Search results for: home network
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6149

Search results for: home network

3539 Artificial Intelligence Based Predictive Models for Short Term Global Horizontal Irradiation Prediction

Authors: Kudzanayi Chiteka, Wellington Makondo

Abstract:

The whole world is on the drive to go green owing to the negative effects of burning fossil fuels. Therefore, there is immediate need to identify and utilise alternative renewable energy sources. Among these energy sources solar energy is one of the most dominant in Zimbabwe. Solar power plants used to generate electricity are entirely dependent on solar radiation. For planning purposes, solar radiation values should be known in advance to make necessary arrangements to minimise the negative effects of the absence of solar radiation due to cloud cover and other naturally occurring phenomena. This research focused on the prediction of Global Horizontal Irradiation values for the sixth day given values for the past five days. Artificial intelligence techniques were used in this research. Three models were developed based on Support Vector Machines, Radial Basis Function, and Feed Forward Back-Propagation Artificial neural network. Results revealed that Support Vector Machines gives the best results compared to the other two with a mean absolute percentage error (MAPE) of 2%, Mean Absolute Error (MAE) of 0.05kWh/m²/day root mean square (RMS) error of 0.15kWh/m²/day and a coefficient of determination of 0.990. The other predictive models had prediction accuracies of MAPEs of 4.5% and 6% respectively for Radial Basis Function and Feed Forward Back-propagation Artificial neural network. These two models also had coefficients of determination of 0.975 and 0.970 respectively. It was found that prediction of GHI values for the future days is possible using artificial intelligence-based predictive models.

Keywords: solar energy, global horizontal irradiation, artificial intelligence, predictive models

Procedia PDF Downloads 276
3538 A Qualitative Anthropological Analysis of Competing Health Perceptions in Chagas-Related Consultations in Non-Endemic Geneva

Authors: Marina Gold, Yves Jackson, David Parrat

Abstract:

The high predominance of Latin American migrants in Geneva from countries where Chagas disease is endemic (Bolivia, Brazil, Argentina, Colombia) is increasing the incidence of chronic Chagas-related problems, especially cardiovascular complications. The precarious migratory status of what are mostly undocumented migrants complicates access to health and affects patients’ and doctors’ health perceptions regarding screening, treatment and monitoring of Chagas-related health concerns. This project results from a 3 year collaboration between the Geneva University Hospital and the NGO Mundo Sano to understand the following questions: 1) how do Latin American migrants perceive their health? 2) What do they understand from Chagas disease? 3) Are patients’ and doctors’ health perceptions similar or do they have competing agendas? This paper aims to present the results of a long-term study that interrogates health perceptions among Latin American migrants in Geneva. The first phase consisted in completing surveys at three community screening events (2016, 2017. 2018), and the results of these surveys reveal the subordination of the importance of health to that of having met economic family obligation. That is, health is important only when it becomes an impediment to economic gain. The contradictory result emerged that people are aware of the importance of health prevention in order to ensure long-term health, but they do not always have agency over their life-style habits (healthy food, regular exercise, emotional stability). The second phase of the research collected open-ended interviews with selected participants, in order to explore in more detail how Latin American migrants deal with Chagas in a different socio-political and economic context to that of endemic countries. These interviews (5 in total) reveal mixed methods of managing health: social networks, access to health care transnationally (in Geneva, Spain and back in their home country), and different valuations of health problems in each situation. The third phase consisted in observations of doctor-patient consultations and further extended interviews with patients to determine doctor/patient health perceptions around Chagas disease. This phase is ongoing, but it has yielded preliminarily observations regarding the expectations that patients’ have of doctors, and the understanding of doctors’ to patients’ complex situations. Positive and complementary health perceptions include patients’ feeling that doctors in Geneva are more understanding, more knowledgeable and less racist than those in their home country, who do not provide detailed information about Chagas or its treatment and discriminate against them for being indigenous or from poor rural areas, enabling a better communication between doctors and patients. Possible conflicting health perceptions include patients addressing their health concerns more holistically and encountering the specialist’s limitations to only treating one health concern, given time limitations and lack of competition with their colleagues (the general practitioner that referred the patient, for example). The implications of this study extend the case of Chagas disease in Geneva and is relevant for all chronic concerns and migratory contexts of precarity.

