1C, and 1.5C) of a 18650 cell. The analysis is conducted utilizing several non-linear mathematical functions methods, including polynomial, exponential, and power models. Parameter fitting is carried out over the respective function orders; polynomial (n = 3~7), exponential (n = 2) and power function. The generated parameter fitting functions are then used as heat source functions in a 3-D computational fluid dynamics (CFD) solver under natural convection conditions. Generated temperature profiles are analyzed for errors based on experimental discharge tests, conducted at standard room temperature (25°C). Initial experimental results display low deviation between both experimental and CFD temperature plots. As such, the heat generation function formulated could be easier utilized for larger battery applications than other methods available.Keywords: computational fluid dynamics, curve fitting, lithium-ion battery, voltage drop
Procedia PDF Downloads 942921 Subjectivities of the Inhabitants and Trajectories of Family Life in Vulnerable Groups
Authors: Mora Kestelman
Abstract:
This paper analyzes various family groups of vulnerable populations as regards their family, educational, labor trajectory and sociability from a relational and historical approach based on archive research and fieldwork. Therefrom, their position and life projects are reconsidered as regards the planning and design of the habitat in which they are immersed. It concludes that a critical review of objectivity and subjectivity emphasizes the nonrational, often unconscious, forces that drive human and non-human relationships to configure identities, which, thus, permanently become constituent to the subjects.Keywords: social psychology, urban planning, self concept, social networks, identity theory
Procedia PDF Downloads 782920 Estimating Poverty Levels from Satellite Imagery: A Comparison of Human Readers and an Artificial Intelligence Model
Authors: Ola Hall, Ibrahim Wahab, Thorsteinn Rognvaldsson, Mattias Ohlsson
Abstract:
The subfield of poverty and welfare estimation that applies machine learning tools and methods on satellite imagery is a nascent but rapidly growing one. This is in part driven by the sustainable development goal, whose overarching principle is that no region is left behind. Among other things, this requires that welfare levels can be accurately and rapidly estimated at different spatial scales and resolutions. Conventional tools of household surveys and interviews do not suffice in this regard. While they are useful for gaining a longitudinal understanding of the welfare levels of populations, they do not offer adequate spatial coverage for the accuracy that is needed, nor are their implementation sufficiently swift to gain an accurate insight into people and places. It is this void that satellite imagery fills. Previously, this was near-impossible to implement due to the sheer volume of data that needed processing. Recent advances in machine learning, especially the deep learning subtype, such as deep neural networks, have made this a rapidly growing area of scholarship. Despite their unprecedented levels of performance, such models lack transparency and explainability and thus have seen limited downstream applications as humans generally are apprehensive of techniques that are not inherently interpretable and trustworthy. While several studies have demonstrated the superhuman performance of AI models, none has directly compared the performance of such models and human readers in the domain of poverty studies. In the present study, we directly compare the performance of human readers and a DL model using different resolutions of satellite imagery to estimate the welfare levels of demographic and health survey clusters in Tanzania, using the wealth quintile ratings from the same survey as the ground truth data. The cluster-level imagery covers all 608 cluster locations, of which 428 were classified as rural. The imagery for the human readers was sourced from the Google Maps Platform at an ultra-high resolution of 0.6m per pixel at zoom level 18, while that of the machine learning model was sourced from the comparatively lower resolution Sentinel-2 10m per pixel data for the same cluster locations. Rank correlation coefficients of between 0.31 and 0.32 achieved by the human readers were much lower when compared to those attained by the machine learning model – 0.69-0.79. This superhuman performance by the model is even more significant given that it was trained on the relatively lower 10-meter resolution satellite data while the human readers estimated welfare levels from the higher 0.6m spatial resolution data from which key markers of poverty and slums – roofing and road quality – are discernible. It is important to note, however, that the human readers did not receive any training before ratings, and had this been done, their performance might have improved. The stellar performance of the model also comes with the inevitable shortfall relating to limited transparency and explainability. The findings have significant implications for attaining the objective of the current frontier of deep learning models in this domain of scholarship – eXplainable Artificial Intelligence through a collaborative rather than a comparative framework.Keywords: poverty prediction, satellite imagery, human readers, machine learning, Tanzania
Procedia PDF Downloads 1022919 Application of Neuro-Fuzzy Technique for Optimizing the PVC Membrane Sensor
Authors: Majid Rezayi, Sh. Shahaboddin, HNM E. Mahmud, A. Yadollah, A. Saeid, A. Yatimah
Abstract:
