Search results for: child formation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4736

Search results for: child formation

2096 Predictive Analytics Algorithms: Mitigating Elementary School Drop Out Rates

Authors: Bongs Lainjo

Abstract:

Educational institutions and authorities that are mandated to run education systems in various countries need to implement a curriculum that considers the possibility and existence of elementary school dropouts. This research focuses on elementary school dropout rates and the ability to replicate various predictive models carried out globally on selected Elementary Schools. The study was carried out by comparing the classical case studies in Africa, North America, South America, Asia and Europe. Some of the reasons put forward for children dropping out include the notion of being successful in life without necessarily going through the education process. Such mentality is coupled with a tough curriculum that does not take care of all students. The system has completely led to poor school attendance - truancy which continuously leads to dropouts. In this study, the focus is on developing a model that can systematically be implemented by school administrations to prevent possible dropout scenarios. At the elementary level, especially the lower grades, a child's perception of education can be easily changed so that they focus on the better future that their parents desire. To deal effectively with the elementary school dropout problem, strategies that are put in place need to be studied and predictive models are installed in every educational system with a view to helping prevent an imminent school dropout just before it happens. In a competency-based curriculum that most advanced nations are trying to implement, the education systems have wholesome ideas of learning that reduce the rate of dropout.

Keywords: elementary school, predictive models, machine learning, risk factors, data mining, classifiers, dropout rates, education system, competency-based curriculum

Procedia PDF Downloads 155
2095 Acrylamide-Induced Acute Nephrotoxicity in Rats

Authors: Keivan Jamshidi, Afshin Zahedi

Abstract:

Acrylamide (ACR) has been shown to cause neurotoxic effects in humans and neurotoxic, genotoxic, reproductive, and carcinogenic effects in laboratory animals. To investigate the nephrotoxic effect of Acrylamide (ACR), 50 adult male rats (Wistar, approximately 250 g) housed in polycarbonate boxes as 5 per each, and randomly assigned in 5 groups including 4 exposure groups as A, B, C, and D groups of rats (10 rats per exposure group., total) and were exposed to 0.5, 5, 50, 100 mg/kg ACR per day×11days i.p. respectively. The remaining 10 rats were housed in group (E) as control group. Control rats received daily i.p. injections of 0.9% saline (3ml/kg). On day 12, four rats, were randomly selected, perfused , dissected and proper samples were collected from their kidneys. Results of histopathological studies based on H&E technique did show no morphologic changes in kidneys of rats belong to groups A, B and E, while moderate to severe morphologic changes including glomerular hypercellularity, global pattern of proliferative glomerulonephritis, occupation of capsular space, tubular cell swelling and hyaline cast formation, were observed in different stained sections obtained from the kidneys of rats belong to group, C, and D. This finding, beside neurotoxic, reproductive and carcinogenic effects, seems to indicate for the first time another important aspect of toxic effect of ACR, i.e., acute nephrotoxicity.

Keywords: acrylamide, nephrotoxicity, glomerulonephritis, rats

Procedia PDF Downloads 603
2094 Impact Deformation and Fracture Behaviour of Cobalt-Based Haynes 188 Superalloy

Authors: Woei-Shyan Lee, Hao-Chien Kao

Abstract:

The impact deformation and fracture behaviour of cobalt-based Haynes 188 superalloy are investigated by means of a split Hopkinson pressure bar. Impact tests are performed at strain rates ranging from 1×103 s-1 to 5×103 s-1 and temperatures between 25°C and 800°C. The experimental results indicate that the flow response and fracture characteristics of cobalt-based Haynes 188 superalloy are significantly dependent on the strain rate and temperature. The flow stress, work hardening rate and strain rate sensitivity all increase with increasing strain rate or decreasing temperature. It is shown that the impact response of the Haynes 188 specimens is adequately described by the Zerilli-Armstrong fcc model. The fracture analysis results indicate that the Haynes 188 specimens fail predominantly as the result of intensive localised shearing. Furthermore, it is shown that the flow localisation effect leads to the formation of adiabatic shear bands. The fracture surfaces of the deformed Haynes 188 specimens are characterised by dimple- and / or cleavage-like structure with knobby features. The knobby features are thought to be the result of a rise in the local temperature to a value greater than the melting point.

Keywords: Haynes 188 alloy, impact, strain rate and temperature effect, adiabatic shearing

Procedia PDF Downloads 349
2093 Steel Dust as a Coating Agent for Iron Ore Pellets at Ironmaking

Authors: M. Bahgat, H. Hanafy, H. Al-Tassan

Abstract:

Cluster formation is an essential phenomenon during direct reduction processes at shaft furnaces. Decreasing the reducing temperature to avoid this problem can cause a significant drop in throughput. In order to prevent sticking of pellets, a coating material basically inactive under the reducing conditions prevailing in the shaft furnace, should be applied to cover the outer layer of the pellets. In the present work, steel dust is used as coating material for iron ore pellets to explore dust coating effectiveness and determines the best coating conditions. Steel dust coating is applied for iron ore pellets in various concentrations. Dust slurry concentrations of 5.0-30% were used to have a coated steel dust amount of 1.0-5.0 kg per ton iron ore. Coated pellets with various concentrations were reduced isothermally in weight loss technique with simulated gas mixture to the composition of reducing gases at shaft furnaces. The influences of various coating conditions on the reduction behavior and the morphology were studied. The optimum reduced samples were comparatively applied for sticking index measurement. It was found that the optimized steel dust coating condition that achieve higher reducibility with lower sticking index was 30% steel dust slurry concentration with 3.0 kg steel dust/ton ore.