Keywords: chagas disease, health perceptions, Latin American Migrants, non-endemic countries

Procedia PDF Downloads 124
3537 Accessibility Assessment of School Facilities Using Geospatial Technologies: A Case Study of District Sheikhupura

Authors: Hira Jabbar

Abstract:

Education is vital for inclusive growth of an economy and a critical contributor for investment in human capital. Like other developing countries, Pakistan is facing enormous challenges regarding the provision of public facilities, improper infrastructure planning, accelerating rate of population and poor accessibility. The influence of the rapid advancement and innovations in GIS and RS techniques have proved to be a useful tool for better planning and decision making to encounter these challenges. Therefore present study incorporates GIS and RS techniques to investigate the spatial distribution of school facilities, identifies settlements with served and unserved population, finds potential areas for new schools based on population and develops an accessibility index to evaluate the higher accessibility for schools. For this purpose high-resolution worldview imagery was used to develop road network, settlements and school facilities and to generate school accessibility for each level. Landsat 8 imagery was utilized to extract built-up area by applying pre and post-processing models and Landscan 2015 was used to analyze population statistics. Service area analysis was performed using network analyst extension in ArcGIS 10.3v and results were evaluated for served and underserved areas and population. An accessibility tool was used to evaluate a set of potential destinations to determine which is the most accessible with the given population distribution. Findings of the study may contribute to facilitating the town planners and education authorities for understanding the existing patterns of school facilities. It is concluded that GIS and remote sensing can be effectively used in urban transport and facility planning.

Keywords: accessibility, geographic information system, landscan, worldview

Procedia PDF Downloads 332
3536 Prediction of California Bearing Ratio of a Black Cotton Soil Stabilized with Waste Glass and Eggshell Powder using Artificial Neural Network

Authors: Biruhi Tesfaye, Avinash M. Potdar

Abstract:

The laboratory test process to determine the California bearing ratio (CBR) of black cotton soils is not only overpriced but also time-consuming as well. Hence advanced prediction of CBR plays a significant role as it is applicable In pavement design. The prediction of CBR of treated soil was executed by Artificial Neural Networks (ANNs) which is a Computational tool based on the properties of the biological neural system. To observe CBR values, combined eggshell and waste glass was added to soil as 4, 8, 12, and 16 % of the weights of the soil samples. Accordingly, the laboratory related tests were conducted to get the required best model. The maximum CBR value found at 5.8 at 8 % of eggshell waste glass powder addition. The model was developed using CBR as an output layer variable. CBR was considered as a function of the joint effect of liquid limit, plastic limit, and plastic index, optimum moisture content and maximum dry density. The best model that has been found was ANN with 5, 6 and 1 neurons in the input, hidden and output layer correspondingly. The performance of selected ANN has been 0.99996, 4.44E-05, 0.00353 and 0.0067 which are correlation coefficient (R), mean square error (MSE), mean absolute error (MAE) and root mean square error (RMSE) respectively. The research presented or summarized above throws light on future scope on stabilization with waste glass combined with different percentages of eggshell that leads to the economical design of CBR acceptable to pavement sub-base or base, as desired.

Keywords: CBR, artificial neural network, liquid limit, plastic limit, maximum dry density, OMC

Procedia PDF Downloads 196
3535 Maximum Induced Subgraph of an Augmented Cube

Authors: Meng-Jou Chien, Jheng-Cheng Chen, Chang-Hsiung Tsai

Abstract:

Let maxζG(m) denote the maximum number of edges in a subgraph of graph G induced by m nodes. The n-dimensional augmented cube, denoted as AQn, a variation of the hypercube, possesses some properties superior to those of the hypercube. We study the cases when G is the augmented cube AQn.