In this study, the adaptive neuro-fuzzy inference system (ANFIS) was applied to obtain the membrane composition model affecting the potential response of our reported polymeric PVC sensor for determining the titanium (III) ions. The performance statistics of the artificial neural network (ANN) and linear regression models for potential slope prediction of membrane composition of titanium (III) ion selective electrode were compared with ANFIS technique. The results show that the ANFIS model can be used as a practical tool for obtaining the Nerntian slope of the proposed sensor in this study.Keywords: adaptive neuro fuzzy inference, PVC sensor, titanium (III) ions, Nerntian slope
Procedia PDF Downloads 2872918 Urban Design via Estimation Model for Traffic Index of Cities Based on an Artificial Intelligence
Authors: Seyed Sobhan Alvani, Mohammad Gohari
Abstract:
By developing cities and increasing the population, traffic congestion has become a vital problem. Due to this crisis, urban designers try to present solutions to decrease this difficulty. On the other hand, predicting the model with perfect accuracy is essential for solution-providing. The current study presents a model based on artificial intelligence which can predict traffic index based on city population, growth rate, and area. The accuracy of the model was evaluated, which is acceptable and it is around 90%. Thus, urban designers and planners can employ it for predicting traffic index in the future to provide strategies.Keywords: traffic index, population growth rate, cities wideness, artificial neural network
Procedia PDF Downloads 402917 Finite Element Analysis for Earing Prediction Incorporating the BBC2003 Material Model with Fully Implicit Integration Method: Derivation and Numerical Algorithm
Authors: Sajjad Izadpanah, Seyed Hadi Ghaderi, Morteza Sayah Irani, Mahdi Gerdooei
Abstract:
In this research work, a sophisticated yield criterion known as BBC2003, capable of describing planar anisotropic behaviors of aluminum alloy sheets, was integrated into the commercial finite element code ABAQUS/Standard via a user subroutine. The complete formulation of the implementation process using a fully implicit integration scheme, i.e., the classic backward Euler method, is presented, and relevant aspects of the yield criterion are introduced. In order to solve nonlinear differential and algebraic equations, the line-search algorithm was adopted in the user-defined material subroutine (UMAT) to expand the convergence domain of the iterative Newton-Raphson method. The developed subroutine was used to simulate a challenging computational problem with complex stress states, i.e., deep drawing of an anisotropic aluminum alloy AA3105. The accuracy and stability of the developed subroutine were confirmed by comparing the numerically predicted earing and thickness variation profiles with the experimental results, which showed an excellent agreement between numerical and experimental earing and thickness profiles. The integration of the BBC2003 yield criterion into ABAQUS/Standard represents a significant contribution to the field of computational mechanics and provides a useful tool for analyzing the mechanical behavior of anisotropic materials subjected to complex loading conditions.Keywords: BBC2003 yield function, plastic anisotropy, fully implicit integration scheme, line search algorithm, explicit and implicit integration schemes
Procedia PDF Downloads 732916 A Survey on Intelligent Techniques Based Modelling of Size Enlargement Process for Fine Materials
Authors: Mohammad Nadeem, Haider Banka, R. Venugopal
Abstract:
Granulation or agglomeration is a size enlargement process to transform the fine particulates into larger aggregates since the fine size of available materials and minerals poses difficulty in their utilization. Though a long list of methods is available in the literature for the modeling of granulation process to facilitate the in-depth understanding and interpretation of the system, there is still scope of improvements using novel tools and techniques. Intelligent techniques, such as artificial neural network, fuzzy logic, self-organizing map, support vector machine and others, have emerged as compelling alternatives for dealing with imprecision and complex non-linearity of the systems. The present study tries to review the applications of intelligent techniques in the modeling of size enlargement process for fine materials.Keywords: fine material, granulation, intelligent technique, modelling
Procedia PDF Downloads 3732915 Regional Problems of Electronic Governance in Autonomous Republic of Adjara
Authors: Manvelidze irakli, Iashvili Genadi
Abstract:
Research has shown that public institutions in Autonomous Republic of Ajara try their best to make their official electronic data (web-pages, social websites) more informative and improve them. Part of public institutions offer interesting electronic services and initiatives to the public although they are seldom used in communication process. The statistical analysis of the use of web-pages and social websites of public institutions for example their facebook page show lack of activity. The reason could be the fact that public institutions give people less possibility of interaction in official web-pages. Second reason could be the fact that these web-pages are less known to the public and the third reason could be the fact that heads of these institutions lack awareness about the necessity of strengthening citizens’ involvement. In order to increase people’s involvement in this process it is necessary to have at least 23 e-services in one web-page. The research has shown that 11 of the 16 public institutions have only 5 services which are contact, social networks and hotline. Besides introducing innovative services government institutions should evaluate them and make them popular and easily accessible for the public. It would be easy to solve this problem if public institutions had concrete strategic plan of public relations which involved matters connected with maximum usage of electronic services while interaction with citizens. For this moment only one governmental body has a functioning action plan of public relations. As a result of the research organizational, social, methodological and technical problems have been revealed. It should be considered that there are many feedback possibilities like forum, RSS, blogs, wiki, twitter, social networks, etc. usage of only one or three of such instruments indicate that there is no strategy of regional electronic governance. It is necessary to develop more mechanisms of feedback which will increase electronic interaction, discussions and it is necessary to introduce the service of online petitions. It is important to reduce the so-called “digital inequality” and increase internet access for the public. State actions should decrease such problems. In the end if such shortcomings will be improved the role of electronic interactions in democratic processes will increase.Keywords: e-Government, electronic services, information technology, regional government, regional government