Keywords: reduction, ironmaking, steel dust, coating

Procedia PDF Downloads 291
2092 Scanning Electron Microscopy of Cement Clinkers Produced Using Alternative Fuels

Authors: Sorour Semsari Parapari, Mehmet Ali Gülgün, Melih Papila

Abstract:

Cement production is one of the most energy-intensive processes consuming a high amount of thermal energy. Nowadays, alternative fuels are being used in cement manufacturing in a large scale as a help to provide the necessary energy. The alternative fuels could consist of any disposal like waste plastics, used tires and biomass. It has been suggested that the clinker properties might be affected by using these fuels because of foreign elements incorporation to the composition. Studying the distribution of clinker phases and their chemical composition is possible with scanning electron microscopy (SEM). In this study, clinker samples were produced using different alternative fuels in cement firing kilns. The microstructural observations by back-scattered electrons (BSE) mode in SEM (JEOL JSM-6010LV) showed that the clinker phase distribution was dissimilar in samples prepared with different alternative fuels. The alite to belite (a/b) phase content of samples was quantified by image analysis. The results showed that the a/b varied between 5.2 and 1.5 among samples as the average value for six clinker nodules. The elemental analysis by energy-dispersive x-ray spectroscopy (EDS) mounted on SEM indicated the variation in chemical composition among samples. Higher amounts of sulfur and alkalis seemed to reduce the alite phase formation in clinkers.

Keywords: alternative fuels, cement clinker, microstructure, SEM

Procedia PDF Downloads 352
2091 Effect of Preoxidation on the Effectiveness of Gd₂O₃ Nanoparticles Applied as a Source of Active Element in the Crofer 22 APU Coated with a Protective-conducting Spinel Layer

Authors: Łukasz Mazur, Kamil Domaradzki, Maciej Bik, Tomasz Brylewski, Aleksander Gil

Abstract:

Interconnects used in solid oxide fuel and electrolyzer cells (SOFCₛ/SOECs) serve several important functions, and therefore interconnect materials must exhibit certain properties. Their thermal expansion coefficient needs to match that of the ceramic components of these devices – the electrolyte, anode and cathode. Interconnects also provide structural rigidity to the entire device, which is why interconnect materials must exhibit sufficient mechanical strength at high temperatures. Gas-tightness is also a prerequisite since they separate gas reagents, and they also must provide very good electrical contact between neighboring cells over the entire operating time. High-chromium ferritic steels meets these requirements to a high degree but are affected by the formation of a Cr₂O₃ scale, which leads to increased electrical resistance. The final criterion for interconnect materials is chemical inertness in relation to the remaining cell components. In the case of ferritic steels, this has proved difficult due to the formation of volatile and reactive oxyhydroxides observed when Cr₂O3 is exposed to oxygen and water vapor. This process is particularly harmful on the cathode side in SOFCs and the anode side in SOECs. To mitigate this, protective-conducting ceramic coatings can be deposited on an interconnect's surface. The area-specific resistance (ASR) of a single interconnect cannot exceed 0.1 m-2 at any point of the device's operation. The rate at which the CrO₃ scale grows on ferritic steels can be reduced significantly via the so-called reactive element effect (REE). Research has shown that the deposition of Gd₂O₃ nanoparticles on the surface of the Crofer 22 APU, already modified using a protective-conducting spinel layer, further improves the oxidation resistance of this steel. However, the deposition of the manganese-cobalt spinel layer is a rather complex process and is performed at high temperatures in reducing and oxidizing atmospheres. There was thus reason to believe that this process may reduce the effectiveness of Gd₂O₃ nanoparticles added as an active element source. The objective of the present study was, therefore, to determine any potential impact by introducing a preoxidation stage after the nanoparticle deposition and before the steel is coated with the spinel. This should have allowed the nanoparticles to incorporate into the interior of the scale formed on the steel. Different samples were oxidized for 7000 h in air at 1073 K under quasi-isothermal conditions. The phase composition, chemical composition, and microstructure of the oxidation products formed on the samples were determined using X-ray diffraction, Raman spectroscopy, and scanning electron microscopy combined with energy-dispersive X-ray spectroscopy. A four-point, two-probe DC method was applied to measure ASR. It was found that coating deposition does indeed reduce the beneficial effect of Gd₂O₃ addition, since the smallest mass gain and the lowest ASR value were determined for the sample for which the additional preoxidation stage had been performed. It can be assumed that during this stage, gadolinium incorporates into and segregates at grain boundaries in the thin Cr₂O₃ that is forming. This allows the Gd₂O₃ nanoparticles to be a more effective source of the active element.

Keywords: interconnects, oxide nanoparticles, reactive element effect, SOEC, SOFC

Procedia PDF Downloads 69
2090 Characteristic and Prevalence of Cleft Lip and Palate Patient in Bandung Cleft Lip and Palate Center: A Descriptive Study

Authors: Kusmayadi Ita Nursita, Sundoro Ali

Abstract:

Cleft lip and palate are one of the most common congenital abnormalities in the face. It could happen to anyone, but mostly affect Asian population including Indonesia. Factors that influence the occurrence of cleft lip and palate vary from genetic to environmental factors. Children with cleft lip and palate will often have various problems such as airway disorders, eating disorders, speech and language developmental disorders, hearing disorders and psycho-social disorders, one of which is caused by appearance disorders. During his life, the child will experience multidisciplinary surgery and non-surgical treatment and can be accompanied by a psychological and financial burden on himself and his family. In Indonesia, there are no detailed scientific data on the prevalence and characteristic of cleft lip and palate patients. It was mainly caused by the absence of a national level organization, differences in geographical location, and the absence of national guidelines. This study aimed to describe the characteristic and prevalence of cleft lip and palate patients in Bandung Cleft Lip and Palate Center from 1 January 2016 to 31 December 2017. A total of 560 patients were included in the study. The highest percentage of cases are left unilateral cleft lip and palate with higher number of female patient and labioplasty as the most often surgical procedure to be conducted in Bandung Cleft Lip and Palate Center. In order to improve quality of life in patients with cleft lip and palate, early recognition and early treatment based on actual comprehensive data should be conducted. The data from Bandung Cleft Lip and Palate Center as one of the largest center of cleft lip and palate in West Java Indonesia hopefully could provide a big step of further comprehensive data collection in Indonesia and for the better overall management of cleft lip and palate in the future.