Keywords: interconnection network, augmented cube, induced subgraph, bisection width

Procedia PDF Downloads 409
3534 Entomofauna Biodiversity of a Citrus Orchard in Baraki, Algeria

Authors: Ahlem Guerzou, Salheddine Doumandji

Abstract:

Orchards and minimally processed with surrounding hedges form a significant source of biodiversity. These orchards are an entire ecosystem, home to a rich insect fauna associated with the presence of a large diversity of plant species. The values of the richness and diversity rise when the intensity of the chemical protection is reduced emphasizing the importance of such orchard in the conservation of biodiversity. To show the interest hedges fauna perspective, we conducted a study in an orange grove located Baraki surrounded by hedges and windbreaks consist of several plant species. With the sweep net there were the invertebrate fauna of the herbaceous and after a year of inventory was collected consists of a 2177 individuals distributed among 156 species grouped into five classes and 15 orders fauna. Hymenoptera and Diptera are in first place with 34 species (AR% = 19.3%), followed by Coleoptera with 27 species (AR% = 15.3%), Homoptera dominate in the workforce with 735 individuals (AR% = 34.1%). The Shannon-Weaver index calculated reflects a great diversity of population sampled equal to 5.2 bits. The equitability is 0.7, showing a strong trend of balance between the numbers of species present.

Keywords: biodiversity, citrus orchard, reaps net, hedges, Baraki

Procedia PDF Downloads 321
3533 Optimum Design for Cathode Microstructure of Solid Oxide Fuel Cell

Authors: M. Riazat, H. Abdolvand, M. Baniassadi

Abstract:

In this present work, 3D reconstruction of cathode of SOFC is developed with various volume fractions and porosity. Three Phase Boundary (TPB) of construction of such derived micro structures is calculated. The neural network is used to optimize the porosity and volume fraction of each phase to reach a structure with maximum TPB.

Keywords: fuel cell, solid oxide, TPB, 3D reconstruction

Procedia PDF Downloads 325
3532 Application of Continuum Damage Concept to Simulation of the Interaction between Hydraulic Fractures and Natural Fractures

Authors: Anny Zambrano, German Gonzalez, Yair Quintero

Abstract:

The continuum damage concept is used to study the interaction between hydraulic fractures and natural fractures, the objective is representing the path and relation among this two fractures types and predict its complex behavior without the need to pre-define their direction as occurs in other finite element applications, providing results more consistent with the physical behavior of the phenomenon. The approach uses finite element simulations through Abaqus software to model damage fracturing, the fracturing process by damage propagation in a rock. The modeling the phenomenon develops in two dimensional (2D) so that the fracture will be represented by a line and the crack front by a point. It considers nonlinear constitutive behavior, finite strain, time-dependent deformation, complex boundary conditions, strain hardening and softening, and strain based damage evolution in compression and tension. The complete governing equations are provided and the method is described in detail to permit readers to replicate all results. The model is compared to models that are published and available. Comparisons are focused in five interactions between natural fractures (NF) and hydraulic fractures: Fractured arrested at NF, crossing NF with or without offset, branching at intersecting NFs, branching at end of NF and NF dilation due to shear slippage. The most significant new finding is, that is not necessary to use pre-defined addresses propagation and stress condition can be evaluated as a dominant factor in the process. This is important because it can model in a more real way the generated complex hydraulic fractures, and be a valuable tool to predict potential problems and different geometries of the fracture network in the process of fracturing due to fluid injection.

Keywords: continuum damage, hydraulic fractures, natural fractures, complex fracture network, stiffness

Procedia PDF Downloads 346
3531 Decision Making on Smart Energy Grid Development for Availability and Security of Supply Achievement Using Reliability Merits

Authors: F. Iberraken, R. Medjoudj, D. Aissani

Abstract:

The development of the smart grids concept is built around two separate definitions, namely: The European one oriented towards sustainable development and the American one oriented towards reliability and security of supply. In this paper, we have investigated reliability merits enabling decision-makers to provide a high quality of service. It is based on system behavior using interruptions and failures modeling and forecasting from one hand and on the contribution of information and communication technologies (ICT) to mitigate catastrophic ones such as blackouts from the other hand. It was found that this concept has been adopted by developing and emerging countries in short and medium terms followed by sustainability concept at long term planning. This work has highlighted the reliability merits such as: Benefits, opportunities, costs and risks considered as consistent units of measuring power customer satisfaction. From the decision making point of view, we have used the analytic hierarchy process (AHP) to achieve customer satisfaction, based on the reliability merits and the contribution of such energy resources. Certainly nowadays, fossil and nuclear ones are dominating energy production but great advances are already made to jump into cleaner ones. It was demonstrated that theses resources are not only environmentally but also economically and socially sustainable. The paper is organized as follows: Section one is devoted to the introduction, where an implicit review of smart grids development is given for the two main concepts (for USA and Europeans countries). The AHP method and the BOCR developments of reliability merits against power customer satisfaction are developed in section two. The benefits where expressed by the high level of availability, maintenance actions applicability and power quality. Opportunities were highlighted by the implementation of ICT in data transfer and processing, the mastering of peak demand control, the decentralization of the production and the power system management in default conditions. Costs were evaluated using cost-benefit analysis, including the investment expenditures in network security, becoming a target to hackers and terrorists, and the profits of operating as decentralized systems, with a reduced energy not supplied, thanks to the availability of storage units issued from renewable resources and to the current power lines (CPL) enabling the power dispatcher to manage optimally the load shedding. For risks, we have razed the adhesion of citizens to contribute financially to the system and to the utility restructuring. What is the degree of their agreement compared to the guarantees proposed by the managers about the information integrity? From technical point of view, have they sufficient information and knowledge to meet a smart home and a smart system? In section three, an application of AHP method is made to achieve power customer satisfaction based on the main energy resources as alternatives, using knowledge issued from a country that has a great advance in energy mutation. Results and discussions are given in section four. It was given us to conclude that the option to a given resource depends on the attitude of the decision maker (prudent, optimistic or pessimistic), and that status quo is neither sustainable nor satisfactory.

Keywords: reliability, AHP, renewable energy resources, smart grids

Procedia PDF Downloads 445
3530 Loneliness and Depression in Relation to Latchkey Situation

Authors: Samaneh Sadat Fattahi Massoom, Hossein Salimi Bajestani

Abstract:

The study examines loneliness and depression in students who regularly care for themselves after school (latchkey students) in Mashhad and compares them with parent supervised students using a causal-comparative research method. The 270 participants, aged 7 -13, were selected using convenience and cluster random-assignment sampling. Independent t-test results showed significant differences between loneliness (-4.32, p ≤ 0.05) and depression (-3.02, p ≤0.05) among latchkey and non-latchkey students. Using the Pearson correlation test, significant correlation between depression and loneliness among latchkey students was also discovered (r=0.59, p ≤ 0.05). However, regarding non latchkey students, no significant difference between loneliness and depression was observed (r= 0.02. p ≥ 0.05). Multiple regression results also showed that depression variance can be determined by gender (22%) and loneliness (34%). The findings of this study, specifically the significant difference between latchkey and non-latchkey children regarding feelings of loneliness and depression, carries clear implications for parents. It can be concluded that mothers who spend most of their time working out of the house and devoid their children of their presence in the home may cause some form of mental distress like loneliness and depression. Moreover, gender differences affect the degree of these psychological disorders.

Keywords: loneliness, depression, self-care students, latchkey and non-latchkey students, gender

Procedia PDF Downloads 419
3529 Motives and Barriers of Using Airbnb: Findings from Mixed Method Approach

Authors: Ghada Mohammed, Mohamed Abdel Salam, Passent Tantawi

Abstract:

The study aimed to investigate the impact of motives and barriers for Egyptian users to use Airbnb as a platform of peer-to-peer accommodation instead of hotels on overall attitude towards Airbnb. A sequential mixed-methods approach was adopted to this study and it proposed a comprehensive research model adapted from both literature and results of qualitative phase and then tested via an online questionnaire. The findings revealed that, motives, price, home benefits, privacy, and online reviews significantly explained overall attitude towards Airbnb, while the main barriers were respectively: perceived risk and distrust in which they can predict the overall attitude. While from the subjective norms, only social influence can predict behavioral intention to use Airbnb. The study may serve as a practical reference for practitioners as well as researchers when developing programs and strategies to manage Airbnb consumers' needs and decision process. Some of the main conclusions drawn from this study are that variety was one of the major things that users like about Airbnb and the most important motives are the functional ones like price rather than the experiential ones like authenticity.