Procedia PDF Downloads 3092914 “laws Drifting Off While Artificial Intelligence Thriving” – A Comparative Study with Special Reference to Computer Science and Information Technology
Authors: Amarendar Reddy Addula
Abstract:
Definition of Artificial Intelligence: Artificial intelligence is the simulation of mortal intelligence processes by machines, especially computer systems. Explicit operations of AI comprise expert systems, natural language processing, and speech recognition, and machine vision. Artificial Intelligence (AI) is an original medium for digital business, according to a new report by Gartner. The last 10 times represent an advance period in AI’s development, prodded by the confluence of factors, including the rise of big data, advancements in cipher structure, new machine literacy ways, the materialization of pall computing, and the vibrant open- source ecosystem. Influence of AI to a broader set of use cases and druggies and its gaining fashionability because it improves AI’s versatility, effectiveness, and rigidity. Edge AI will enable digital moments by employing AI for real- time analytics closer to data sources. Gartner predicts that by 2025, further than 50 of all data analysis by deep neural networks will do at the edge, over from lower than 10 in 2021. Responsible AI is a marquee term for making suitable business and ethical choices when espousing AI. It requires considering business and societal value, threat, trust, translucency, fairness, bias mitigation, explainability, responsibility, safety, sequestration, and nonsupervisory compliance. Responsible AI is ever more significant amidst growing nonsupervisory oversight, consumer prospects, and rising sustainability pretensions. Generative AI is the use of AI to induce new vestiges and produce innovative products. To date, generative AI sweats have concentrated on creating media content similar as photorealistic images of people and effects, but it can also be used for law generation, creating synthetic irregular data, and designing medicinals and accoutrements with specific parcels. AI is the subject of a wide- ranging debate in which there's a growing concern about its ethical and legal aspects. Constantly, the two are varied and nonplussed despite being different issues and areas of knowledge. The ethical debate raises two main problems the first, abstract, relates to the idea and content of ethics; the alternate, functional, and concerns its relationship with the law. Both set up models of social geste, but they're different in compass and nature. The juridical analysis is grounded on anon-formalistic scientific methodology. This means that it's essential to consider the nature and characteristics of the AI as a primary step to the description of its legal paradigm. In this regard, there are two main issues the relationship between artificial and mortal intelligence and the question of the unitary or different nature of the AI. From that theoretical and practical base, the study of the legal system is carried out by examining its foundations, the governance model, and the nonsupervisory bases. According to this analysis, throughout the work and in the conclusions, International Law is linked as the top legal frame for the regulation of AI.Keywords: artificial intelligence, ethics & human rights issues, laws, international laws
Procedia PDF Downloads 932913 On Dialogue Systems Based on Deep Learning
Authors: Yifan Fan, Xudong Luo, Pingping Lin
Abstract:
Nowadays, dialogue systems increasingly become the way for humans to access many computer systems. So, humans can interact with computers in natural language. A dialogue system consists of three parts: understanding what humans say in natural language, managing dialogue, and generating responses in natural language. In this paper, we survey deep learning based methods for dialogue management, response generation and dialogue evaluation. Specifically, these methods are based on neural network, long short-term memory network, deep reinforcement learning, pre-training and generative adversarial network. We compare these methods and point out the further research directions.Keywords: dialogue management, response generation, deep learning, evaluation
Procedia PDF Downloads 1652912 Large-Scale Simulations of Turbulence Using Discontinuous Spectral Element Method
Authors: A. Peyvan, D. Li, J. Komperda, F. Mashayek
Abstract:
Turbulence can be observed in a variety fluid motions in nature and industrial applications. Recent investment in high-speed aircraft and propulsion systems has revitalized fundamental research on turbulent flows. In these systems, capturing chaotic fluid structures with different length and time scales is accomplished through the Direct Numerical Simulation (DNS) approach since it accurately simulates flows down to smallest dissipative scales, i.e., Kolmogorov’s scales. The discontinuous spectral element method (DSEM) is a high-order technique that uses spectral functions for approximating the solution. The DSEM code has been developed by our research group over the course of more than two decades. Recently, the code has been improved to run large cases in the order of billions of solution points. Running big simulations requires a considerable amount of RAM. Therefore, the DSEM code must be highly parallelized and able to start on multiple computational nodes on an HPC cluster with distributed memory. However, some pre-processing procedures, such as determining global element information, creating a global face list, and assigning global partitioning and element connection information of the domain for communication, must be done sequentially with a single processing core. A separate code has been written to perform the pre-processing procedures on a local machine. It stores the minimum amount of information that is required for the DSEM code to start in parallel, extracted from the mesh file, into text files (pre-files). It packs integer type information with a Stream Binary format in pre-files that are portable between machines. The files are generated to ensure fast read performance on different file-systems, such as Lustre and General Parallel File System (GPFS). A new subroutine has been added to the DSEM code to read the startup files using parallel MPI I/O, for Lustre, in a way that each MPI rank acquires its information from the file in parallel. In case of GPFS, in each computational node, a single MPI rank reads data from the file, which is specifically generated for the computational node, and send them to other ranks on the node using point to point non-blocking MPI communication. This way, communication takes place locally on each node and signals do not cross the switches of the cluster. The read subroutine has been tested on Argonne National Laboratory’s Mira (GPFS), National Center for Supercomputing Application’s Blue Waters (Lustre), San Diego Supercomputer Center’s Comet (Lustre), and UIC’s Extreme (Lustre). The tests showed that one file per node is suited for GPFS and parallel MPI I/O is the best choice for Lustre file system. The DSEM code relies on heavily optimized linear algebra operation such as matrix-matrix and matrix-vector products for calculation of the solution in every time-step. For this, the code can either make use of its matrix math library, BLAS, Intel MKL, or ATLAS. This fact and the discontinuous nature of the method makes the DSEM code run efficiently in parallel. The results of weak scaling tests performed on Blue Waters showed a scalable and efficient performance of the code in parallel computing.Keywords: computational fluid dynamics, direct numerical simulation, spectral element, turbulent flow
Procedia PDF Downloads 1322911 Bidirectional Encoder Representations from Transformers Sentiment Analysis Applied to Three Presidential Pre-Candidates in Costa Rica
Authors: Félix David Suárez Bonilla
Abstract:
A sentiment analysis service to detect polarity (positive, neural, and negative), based on transfer learning, was built using a Spanish version of BERT and applied to tweets written in Spanish. The dataset that was used consisted of 11975 reviews, which were extracted from Google Play using the google-play-scrapper package. The BETO trained model used: the AdamW optimizer, a batch size of 16, a learning rate of 2x10⁻⁵ and 10 epochs. The system was tested using tweets of three presidential pre-candidates from Costa Rica. The system was finally validated using human labeled examples, achieving an accuracy of 83.3%.Keywords: NLP, transfer learning, BERT, sentiment analysis, social media, opinion mining
Procedia PDF Downloads 1722910 Establishing Combustion Behaviour for Refuse Derived Fuel Firing at Kiln Inlet through Computational Fluid Dynamics at a Cement Plant in India
Authors: Prateek Sharma, Venkata Ramachandrarao Maddali, Kapil Kukreja, B. N. Mohapatra
Abstract:
Waste management is one of the pressing issues of India. Several initiatives by the Indian Government, including the recent one “Swachhata hi Seva” campaign launched by Prime Minister on 15th August 2018, can be one of the game changers to waste disposal. Under this initiative, the government, cement industry and other stakeholders are working hand in hand to dispose of single-use plastics in cement plants in rotary kilns. This is an exemplary effort and a move that establishes the Indian Cement industry as one of the key players in a circular economy. One of the cement plants in Southern India has been mandated by the state government to co-process shredded plastic and refuse-derived fuel (RDF) available in nearby regions as an alternative fuel in their cement plant. The plant has set a target of 25 % thermal substitution rate (TSR) by RDF in the next five years. Most of the cement plants in India and abroad have achieved high TSR through pre calciner firing. But the cement plant doesn’t have the precalciner and has to achieve this daunting task of 25 % TSR by firing through the main kiln burner. Since RDF is a heterogeneous waste with the change in fuel quality, it is difficult to achieve this task; hence plant has to resort to firing some portion of RDF/plastics at kiln inlet. But kiln inlet has reducing conditions as observed during measurements) under baseline condition. The combustion behavior of RDF of different sizes at different firing locations in riser was studied with the help of a computational fluid dynamics tool. It has been concluded that RDF above 50 mm size results in incomplete combustion leading to CO formation. Moreover, best firing location appears to be in the bottom portion of the kiln riser.Keywords: kiln inlet, plastics, refuse derived fuel, thermal substitution rate
Procedia PDF Downloads 1262909 Relationship of Entrepreneurial Ecosystem Factors and Entrepreneurial Cognition: An Exploratory Study Applied to Regional and Metropolitan Ecosystems in New South Wales, Australia
Authors: Sumedha Weerasekara, Morgan Miles, Mark Morrison, Branka Krivokapic-Skoko