Keywords: cleft lip, cleft palate, characteristic, prevalence

Procedia PDF Downloads 122
2089 Synthesis of Biostabilized Gold Nanoparticles Using Garcinia indica Extract and Its Antimicrobial and Anticancer Properties

Authors: Rebecca Thombre, Aishwarya Borate

Abstract:

Chemical synthesis of nanoparticles produces toxic by-products, as a result of which eco-friendly methods of synthesis are gaining importance. The synthesis of nanoparticles using plant derived extracts is economical, safe and eco-friendly. Biostabilized gold nanoparticles were synthesized using extracts of Garcinia indica. The gold nanoparticles were characterized using UV-Vis spectrophotometry and demonstrated a peak at 527 nm. The presence of plant derived peptides and phytoconstituents was confirmed using the FTIR spectra. TEM analysis revealed formation of gold nanopyramids and nanorods. The SAED analysis confirmed the crystalline nature of nanoparticles. The gold nanoparticles demonstrated antibacterial and antifungal activity against Escherichia coli, Staphylococcus aureus, Bacillus subtilis, Aspergillus niger and Pichia pastoris. The cytotoxic activity of gold nanoparticles was studied using HEK, Hela and L929 cancerous cell lines and the apoptosis of cancerous cells were observed using propidium iodide staining. Thus, a simple and eco-friendly method for synthesis of biostabilized gold nanoparticles using fruit extracts of Garcinia indica was developed and the nanoparticles had potent antibacterial, antifungal and anticancer properties.

Keywords: cytotoxic, gold nanoparticles, green synthesis, Garcinia indica, anticancer

Procedia PDF Downloads 914
2088 Optimal Design Solution in "The Small Module" Within the Possibilities of Ecology, Environmental Science/Engineering, and Economics

Authors: Hassan Wajid

Abstract:

We will commend accommodating an environmentally friendly architectural proposal that is extremely common/usual but whose features will make it a sustainable space. In this experiment, the natural and artificial built space is being proposed in such a way that deals with Environmental, Ecological, and Economic Criteria under different climatic conditions. Moreover, the criteria against ecology-environment-economics reflect in the different modules which are being experimented with and analyzed by multiple research groups. The ecological, environmental, and economic services are provided used as units of production side by side, resulting in local job creation and saving resources, for instance, conservation of rainwater, soil formation or protection, less energy consumption to achieve Net Zero, and a stable climate as a whole. The synthesized results from the collected data suggest several aspects to consider when designing buildings for beginning the design process under the supervision of instructors/directors who are responsible for developing curricula and sustainable goals. Hence, the results of the research and the suggestions will benefit the sustainable design through multiple results, heat analysis of different small modules, and comparisons. As a result, it is depleted as the resources are either consumed or the pollution contaminates the resources.

Keywords: optimization, ecology, environment, sustainable solution

Procedia PDF Downloads 50
2087 A Supramolecular Cocrystal of 2-Amino-4-Chloro-6-Methylpyrimidine with 4-Methylbenzoic Acid: Synthesis, Structural Determinations and Quantum Chemical Investigations

Authors: Nuridayanti Che Khalib, Kaliyaperumal Thanigaimani, Suhana Arshad, Ibrahim Abdul Razak

Abstract:

The 1:1 co-crystal of 2-amino-4-chloro-6-methylpyrimidine (2A4C6MP) with 4-methylbenzoic acid (4MBA) (I) has been prepared by slow evaporation method in methanol, which was crystallized in monoclinic C2/c space group, Z = 8, a = 28.431 (2) Å, b = 7.3098 (5) Å, c = 14.2622 (10) Å, and β = 109.618 (3)°. The presence of unionized –COOH functional group in co-crystal I was identified both by spectral methods (1H and 13C NMR, FTIR) and X-ray diffraction structural analysis. The 2A4C6MP molecule interact with the carboxylic group of the respective 4MBA molecule through N—H⋯O and O—H⋯N hydrogen bonds, forming a cyclic hydrogen –bonded motif R22(8). The crystal structure was stabilized by Npyrimidine-H⋯O=C and C=O-H⋯Npyrimidine types hydrogen bonding interactions. Theoretical investigations have been computed by HF and density function (B3LYP) method with 6-311+G(d,p) basis set. The vibrational frequencies together with 1H and 13C NMR chemical shifts have been calculated on the fully optimized geometry of co-crystal I. Theoretical calculations are in good agreement with the experimental results. Solvent-free formation of this co-crystal I is confirmed by powder X-ray diffraction analysis.