Keywords: airbnb, barriers, disruptive innovation, motives, sharing economy

Procedia PDF Downloads 149
3528 Green Supply Chain Network Optimization with Internet of Things

Authors: Sema Kayapinar, Ismail Karaoglan, Turan Paksoy, Hadi Gokcen

Abstract:

Green Supply Chain Management is gaining growing interest among researchers and supply chain management. The concept of Green Supply Chain Management is to integrate environmental thinking into the Supply Chain Management. It is the systematic concept emphasis on environmental problems such as reduction of greenhouse gas emissions, energy efficiency, recycling end of life products, generation of solid and hazardous waste. This study is to present a green supply chain network model integrated Internet of Things applications. Internet of Things provides to get precise and accurate information of end-of-life product with sensors and systems devices. The forward direction consists of suppliers, plants, distributions centres and sales and collect centres while, the reverse flow includes the sales and collects centres, disassembled centre, recycling and disposal centre. The sales and collection centre sells the new products are transhipped from factory via distribution centre and also receive the end-of life product according their value level. We describe green logistics activities by presenting specific examples including “recycling of the returned products and “reduction of CO2 gas emissions”. The different transportation choices are illustrated between echelons according to their CO2 gas emissions. This problem is formulated as a mixed integer linear programming model to solve the green supply chain problems which are emerged from the environmental awareness and responsibilities. This model is solved by using Gams package program. Numerical examples are suggested to illustrate the efficiency of the proposed model.

Keywords: green supply chain optimization, internet of things, greenhouse gas emission, recycling

Procedia PDF Downloads 333
3527 Splenic Artery Aneurysms: A Rare, Insidious Cause of Abdominal Pain

Authors: Christopher Oyediran, Nicola Ubayasiri, Christopher Gough

Abstract:

Splenic artery aneurysms are often clinically occult, occasionally identified incidentally with imaging. The pathogenesis of aneurysms is complex, but certain factors are thought to contribute to their development. Given the potential fatal complications of rupture, a high index of suspicion is required to make an early diagnosis. We present a case of a 36-year-old female with a history of endometriosis and multiple sclerosis who presented to the Emergency Department with sudden onset epigastric pain and collapse. On arrival, she was pale and clammy with profound tachycardia and hypotension. An ultrasound done in the resuscitation department revealed abdominal free fluid. She was resuscitated with blood and transferred for emergent laparotomy. Laparotomy revealed massive haemoperitoneum from the spleen. She underwent emergency splenectomy and inspection of the spleen revealed a splenic artery aneurysm. She received our massive transfusion protocol followed by a short stay on ITU, making a good post-operative recovery and was discharged home a week later.

Keywords: aneurysm, human chorionic gonadotrophin (hCG), resuscitation, laparotomy

Procedia PDF Downloads 434
3526 Covid Medical Imaging Trial: Utilising Artificial Intelligence to Identify Changes on Chest X-Ray of COVID

Authors: Leonard Tiong, Sonit Singh, Kevin Ho Shon, Sarah Lewis

Abstract:

Investigation into the use of artificial intelligence in radiology continues to develop at a rapid rate. During the coronavirus pandemic, the combination of an exponential increase in chest x-rays and unpredictable staff shortages resulted in a huge strain on the department's workload. There is a World Health Organisation estimate that two-thirds of the global population does not have access to diagnostic radiology. Therefore, there could be demand for a program that could detect acute changes in imaging compatible with infection to assist with screening. We generated a conventional neural network and tested its efficacy in recognizing changes compatible with coronavirus infection. Following ethics approval, a deidentified set of 77 normal and 77 abnormal chest x-rays in patients with confirmed coronavirus infection were used to generate an algorithm that could train, validate and then test itself. DICOM and PNG image formats were selected due to their lossless file format. The model was trained with 100 images (50 positive, 50 negative), validated against 28 samples (14 positive, 14 negative), and tested against 26 samples (13 positive, 13 negative). The initial training of the model involved training a conventional neural network in what constituted a normal study and changes on the x-rays compatible with coronavirus infection. The weightings were then modified, and the model was executed again. The training samples were in batch sizes of 8 and underwent 25 epochs of training. The results trended towards an 85.71% true positive/true negative detection rate and an area under the curve trending towards 0.95, indicating approximately 95% accuracy in detecting changes on chest X-rays compatible with coronavirus infection. Study limitations include access to only a small dataset and no specificity in the diagnosis. Following a discussion with our programmer, there are areas where modifications in the weighting of the algorithm can be made in order to improve the detection rates. Given the high detection rate of the program, and the potential ease of implementation, this would be effective in assisting staff that is not trained in radiology in detecting otherwise subtle changes that might not be appreciated on imaging. Limitations include the lack of a differential diagnosis and application of the appropriate clinical history, although this may be less of a problem in day-to-day clinical practice. It is nonetheless our belief that implementing this program and widening its scope to detecting multiple pathologies such as lung masses will greatly assist both the radiology department and our colleagues in increasing workflow and detection rate.

Keywords: artificial intelligence, COVID, neural network, machine learning

Procedia PDF Downloads 100
3525 Environmental Effect of Empty Nest Households in Germany: An Empirical Approach

Authors: Dominik Kowitzke

Abstract:

Housing constructions have direct and indirect environmental impacts especially caused by soil sealing and gray energy consumption related to the use of construction materials. Accordingly, the German government introduced regulations limiting additional annual soil sealing. At the same time, in many regions like metropolitan areas the demand for further housing is high and of current concern in the media and politics. It is argued that meeting this demand by making better use of the existing housing supply is more sustainable than the construction of new housing units. In this context, targeting the phenomenon of so-called over the housing of empty nest households seems worthwhile to investigate for its potential to free living space and thus, reduce the need for new housing constructions and related environmental harm. Over housing occurs if no space adjustment takes place in household lifecycle stages when children move out from home and the space formerly created for the offspring is from then on under-utilized. Although in some cases the housing space consumption might actually meet households’ equilibrium preferences, frequently space-wise adjustments to the living situation doesn’t take place due to transaction or information costs, habit formation, or government intervention leading to increasing costs of relocations like real estate transfer taxes or tenant protection laws keeping tenure rents below the market price. Moreover, many detached houses are not long-term designed in a way that freed up space could be rent out. Findings of this research based on socio-economic survey data, indeed, show a significant difference between the living space of empty nest and a comparison group of households which never had children. The approach used to estimate the average difference in living space is a linear regression model regressing the response variable living space on a two-dimensional categorical variable distinguishing the two groups of household types and further controls. This difference is assumed to be the under-utilized space and is extrapolated to the total amount of empty nests in the population. Supporting this result, it is found that households that move, despite market frictions impairing the relocation, after children left their home tend to decrease the living space. In the next step, only for areas with tight housing markets in Germany and high construction activity, the total under-utilized space in empty nests is estimated. Under the assumption of full substitutability of housing space in empty nests and space in new dwellings in these locations, it is argued that in a perfect market with empty nest households consuming their equilibrium demand quantity of housing space, dwelling constructions in the amount of the excess consumption of living space could be saved. This, on the other hand, would prevent environmental harm quantified in carbon dioxide equivalence units related to average constructions of detached or multi-family houses. This study would thus provide information on the amount of under-utilized space inside dwellings which is missing in public data and further estimates the external effect of over housing in environmental terms.