Abstract:
This paper is aimed at exploring the interrelationships among entrepreneurial ecosystem factors and entrepreneurial cognition in regional and metropolitan ecosystems. Entrepreneurial ecosystem factors examined include: culture, infrastructure, access to finance, informal networks, support services, access to universities, and the depth and breadth of the talent pool. Using a multivariate approach we explore the impact of these ecosystem factors or elements on entrepreneurial cognition. In doing so, the existing body of knowledge from the literature on entrepreneurial ecosystem and cognition have been blended to explore the relationship between entrepreneurial ecosystem factors and cognition in a way not hitherto investigated. The concept of the entrepreneurial ecosystem has received increased attention as governments, universities and communities have started to recognize the potential of integrated policies, structures, programs and processes that foster entrepreneurship activities by supporting innovation, productivity and employment growth. The notion of entrepreneurial ecosystems has evolved and grown with the advancement of theoretical research and empirical studies. Importance of incorporating external factors like culture, political environment, and the economic environment within a single framework will enhance the capacity of examining the whole systems functionality to better understand the interaction of the entrepreneurial actors and factors within a single framework. The literature on clusters underplays the role of entrepreneurs and entrepreneurial management in creating and co-creating organizations, markets, and supporting ecosystems. Entrepreneurs are only one actor following a limited set of roles and dependent upon many other factors to thrive. As a consequence, entrepreneurs and relevant authorities should be aware of the other actors and factors with which they engage and rely, and make strategic choices to achieve both self and also collective objectives. The study uses stratified random sampling method to collect survey data from 12 different regions in regional and metropolitan regions of NSW, Australia. A questionnaire was administered online among 512 Small and medium enterprise owners operating their business in selected 12 regions in NSW, Australia. Data were analyzed using descriptive analyzing techniques and partial least squares - structural equation modeling. The findings show that even though there is a significant relationship between each and every entrepreneurial ecosystem factors, there is a weak relationship between most entrepreneurial ecosystem factors and entrepreneurial cognition. In the metropolitan context, the availability of finance and informal networks have the largest impact on entrepreneurial cognition while culture, infrastructure, and support services having the smallest impact and the talent pool and universities having a moderate impact on entrepreneurial cognition. Interestingly, in a regional context, culture, availability of finance, and the talent pool have the highest impact on entrepreneurial cognition, while informal networks having the smallest impact and the remaining factors – infrastructure, universities, and support services have a moderate impact on entrepreneurial cognition. These findings suggest the need for a location-specific strategy for supporting the development of entrepreneurial cognition.Keywords: academic achievement, colour response card, feedback
Procedia PDF Downloads 1432908 Enhancing Healthcare Delivery in Low-Income Markets: An Exploration of Wireless Sensor Network Applications
Authors: Innocent Uzougbo Onwuegbuzie
Abstract:
Healthcare delivery in low-income markets is fraught with numerous challenges, including limited access to essential medical resources, inadequate healthcare infrastructure, and a significant shortage of trained healthcare professionals. These constraints lead to suboptimal health outcomes and a higher incidence of preventable diseases. This paper explores the application of Wireless Sensor Networks (WSNs) as a transformative solution to enhance healthcare delivery in these underserved regions. WSNs, comprising spatially distributed sensor nodes that collect and transmit health-related data, present opportunities to address critical healthcare needs. Leveraging WSN technology facilitates real-time health monitoring and remote diagnostics, enabling continuous patient observation and early detection of medical issues, especially in areas with limited healthcare facilities and professionals. The implementation of WSNs can enhance the overall efficiency of healthcare systems by enabling timely interventions, reducing the strain on healthcare facilities, and optimizing resource allocation. This paper highlights the potential benefits of WSNs in low-income markets, such as cost-effectiveness, increased accessibility, and data-driven decision-making. However, deploying WSNs involves significant challenges, including technical barriers like limited internet connectivity and power supply, alongside concerns about data privacy and security. Moreover, robust infrastructure and adequate training for local healthcare providers are essential for successful implementation. It further examines future directions for WSNs, emphasizing innovation, scalable solutions, and public-private partnerships. By addressing these challenges and harnessing the potential of WSNs, it is possible to revolutionize healthcare delivery and improve health outcomes in low-income markets.Keywords: wireless sensor networks (WSNs), healthcare delivery, low-Income markets, remote patient monitoring, health data security
Procedia PDF Downloads 342907 Connotation Reform and Problem Response of Rural Social Relations under the Influence of the Earthquake: With a Review of Wenchuan Decade
Abstract:
The occurrence of Wenchuan earthquake in 2008 has led to severe damage to the rural areas of Chengdu city, such as the rupture of the social network, the stagnation of economic production and the rupture of living space. The post-disaster reconstruction has become a sustainable issue. As an important link to maintain the order of rural social development, social network should be an important content of post-disaster reconstruction. Therefore, this paper takes rural reconstruction communities in earthquake-stricken areas of Chengdu as the research object and adopts sociological research methods such as field survey, observation and interview to try to understand the transformation of rural social relations network under the influence of earthquake and its impact on rural space. It has found that rural societies under the earthquake generally experienced three phases: the break of stable social relations, the transition of temporary non-normal state, and the reorganization of social networks. The connotation of phased rural social relations also changed accordingly: turn to a new division of labor on the social orientation, turn to a capital flow and redistribution in new production mode on the capital orientation, and turn to relative decentralization after concentration on the spatial dimension. Along with such changes, rural areas have emerged some social issues such as the alienation of competition in the new industry division, the low social connection, the significant redistribution of capital, and the lack of public space. Based on a comprehensive review of these issues, this paper proposes the corresponding response mechanism. First of all, a reasonable division of labor should be established within the villages to realize diversified commodity supply. Secondly, the villages should adjust the industrial type to promote the equitable participation of capital allocation groups. Finally, external public spaces should be added to strengthen the field of social interaction within the communities.Keywords: social relations, social support networks, industrial division, capital allocation, public space
Procedia PDF Downloads 1562906 Forecasting Residential Water Consumption in Hamilton, New Zealand
Authors: Farnaz Farhangi
Abstract:
Many people in New Zealand believe that the access to water is inexhaustible, and it comes from a history of virtually unrestricted access to it. For the region like Hamilton which is one of New Zealand’s fastest growing cities, it is crucial for policy makers to know about the future water consumption and implementation of rules and regulation such as universal water metering. Hamilton residents use water freely and they do not have any idea about how much water they use. Hence, one of proposed objectives of this research is focusing on forecasting water consumption using different methods. Residential water consumption time series exhibits seasonal and trend variations. Seasonality is the pattern caused by repeating events such as weather conditions in summer and winter, public holidays, etc. The problem with this seasonal fluctuation is that, it dominates other time series components and makes difficulties in determining other variations (such as educational campaign’s effect, regulation, etc.) in time series. Apart from seasonality, a stochastic trend is also combined with seasonality and makes different effects on results of forecasting. According to the forecasting literature, preprocessing (de-trending and de-seasonalization) is essential to have more performed forecasting results, while some other researchers mention that seasonally non-adjusted data should be used. Hence, I answer the question that is pre-processing essential? A wide range of forecasting methods exists with different pros and cons. In this research, I apply double seasonal ARIMA and Artificial Neural Network (ANN), considering diverse elements such as seasonality and calendar effects (public and school holidays) and combine their results to find the best predicted values. My hypothesis is the examination the results of combined method (hybrid model) and individual methods and comparing the accuracy and robustness. In order to use ARIMA, the data should be stationary. Also, ANN has successful forecasting applications in terms of forecasting seasonal and trend time series. Using a hybrid model is a way to improve the accuracy of the methods. Due to the fact that water demand is dominated by different seasonality, in order to find their sensitivity to weather conditions or calendar effects or other seasonal patterns, I combine different methods. The advantage of this combination is reduction of errors by averaging of each individual model. It is also useful when we are not sure about the accuracy of each forecasting model and it can ease the problem of model selection. Using daily residential water consumption data from January 2000 to July 2015 in Hamilton, I indicate how prediction by different methods varies. ANN has more accurate forecasting results than other method and preprocessing is essential when we use seasonal time series. Using hybrid model reduces forecasting average errors and increases the performance.Keywords: artificial neural network (ANN), double seasonal ARIMA, forecasting, hybrid model
Procedia PDF Downloads 3362905 Compressive Stresses near Crack Tip Induced by Thermo-Electric Field
Authors: Thomas Jin-Chee Liu
Abstract:
In this paper, the thermo-electro-structural coupled-field in a cracked metal plate is studied using the finite element analysis. From the computational results, the compressive stresses reveal near the crack tip. This conclusion agrees with the past reference. Furthermore, the compressive condition can retard and stop the crack growth during the Joule heating process.Keywords: compressive stress, crack tip, Joule heating, finite element
Procedia PDF Downloads 4022904 Globally Convergent Sequential Linear Programming for Multi-Material Topology Optimization Using Ordered Solid Isotropic Material with Penalization Interpolation