Keywords: supramolecular co-crystal, 2-amino-4-chloro-6-methylpyrimidine, Harthree-Fock and DFT studies, spectroscopic analysis

Procedia PDF Downloads 298
2086 Effect of Modified Layered Silicate Nanoclay on the Dynamic Viscoelastic Properties of Thermoplastic Polymers Nanocomposites

Authors: Benalia Kouini, Aicha Serier

Abstract:

This work aims to investigate the structure–property relationship in ternary nanocomposites consisting of polypropylene as the matrix, polyamide 66 as the minor phase and treated nanoclay DELLITE 67G as the reinforcement. All PP/PA66/Nanoclay systems with polypropylene grafted maleic anhydride PP-g-MAH as a compatibilizer were prepared via melt compounding and characterized in terms of nanoclay content. Morphological structure was investigated by scanning electron microscopy. The rheological behavior of the nanocomposites was determined by various methods, viz melt flow index (MFI) and parallel plate rheological measurements. The PP/PP-g-MAH/PA66 nanocomposites showed a homogeneous morphology supporting the compatibility improvement between PP, PA66 and nanoclay. SEM results revealed the formation of nanocomposites as the nanoclay was intercalated and exfoliated. In the ternary nanocomposites, the rheological behavior showed that, the complex viscosity is increased with increasing the nanoclay content; however, at low frequencies this increase is governed by the content of nanofiller while at high frequencies it is mainly determined by talc content. A similar trend was also observed for the variations of storage modulus (G′) and loss modulus (G″) with frequency. The results showed that the use of nanoclay considerably affects the melt elasticity.

Keywords: nanocomposites, polypropylene, polyamide66, modified nanoclay, rheology

Procedia PDF Downloads 367
2085 Gas Aggregation and Nanobubbles Stability on Substrates Influenced by Surface Wettability: A Molecular Dynamics Study

Authors: Tsu-Hsu Yen

Abstract:

The interfacial gas adsorption presents a frequent challenge and opportunity for micro-/nano-fluidic operation. In this study, we investigate the wettability, gas accumulation, and nanobubble formation on various homogeneous surface conditions by using MD simulation, including a series of 3D and quasi-2D argon-water-solid systems simulation. To precisely determine the wettability on various substrates, several indicators were calculated. Among these wettability indicators, the water PMF (potential of mean force) has the most correlation tendency with interfacial water molecular orientation than depletion layer width and droplet contact angle. The results reveal that the aggregation of argon molecules on substrates not only depending on the level of hydrophobicity but also determined by the competition between gas-solid and water-solid interaction as well as water molecular structure near the surface. In addition, the surface nanobubble is always observed coexisted with the gas enrichment layer. The water structure adjacent to water-gas and water-solid interfaces also plays an important factor in gas out-flux and gas aggregation, respectively. The quasi-2D simulation shows that only a slight difference in the curved argon-water interface from the plane interface which suggests no noticeable obstructing effect on gas outflux from the gas-water interfacial water networks.

Keywords: gas aggregation, interfacial nanobubble, molecular dynamics simulation, wettability

Procedia PDF Downloads 95
2084 Performance Estimation of Two Port Multiple-Input and Multiple-Output Antenna for Wireless Local Area Network Applications

Authors: Radha Tomar, Satish K. Jain, Manish Panchal, P. S. Rathore

Abstract:

In the presented work, inset fed microstrip patch antenna (IFMPA) based two port MIMO Antenna system has been proposed, which is suitable for wireless local area network (WLAN) applications. IFMPA has been designed, optimized for 2.4 GHz and applied for MIMO formation. The optimized parameters of the proposed IFMPA have been used for fabrication of antenna and two port MIMO in a laboratory. Fabrication of the designed MIMO antenna has been done and tested experimentally for performance parameters like Envelope Correlation Coefficient (ECC), Mean Effective Gain (MEG), Directive Gain (DG), Channel Capacity Loss (CCL), Multiplexing Efficiency (ME) etc and results are compared with simulated parameters extracted with simulated S parameters to validate the results. The simulated and experimentally measured plots and numerical values of these MIMO performance parameters resembles very much with each other. This shows the success of MIMO antenna design methodology.

Keywords: multiple-input and multiple-output, wireless local area network, vector network analyzer, envelope correlation coefficient

Procedia PDF Downloads 40
2083 Isolation of the Leptospira spp. from the Rice Farming Lands in the North of Iran by EMJH Media

Authors: S. Rostampour Yasouri, M. Ghane

Abstract:

Leptospirosis is one the most important common diseases between human and live stock occurred by different species of Leptospira. This disease has been construed as the native in the northern provinces of Iran and risk of the infection with pathogenic is high. One hundred fifteen samples of water (67), soil (36) and feces of rodents (12) were collected from the rice fields of the suburbs of Tonekabon Township situated in northern part of Iran in 2012. The samples, after passage from membranous filters, were cultured in the liquid and solid EMJH medium and incubated at 30°C for 1 month. Leptospira spp. were isolated using culture technique, and the plates were studied from viewpoint of colony formation, microscopic observations and then identified by phenotyping tests. Finally, the identification of Leptospira genus was verified by PCR technique and 16S rRNA gene sequencing. Of 115 samples totally, 55 samples (47.82%) became positive by use of the culture technique which the positive cases included 47 water samples (70.14%) and 8 soil samples (22.22%), while the isolation was not accomplished from the sample of the rodents feces. Overall, according to these data, Leptospira spp. exists with high frequency in North Iran. Hence, based on foregoing evidence environments in the north of Iran are vehicles of Leptospira spp.