Keywords: empty nests, environment, Germany, households, over housing

Procedia PDF Downloads 174
3524 Teacher Mental Health during Online Teaching

Authors: Elisabeth Desiana Mayasari, Laurensia Aptik Evanjeli, Brigitta Erlita Tri Anggadewi

Abstract:

The condition of the COVID-19 pandemic demands adaptation in various aspects of human life, including in the field of education. Teachers are expected to do distance learning or Learning From Home (LFH). The teacher said that he experienced stress, anxiety, feeling depressed, and afraid based on the interview. Learning adaptations and pandemic situations can impact the mental health of teachers, so the purpose of this study is to determine the mental health of teachers while teaching online. This research was conducted with a quantitative approach using a survey method. The subjects in this study were 330 elementary school teachers under the auspices of a foundation in Yogyakarta. Teachers' mental health was measured using the Indonesian version of The Mental Health Inventory (MHI-38), which has a reliability of 0.888. The results showed that the teachers generally had a good mental health condition marked by a lower negative aspect score than the positive aspect. In addition, the overall mental health aspect shows that some teachers have better mental health when compared to the average score, as well as higher positive aspect scores in all sub-aspects.

Keywords: mental health, teacher, COVID-19 pandemic, MHI-38

Procedia PDF Downloads 187
3523 Mitigating the Negative Health Effects from Stress - A Social Network Analysis

Authors: Jennifer A. Kowalkowski

Abstract:

Production agriculture (farming) is a physically, emotionally, and cognitively stressful occupation, where workers have little control over the stressors that impact both their work and their lives. In an occupation already rife with hazards, these occupational-related stressors have been shown to increase farm workers’ risks for illness, injury, disability, and death associated with their work. Despite efforts to mitigate the negative health effects from occupational-related stress (ORS) and to promote health and well-being (HWB) among farmers in the US, marked improvements have not been attained. Social support accessed through social networks has been shown to buffer against the negative health effects from stress, yet no studies have directly examined these relationships among farmers. The purpose of this study was to use social network analysis to explore the social networks of farm owner-operators and the social supports available to them for mitigating the negative health effects of ORS. A convenience sample of 71 farm owner-operators from a Midwestern County in the US completed and returned a mailed survey (55.5% response rate) that solicited information about their social networks related to ORS. Farmers reported an average of 2.4 individuals in their personal networks and higher levels of comfort discussing ORS with female network members. Farmers also identified few connections (3.4% density) and indicated low comfort with members of affiliation networks specific to ORS. Findings from this study highlighted that farmers accessed different social networks and resources for their personal HWB than for issues related to occupational(farm-related) health and safety. In addition, farmers’ social networks for personal HWB were smaller, with different relational characteristics than reported in studies of farmers’ social networks related to occupational health and safety. Collectively, these findings suggest that farmers conceptualize personal HWB differently than farm health and safety. Therefore, the same research approaches and targets that guide occupational health and safety research may not be appropriate for personal HWB for farmers. Interventions and programming targeting ORS and HWB have largely been offered through the same platforms or mechanisms as occupational health and safety programs. This may be attributed to the significant overlap between the farm as a family business and place of residence, or that ORS stems from farm-related issues. However, these assumptions translated to health research of farmers and farm families from the occupational health and safety literature have not been directly studied or challenged. Thismay explain why past interventions have not been effective at improving health outcomes for farmers and farm families. A close examination of findings from this study raises important questions for researchers who study agricultural health. Findings from this study have significant implications for future research agendas focused on addressing ORS, HWB, and health disparities for farmersand farm families.

Keywords: agricultural health, occupational-related stress, social networks, well-being

Procedia PDF Downloads 112
3522 Application of Federated Learning in the Health Care Sector for Malware Detection and Mitigation Using Software-Defined Networking Approach

Authors: A. Dinelka Panagoda, Bathiya Bandara, Chamod Wijetunga, Chathura Malinda, Lakmal Rupasinghe, Chethana Liyanapathirana

Abstract:

This research takes us forward with the concepts of Federated Learning and Software-Defined Networking (SDN) to introduce an efficient malware detection technique and provide a mitigation mechanism to give birth to a resilient and automated healthcare sector network system by also adding the feature of extended privacy preservation. Due to the daily transformation of new malware attacks on hospital Integrated Clinical Environment (ICEs), the healthcare industry is at an undefinable peak of never knowing its continuity direction. The state of blindness by the array of indispensable opportunities that new medical device inventions and their connected coordination offer daily, a factor that should be focused driven is not yet entirely understood by most healthcare operators and patients. This solution has the involvement of four clients in the form of hospital networks to build up the federated learning experimentation architectural structure with different geographical participation to reach the most reasonable accuracy rate with privacy preservation. While the logistic regression with cross-entropy conveys the detection, SDN comes in handy in the second half of the research to stack up the initial development phases of the system with malware mitigation based on policy implementation. The overall evaluation sums up with a system that proves the accuracy with the added privacy. It is no longer needed to continue with traditional centralized systems that offer almost everything but not privacy.