Authors: Darwin Castillo Huamaní, Francisco A. M. Gomes
Abstract:
The aim of the multi-material topology optimization (MTO) is to obtain the optimal topology of structures composed by many materials, according to a given set of constraints and cost criteria. In this work, we seek the optimal distribution of materials in a domain, such that the flexibility of the structure is minimized, under certain boundary conditions and the intervention of external forces. In the case we have only one material, each point of the discretized domain is represented by two values from a function, where the value of the function is 1 if the element belongs to the structure or 0 if the element is empty. A common way to avoid the high computational cost of solving integer variable optimization problems is to adopt the Solid Isotropic Material with Penalization (SIMP) method. This method relies on the continuous interpolation function, power function, where the base variable represents a pseudo density at each point of domain. For proper exponent values, the SIMP method reduces intermediate densities, since values other than 0 or 1 usually does not have a physical meaning for the problem. Several extension of the SIMP method were proposed for the multi-material case. The one that we explore here is the ordered SIMP method, that has the advantage of not being based on the addition of variables to represent material selection, so the computational cost is independent of the number of materials considered. Although the number of variables is not increased by this algorithm, the optimization subproblems that are generated at each iteration cannot be solved by methods that rely on second derivatives, due to the cost of calculating the second derivatives. To overcome this, we apply a globally convergent version of the sequential linear programming method, which solves a linear approximation sequence of optimization problems.Keywords: globally convergence, multi-material design ordered simp, sequential linear programming, topology optimization
Procedia PDF Downloads 3142903 Reduction of Cooling Demands in a Subtropical Humid Climate Zone: A Study on Roofs of Existing Residential Building Using Passive
Authors: Megha Jain, K. K. Pathak
Abstract:
In sub-tropical humid climates, it is estimated most of the urban peak load of energy consumption is used to satisfy air-conditioning or air-coolers cooling demand in summer time. As the urbanization rate in developing nation – like the case in India is rising rapidly, the pressure placed on energy resources to satisfy inhabitants’ indoor comfort requirements is consequently increasing too. This paper introduces passive cooling through roof as a means of reducing energy cooling loads for satisfying human comfort requirements in a sub-tropical climate. Experiments were performed by applying different insulators which are locally available solar reflective materials to insulate the roofs of five rooms of 4 case buildings; three rooms having RCC (Reinforced Cement Concrete) roof and two having Asbestos sheet roof of existing buildings. The results are verified by computer simulation using Computational Fluid Dynamics tools with FLUENT software. The result of using solar reflective paint with high albedo coating shows a fall of 4.8⁰C in peak hours and saves 303 kWh considering energy load with air conditioner during the summer season in comparison to non insulated flat roof energy load of residential buildings in Bhopal. An optimum solution of insulator for both types of roofs is presented. It is recommended that the selected cool roof solution be combined with insulation on other elements of envelope, to increase the indoor thermal comfort. The application is intended for low cost residential buildings in composite and warm climate like Bhopal.Keywords: cool roof, computational fluid dynamics, energy loads, insulators, passive cooling, subtropical climate, thermal performance
Procedia PDF Downloads 1682902 The Application of Artificial Neural Network for Bridge Structures Design Optimization
Authors: Angga S. Fajar, A. Aminullah, J. Kiyono, R. A. Safitri
Abstract:
This paper discusses about the application of ANN for optimizing of bridge structure design. ANN has been applied in various field of science concerning prediction and optimization. The structural optimization has several benefit including accelerate structural design process, saving the structural material, and minimize self-weight and mass of structure. In this paper, there are three types of bridge structure that being optimized including PSC I-girder superstructure, composite steel-concrete girder superstructure, and RC bridge pier. The different optimization strategy on each bridge structure implement back propagation method of ANN is conducted in this research. The optimal weight and easier design process of bridge structure with satisfied error are achieved.Keywords: bridge structures, ANN, optimization, back propagation
Procedia PDF Downloads 3702901 Perception and Usage of Academic Social Networks among Scientists: A Cross-Sectional Study of North Indian Universities
Authors: Anita Chhatwal
Abstract:
Purpose: The purpose of this paper is to evaluate and investigate the scope of usage of Academic Social Networking Websites (ASNs) by the Science faculty members across universities of North India, viz. Panjab University, Punjabi University and University of Delhi, Delhi. Design/Methodology/Approach: The present study is based upon the primary data collected from 81 science faculty participants from three universities of North India. Questionnaire method was used as an instrument for survey. The study is descriptive and research-based to investigate the popular ASNs amongst the participants from three sample universities and the purpose for which they use them along with the problems they encounter while using ASNs. Findings: The findings of the study revealed that majority of the participants were using ASNs for their academic needs. It was observed that majority of the participants (78%) used ASNs to access scientific papers, while 73.8% of the participants used them to share their research publications. ResearchGate (60.5%) and Google Scholar (59.7%) were the top two most preferred and widely used ASNs by the participants. The critical analysis of the data shows that laptops (86.3%) emerged as major tools for accessing ASNs. Shortage of computers was found to be the chief obstacle in accessing ASNs by the participants. Results of the study demonstrate that 56.3% of participants suggested conduct of seminars and training as the most effective method to increase the awareness of ASNs. Research Limitations/Implications: The study in hand absorbed the 81 faculty (Assistant Professors) members from 15 Science teaching departments across three sample universities of North India. The findings of this study will help the Government of India to regulate and simultaneously make effort to develop and enhance ASNs usage among faculty, researchers, and students. The present study will add to the existing library and information science literature and will be advantageous for all the information professionals as well. Originality/Value: This study is original survey based on primary data investigate the usage of ASNs by the academia. This study will be useful for research scholars, academicians and students all over the world.Keywords: academic social networks, awareness and usage, North India, scholarly communication, web 2.0
Procedia PDF Downloads 1162900 Nonlinear Waves in Two-Layer Systems with Heat Release/Consumption at the Interface
Authors: Ilya Simanovskii
Abstract:
Nonlinear convective flows developed under the joint action of buoyant and thermo-capillary effects in a two-layer system with periodic boundary conditions on the lateral walls have been investigated. The influence of an interfacial heat release on oscillatory regimes has been studied. The computational regions with different lengths have been considered. It is shown that the development of oscillatory instability can lead to the appearance of different no steady flows.Keywords: interface, instabilities, two-layer systems, bioinformatics, biomedicine
Procedia PDF Downloads 4002899 Numerical Simulation on Two Components Particles Flow in Fluidized Bed
Authors: Wang Heng, Zhong Zhaoping, Guo Feihong, Wang Jia, Wang Xiaoyi
Abstract:
Flow of gas and particles in fluidized beds is complex and chaotic, which is difficult to measure and analyze by experiments. Some bed materials with bad fluidized performance always fluidize with fluidized medium. The material and the fluidized medium are different in many properties such as density, size and shape. These factors make the dynamic process more complex and the experiment research more limited. Numerical simulation is an efficient way to describe the process of gas-solid flow in fluidized bed. One of the most popular numerical simulation methods is CFD-DEM, i.e., computational fluid dynamics-discrete element method. The shapes of particles are always simplified as sphere in most researches. Although sphere-shaped particles make the calculation of particle uncomplicated, the effects of different shapes are disregarded. However, in practical applications, the two-component systems in fluidized bed also contain sphere particles and non-sphere particles. Therefore, it is needed to study the two component flow of sphere particles and non-sphere particles. In this paper, the flows of mixing were simulated as the flow of molding biomass particles and quartz in fluidized bad. The integrated model was built on an Eulerian–Lagrangian approach which was improved to suit the non-sphere particles. The constructed methods of cylinder-shaped particles were different when it came to different numerical methods. Each cylinder-shaped particle was constructed as an agglomerate of fictitious small particles in CFD part, which means the small fictitious particles gathered but not combined with each other. The diameter of a fictitious particle d_fic and its solid volume fraction inside a cylinder-shaped particle α_fic, which is called the fictitious volume fraction, are introduced to modify the drag coefficient β by introducing the volume fraction of the cylinder-shaped particles α_cld and sphere-shaped particles α_sph. In a computational cell, the void ε, can be expressed as ε=1-〖α_cld α〗_fic-α_sph. The Ergun equation and the Wen and Yu equation were used to calculate β. While in DEM method, cylinder-shaped particles were built by multi-sphere method, in which small sphere element merged with each other. Soft sphere model was using to get the connect force between particles. The total connect force of cylinder-shaped particle was calculated as the sum of the small sphere particles’ forces. The model (size=1×0.15×0.032 mm3) contained 420000 sphere-shaped particles (diameter=0.8 mm, density=1350 kg/m3) and 60 cylinder-shaped particles (diameter=10 mm, length=10 mm, density=2650 kg/m3). Each cylinder-shaped particle was constructed by 2072 small sphere-shaped particles (d=0.8 mm) in CFD mesh and 768 sphere-shaped particles (d=3 mm) in DEM mesh. The length of CFD and DEM cells are 1 mm and 2 mm. Superficial gas velocity was changed in different models as 1.0 m/s, 1.5 m/s, 2.0m/s. The results of simulation were compared with the experimental results. The movements of particles were regularly as fountain. The effect of superficial gas velocity on cylinder-shaped particles was stronger than that of sphere-shaped particles. The result proved this present work provided a effective approach to simulation the flow of two component particles.Keywords: computational fluid dynamics, discrete element method, fluidized bed, multiphase flow
Procedia PDF Downloads 325