Keywords: EMJH Medium, Leptospira, Northern of Iran, rice fields

Procedia PDF Downloads 166
2082 Tetra Butyl Ammonium Cyanate Mediated Selective Synthesis of Sulfonyltriuret and Their Investigation towards Trypsin Protease Modulation

Authors: Amarjyoti Das Mahapatra, Umesh Kumar, Bhaskar Datta

Abstract:

A pseudo peptide can mimic the biological or structural properties of natural peptides. They have become an increasing attention in medicinal chemistry because of their interesting advantages like more bioavailability and less biodegradation than compare to the physiologically active native peptides which increase their therapeutic applications. Many biologically active compounds contain urea as functional groups, and they have improved pharmacokinetic properties because of their bioavailability and metabolic stability. Recently we have reported a single-step synthesis of sulfonyl urea and sulfonyltriuret from sulfonyl chloride and sodium cyanate. But the yield of sulfonyltriuret was less around 40-60% because of the formation of other products like sulfonamide and sulfonylureas. In the present work, we mainly focused on the selective synthesis of sulfonyltriuret using tetrabutylammonium cyanate and sulfonyl chloride. More precisely, we are interested in the controlled synthesis of oligomeric urea mainly sulfonyltriuret as a new class of pseudo peptide and their application as protease modulators. The distinctive architecture of these molecules in the form of their pseudo-peptide backbone offers promise as a potential pharmacophore. The synthesized molecules have been screened on trypsin enzyme, and we observed that these molecules are the efficient modulator of trypsin enzyme.

Keywords: pseudo peptide, pharmacophore, sulfonyltriuret, trypsin

Procedia PDF Downloads 151
2081 Spectroscopy Investigation of Ni0.5Zn0.5Fe2O4 Nano Ferrite Prepared by Soft Mechanochemical Synthesis

Authors: Z. Ž. Lazarević, Č. Jovalekić, V. N. Ivanovski, N. Ž. Romčević

Abstract:

Nickel-zinc ferrite, Ni0.5Zn0.5Fe2O4 was prepared by mechanochemical route in a planetary ball mill starting from mixture of the appropriate quantities of the Ni(OH)2, Zn(OH)2 and Fe(OH)3 hydroxide powders. In order to monitor the progress of chemical reaction and confirm phase formation, powder samples obtained after 5 h and 10 h of milling were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), IR, Raman and Mössbauer spectroscopy. It is shown that the soft mechanochemical method, i.e. mechanochemical activation of hydroxides, produces high quality single phase Ni0.5Zn0.5Fe2O4 samples in much more efficient way. From the IR spectroscopy of single phase samples it is obvious that energy of modes depends on the ratio of cations. It is obvious that all samples have more than 5 Raman active modes predicted by group theory in the normal spinel structure. Deconvolution of measured spectra allows one to conclude that all complex bands in the spectra are made of individual peaks with the intensities that vary from spectrum to spectrum. The deconvolution of Raman spectra alows to separate contributions of different cations to a particular type of vibration and to estimate the degree of inversion.

Keywords: ferrite, X-ray diffraction, infrared spectroscopy, Raman spectroscopy, Mössbauer spectroscopy

Procedia PDF Downloads 490
2080 The Bicoid Gradient in the Drosophila Embryo: 3D Modelling with Realistic Egg Geometries

Authors: Alexander V. Spirov, David M. Holloway, Ekaterina M. Myasnikova

Abstract:

Segmentation of the early Drosophila embryo results from the dynamic establishment of spatial gene expression patterns. Patterning occurs on an embryo geometry which is a 'deformed' prolate ellipsoid, with anteroposterior and dorsal-ventral major and minor axes, respectively. Patterning is largely independent along each axis, but some interaction can be seen in the 'bending' of the segmental expression stripes. This interaction is not well understood. In this report, we investigate how 3D geometrical features of the early embryo affect the segmental expression patterning. Specifically, we study the effect of geometry on formation of the Bicoid primary morphogenetic gradient. Our computational results demonstrate that embryos with a much longer ventral than dorsal surface ('bellied') can produce curved Bicoid concentration contours which could activate curved stripes in the downstream pair-rule segmentation genes. In addition, we show that having an extended source for Bicoid in the anterior of the embryo may be necessary for producing the observed exponential form of the Bicoid gradient along the anteroposterior axis.

Keywords: Drosophila embryo, bicoid morphogenetic gradient, exponential expression profile, expression surface form, segmentation genes, 3D modelling

Procedia PDF Downloads 253
2079 Simulation of Fiber Deposition on Molded Fiber Screen Using Multi-Sphere Discrete Element Method

Authors: Kim Quy Le, Duan Fei, Jia Wei Chew, Jun Zeng, Maria Fabiola Leyva

Abstract:

In line with the sustainable development goal, molded fiber products play important roles in reducing plastic-based packaging. To fabricate molded fiber products, besides using conventional meshing tools, 3D printing is employed to manufacture the molded fiber screen. 3D printing technique allows printing molded fiber screens with complex geometry, flexible in pore size and shape. The 3D printed molded fiber screens are in the progress of investigation to improve the de-watering efficiency, fiber collection, mechanical strength, etc. In addition, the fiber distribution on the screen is also necessary to access the quality of the screen. Besides using experimental methods to capture the fiber distribution on screen, simulation also offers using tools to access the uniformity of fiber. In this study, the fiber was simulated using the multi-sphere model to simulate the fibers. The interaction of the fibers was able to mimic by employing the discrete element method. The fiber distribution was captured and compared to the experiment. The simulation results were able to reveal the fiber deposition layer upon layer and explain the formation of uneven thickness on the tilted area of molded fiber screen.

Keywords: 3D printing, multi-jet fusion, molded fiber screen, discrete element method

Procedia PDF Downloads 96
2078 The Impact of Black Rice Ash Nanoparticles on Foam Stability through Foam Scanning in Enhanced Oil Recovery

Authors: Ishaq Ahmad, Zhaomin Li, Liu Chengwen, Song Yan Li, Zihan Gu, Li Shaopeng

Abstract:

In order to manage gas mobility in the reservoir, only a small amount of surfactant or polymer is needed because nanoparticles have the potential to improve foam stability. The aim is to enhance foam formation and stability, so it was decided to investigate the foam stability and foam ability of black rice husk ash. Several characterization techniques were used to investigate the properties of black rice husk ash. The best-performing anionic foaming surfactants were combined with black rice husk ash at different concentrations (ppm). Sodium dodecyl benzene sulphonate was used as the anionic surfactant. This study demonstrates the value of black rice husk ash (BRHA), which has a high silica concentration, for foam stability and ability. For the test, black rice husk ash and raw ash were used with SDS (Sodium Dodecyl Sulfate) and SDBS (Sodium dodecyl benzenesulfonate) surfactants under different parameters. Different concentration percentages were utilized to create the foam, and the hydrophobic test and shaking method were applied. The foam scanner was used to observe the behavior of the black rice husk ash foam. The high silica content of black rice husk ash has the potential to improve foam stability, which is favorable and could possibly improve oil recovery.

Keywords: black rice husk ash nanoparticle, surfactant, foam life, foam scanning

Procedia PDF Downloads 128
2077 Controlling the Surface Morphology of the Biocompatible Hydroxyapatite Layer Deposited by Using a Flame-Coating

Authors: Nabaa M. Abdul Rahim, Mohammed A.Kadhim, Fadhil K. Fuliful

Abstract:

A biocompatible layer is prepared from calcium phosphate, which plays a role in building damaged bones and is used in many applications. In this research, calcium phosphate is coated on stainless steel substrates (SS 316) by using the flame coating. FE-SEM images show that the behavior of the sample surfaces varies with distance, at 3cm, appeared with nanostructures of bumps shaped of diameter about 317 nm. The contents of the elements are analyzed by energy-dispersive X-ray spectroscopy (EDX). The chemical elements C, Ca, Fe, Ni, Cr, Mn and O corresponding to calcium phosphate and the alloy are revealed by EDX analysis of the coating layer. XRD patterns for the calcium phosphate layers indicate the formation of the Hap layer on the deposited layers. The samples are immersed in a solution of simulated body fluids (SBF) for 21 days to examine the biocompatibility, as the tests show that the calcium phosphate ratio of 1.65 is the appropriate and biocompatible ratio in the human body. The assays show antibacterial activity using the diffusion disk procedure. On the surface of the agar, observed infested E.coli bacteria and incubated for 24 hours at 37°C. Bacteria grow on the entire agar rather than in some areas around some samples at a distance of 3 cm from the flame hole.

Keywords: biomaterial, flame coating, antibacterial activity, stainless steel

Procedia PDF Downloads 78
2076 The Effectiveness of the Orem Self-Care Model on Single Parent Women’s General Health

Authors: Sahar Esmaeili, Ramezanali Ghaderi sanavi, Masoomeh Maarefvand, Samaneh Hosseinzadeh

Abstract:

Introduction: Conducted researches reveal that nowadays, 60 percent of women around the world are the households. The adverse economic condition causes female-headed households and their children to be the most vulnerable people against social harm. Mainly a symptoms of mental illness such as depression, anxiety, obsession and aggression can be seen in female-headed households and their children are potentially exposed to issues such as crime-work, child labor in the black and informal jobs, education deprivation and malnutrition. The aim of this study is to evaluate the effect of Orem self-care education with the FGC technique on the public health of female-headed households. Methods: Sixty-four Female-headed householders who were supported by Saleh Foundation participated in a clinical trial study and were assigned to the case (n=32) and control (n=32) groups. The case group received 4-session Orem’s self-care education with family group conferencing technique. Data were collected using the demographic questionnaire and General Health Questionnaire (GHQ-28) prior to intervention and post-intervention. ANOVA was used to evaluate outcomes. Results: The results showed significant improvement of the intervention group in GHQ (P<0.001) and subscales of Physical Health (P<0.001) Agitation and Insomnia (P<0.001) and Social disorder (P<0.001) and Depression (P<0.001) compared with the control group after the intervention. Conclusion: The intervention of Orem’s self-care education with family group conferencing technique was effective in improving the General Health of Female-headed households

Keywords: orem’s self-care, female-headed households, general health, group

Procedia PDF Downloads 152
2075 Bosporus Evolution: Its Role in the Black Sea Forming

Authors: I. V. Kuzminov

Abstract:

The research is dedicated to the issue of Bosporus evolution and its key role in the Black Sea forming. Up till nowadays, there is no distinct picture of the historical and geographical events of the last 10 thousand years on the territory from Altai up to the Alps. The present article is an attempt to clarify and, moreover, link the presented version to the historical and climatic events of this period. The paper is a development of the basic idea stated in "Hypothesis on the Black Sea origin". The succession of events in dynamics is offered in this article. In the article, it is shown that fluctuation of the level of the World Ocean is a mirror of the basic events connected with the climate on the Earth on the one hand and hydraulic processes on the other hand. In the present article, it is come out with the assumption that at the formation of passage, there were some cycles of change in a level of the World ocean. The phase of the beginning of climate warming is characterized by an increase in the level of inland water bodies on the way of meltwater runoff and an increase in the World ocean level. The end of the warming phase is characterized by the continuation of a rise in the level of the World ocean and the drying up of inland water bodies deprived of meltwater replenishment.

Keywords: Bosporus, Ryan-Pitman hypothesis, fluctuations of the World Ocean level, the Paratethys Sea, catastrophic breakthrough

Procedia PDF Downloads 100
2074 Characteristics of Oak Mushroom Cultivar, Bambithyang Developed by Golden Seed Project

Authors: Yeongseon Jang, Rhim Ryoo, Young-Ae Park, Kang-Hyeon Ka, Donha Choi, Sung-Suk Lee

Abstract:

Lentinula edodes (Berk.) Pegler, oak mushroom, is one of the most largely produced mushrooms in the world. To increase the competitiveness of Korean oak mushroom, golden seed project is ongoing. In this project, we develop new oak mushroom varieties to increase its productivity, quality, disease resistance, and so on. Through the project, new oak mushroom cultivar, Bambithyang was developed by mono-mono hybridization method. The optimum temperature for mycelial growth was at 25°C on potato dextrose agar (PDA) media. For the mass production test, it was cultivated using sawdust media with sawdust block type for 100 days. The temperature for primordia formation and fruit body production was broad (between 11°C and 20°C) which is good for spring and fall. Each flush period lasted for 6-7 days and the highest fruit body production was recorded in the first flush. The fruiting is sporadic. The pileus was deep brown. Its diameter was 69.2 mm and width was 17.8 mm. The stipe was ivory. It was 14.7 mm thick and 54.7 mm long. We would continue to develop new varieties while increasing the market share of domestic spawn with this variety.

Keywords: Lentinula edodes, mono-mono hybridization, new cultivar, oak mushroom

Procedia PDF Downloads 329
2073 Three-Stage Anaerobic Co-digestion of High-Solids Food Waste and Horse Manure

Authors: Kai-Chee Loh, Jingxin Zhang, Yen-Wah Tong

Abstract:

Hydrolysis and acidogenesis are the rate-controlling steps in an anaerobic digestion (AD) process. Considering that the optimum conditions for each stage can be diverse diverse, the development of a multi-stage AD system is likely to the AD efficiency through individual optimization. In this research, we developed a highly integrate three-stage anaerobic digester (HM3) to combine the advantages of dry AD and wet AD for anaerobic co-digestion of food waste and horse manure. The digester design comprised mainly of three chambers - high-solids hydrolysis, high-solids acidogenesis and wet methanogensis. Through comparing the treatment performance with other two control digesters, HM3 presented 11.2 ~22.7% higher methane yield. The improved methane yield was mainly attributed to the functionalized partitioning in the integrated digester, which significantly accelerated the solubilization of solid organic matters and the formation of organic acids, as well as ammonia in the high-solids hydrolytic and acidogenic stage respectively. Additionally, HM3 also showed the highest volatile solids reduction rate among the three digesters. Real-time PCR and pyrosequencing analysis indicated that the abundance and biodiversity of microorganisms including bacteria and archaea in HM3 was much higher than that in the control reactors.

Keywords: anaerobic digestion, high-solids, food waste and horse manure, microbial community

Procedia PDF Downloads 400
2072 Platform Development for Vero Cell Culture on Microcarriers Using Dissociation-Reassociation Method

Authors: Thanunthon Bowornsakulwong, Charukorn Charukarn, Franck Courtes, Panit Kitsubun, Lalintip Horcharoen

Abstract:

Vero cell is a continuous cell line that is widely used for the production of viral vaccines. However, due to its adherent characteristic, scaling up strategy in large-scale production remains complicated and thus limited. Consequently, suspension-like Vero cell culture processes based on microcarriers have been introduced and employed while also providing increased surface area per volume unit. However, harvesting Vero cells from microcarriers is a huge challenge due to difficulties in cells detaching, lower recovery yield, time-consuming and dissociation agent carry-over. To overcome these problems, we developed a dissociation-association platform technology for detaching and re-attaching cells during subculturing from microcarriers to microcarriers, which will be conveniently applied to seed trains strategies in large scale bioreactors. Herein, Hillex-2 was used to culture Vero cells in serum-containing media using spinner flasks as a scale-down model. The overall confluency of cells on microcarriers was observed using inverted microscope, and the sample cells were daily detached in order to obtain the kinetics data. The metabolites consumption and by-products formation were determined by Nova Biomedical BioprofileFlex.

Keywords: dissociation-reassociation, microcarrier, scale up, Vero cell

Procedia PDF Downloads 121
2071 A Retrospective Study to Evaluate Verbal Scores of Autistic Children Who Received Hyperbaric Oxygen Therapy

Authors: Tami Peterson

Abstract:

Hyperbaric oxygen therapy (HBOT) has been hypothesized as an effective treatment for increasing verbal language skills in individuals on the autism spectrum. A child’s ability to effectively communicate with peers, parents, and caregivers impacts their level of independence and quality of personal relationships. This retrospective study will compare the speech development of participants aged 2-17 years that received 40 sessions of HBOT at 2.0 ATA to those who had not. Both groups will have a verbal assessment every six months. There were 31 subjects in the HBO group and 32 subjects in the non-HBO group. The statistical analysis will focus on whether hyperbaric oxygen therapy made a significant difference in Verbal Behavior Milestones Assessment and Placement Program (VB-MAPP) or Assessment of Basic Language and Learning Skills (ABLLS) results. The evidence demonstrates a strong correlation between HBOT and an increased change from baseline verbal scores compared to the control group, even in difficult to grasp areas such as spontaneous vocalization. We suggest this is due to the anti-inflammatory effects of hyperbaric oxygen therapy. Neuroinflammation causes hypoperfusion of critical central nervous system areas responsible for the symptoms described within the autism spectrum, such as problems with thought processing, memory, and speech. Decreasing the inflammation allows the brain to function properly, which results in improved verbal scores for the participants that underwent HBOT.

Keywords: assessment of basic language and learning skills, autism spectrum disorder, hyperbaric oxygen therapy, verbal behavior milestones assessment and placement program

Procedia PDF Downloads 197
2070 Optimization of Laser Doping Selective Emitter for Silicon Solar Cells

Authors: Meziani Samir, Moussi Abderrahmane, Chaouchi Sofiane, Guendouzi Awatif, Djema Oussama

Abstract:

Laser doping has a large potential for integration into silicon solar cell technologies. The ability to process local, heavily diffused regions in a self-aligned manner can greatly simplify processing sequences for the fabrication of selective emitter. The choice of laser parameters for a laser doping process with 532nm is investigated. Solid state lasers with different power and speed were used for laser doping. In this work, the aim is the formation of selective emitter solar cells with a reduced number of technological steps. In order to have a highly doped localized emitter region, we used a 532 nm laser doping. Note that this region will receive the metallization of the Ag grid by screen printing. For this, we use SOLIDWORKS software to design a single type of pattern for square silicon cells. Sheet resistances, phosphorus doping concentration and silicon bulk lifetimes of irradiated samples are presented. Additionally, secondary ion mass spectroscopy (SIMS) profiles of the laser processed samples were acquired. Scanning electron microscope and optical microscope images of laser processed surfaces at different parameters are shown and compared.

Keywords: laser doping, selective emitter, silicon, solar cells

Procedia PDF Downloads 81
2069 Identity Formation Towards Design Typology of Malay Traditional House in Negeri Sembilan, Malaysia

Authors: Noor Hayati Binti Ismail, Mastor Bin Surat, Raja Nafida Binti Raja Shahminan, Shahrul Kamil Bin Yunus

Abstract:

Traditional Malay house built in the various custom and culture for every state in Malaysia. Each state has its characteristics, design and different concepts that form the distinctive identity. The uniqueness of a traditional house design is a symbolize of Negeri Sembilan society. The purpose of this paper is to introduce the feature, a traditional Malay house in Negeri Sembilan, Malaysia. This typology will describe five types of traditional Malay houses in Negeri Sembilan by briefly about the concept of a traditional Malay house design. The design represents a variety of purposes that are often associated with its own culture and customs practiced by the community. In addition, the design of long tapering roof with both ends of the roof went up a little bit architecture has become an identity of its own in Negeri Sembilan. The study involves several villages of traditional houses in Negeri Sembilan, Malaysia. Data collection was obtained through a process of observation, interviews, questionnaire and taking photos related. Through this research, We are expected to provide awareness and also a reference to the next generation of traditional houses in Malaysia especially in Negeri Sembilan. Identity and uniqueness of traditional houses Negeri Sembilan increasingly difficult to maintain and can be kept from being lost in their own land.

Keywords: design, identity, traditional Malay house, typology

Procedia PDF Downloads 608
2068 An Evaluation of the Impact of Epoxidized Neem Seed Azadirachta indica Oil on the Mechanical Properties of Polystyrene

Authors: Salihu Takuma

Abstract:

Neem seed oil has high contents of unsaturated fatty acids which can be converted to epoxy fatty acids. The vegetable oil – based epoxy material are sustainable, renewable and biodegradable materials replacing petrochemical – based epoxy materials in some applications. Polystyrene is highly brittle with limited mechanical applications. Raw neem seed oil was obtained from National Research Institute for Chemical Technology (NARICT), Zaria, Nigeria. The oil was epoxidized at 60 0C for three (3) hours using formic acid generated in situ. The epoxidized oil was characterized using Fourier Transform Infrared spectroscopy (FTIR). The disappearance of C = C stretching peak around 3011.7 cm-1and formation of a new absorption peak around 943 cm-1 indicate the success of epoxidation. The epoxidized oil was blended with pure polystyrene in different weight percent compositions using solution casting in chloroform. The tensile properties of the blends demonstrated that the addition of 5 wt % ENO to PS led to an increase in elongation at break, but a decrease in tensile strength and modulus. This is in accordance with the common rule that plasticizers can decrease the tensile strength of the polymer.

Keywords: biodegradable, elongation at break, epoxidation, epoxy fatty acids, sustainable, tensile strength and modulus

Procedia PDF Downloads 219
2067 Formation of Academia-Industry Collaborative Model to Improve the Quality of Teaching-Learning Process

Authors: M. Dakshayini, P. Jayarekha

Abstract:

In traditional output-based education system, class room lecture and laboratory are the traditional delivery methods used during the course. Written examination and lab examination have been used as a conventional tool for evaluating student’s performance. Hence, there are certain apprehensions that the traditional education system may not efficiently prepare the students for competent professional life. This has led for the change from Traditional output-based education to Outcome-Based Education (OBE). OBE first sets the ideal programme learning outcome consecutively on increasing degree of complexity that students are expected to master. The core curriculum, teaching methodologies and assessment tools are then designed to achieve the proposed outcomes mainly focusing on what students can actually attain after they are taught. In this paper, we discuss a promising applications based learning and evaluation component involving industry collaboration to improve the quality of teaching and student learning process. Incorporation of this component definitely improves the quality of student learning in engineering education and helps the student to attain the competency as per the graduate attributes. This may also reduce the Industry-academia gap.

Keywords: outcome-based education, programme learning outcome, teaching-learning process, evaluation, industry collaboration

Procedia PDF Downloads 431