Keywords: software-defined network, federated learning, privacy, integrated clinical environment, decentralized learning, malware detection, malware mitigation

Procedia PDF Downloads 191
3521 A Literature Review on the Success Indicators for Sabah's Ecotourism Sites

Authors: Lip Vui Tshin

Abstract:

Sabah, one of the thirteen Malaysian states, is located in the northern part of Malaysian Borneo. It is a melting pot of many different cultures and traditions, being home to about 2.9 million people with more than 30 ethic groups. It is also known as one of the twelve mega-diversity sites in the world with its rich living heritage; ethnic makes it ideal for the ecotourism industry. Sabah enjoys a steady flow of eco tourists from domestic and international markets with a gradual increase in the number of visitor arrival each year. Sabah’s ecotourism is categorized by its natural attraction, wildlife and wilderness habitats. This paper sets out to interpret and develop the indicators for success ecotourism sites in Sabah and measures its development stage. The long-term viability of tourism can be assured only when the limitations and favorable opportunities of the overall environment for tourism development are understood and ways to measure changes induced by tourism are identified and applied. This is a literature review of ecotourism site success indicators, and the outcome of this review is the identification of existing clusters and categorization of indicators and charting the way forward to develop a better understanding in ecotourism site success.

Keywords: ecotourism, ecotourism indicators, ecotourism success, Sabah

Procedia PDF Downloads 277
3520 Power System Cyber Security Risk in the Era of Digital Transformation

Authors: Rafat Rob, Khaled Alotaibi, Dana Nour, Abdullah Albadrani, Abdulmohsen Mulhim

Abstract:

Power systems digitization solutions provides a comprehensive smart, cohesive, interconnected network, extensive connectivity between digital assets, physical power plants, and resources to form digital economies. However, digitization has exposed the classical air gapped power plants to the rapid spread of cyber threats and attacks in the process delaying and forcing many organizations to rethink their cyber security policies and standards before they can augment their operation the new advanced digital devices. Cyber Security requirements for power systems (and industry control systems therein) demand a new approach, unique methodology, and design process that is completely different to Cyber Security measures designed for the IT systems. In practice, Cyber Security strategy, as applied to power systems, tends to be closely aligned to those measures applied for IT system purposes. The differentiator for Cyber Security in terms of power systems are the physical assets and applications used, alongside the ever-growing rate of expansion within the industry controls sector (in comparison to the relatively saturated growth observed for corporate IT systems). These factors increase the magnitude of the cyber security risk within such systems. The introduction of smart devices and sensors along the grid initiate vulnerable entry points to the systems. Every installed Smart Meter is a target; the way these devices communicate with each other may instigate a Denial of Service (DoS) and Distributed Denial of Service (DDoS) attack. Attacking one sensor or meter has the potential to propagate itself throughout the power grid reaching the IT network, where it may manifest itself as a malware infiltration.

Keywords: supply chain, cybersecurity, maturity model, risk, smart grid

Procedia PDF Downloads 120
3519 Assessment of Socio-Economic and Water Related Topics at Community Level in Yatta Town, Palestine

Authors: Nibal Al-Batsh, Issam A. Al-Khatib, Subha Ghannam

Abstract:

Yatta is a town in the Governorate of Hebron, located 9 km south of Hebron City in the West Bank. The town houses over 100,000 people, 49% of which are females; a population that doubles every 15 years. Yatta has been connected to a water network since 1974 serving nearly 85% of the households. The water network is old and inadequate to meet the needs of the population. The water supply made available to the area is also very limited, estimated to be around 20 l/c/d. Residents are thus forced to rely on water vendors which supply water with a lower quality compared to municipal water while being 400% more expensive. As a cheaper and more reliable alternative, rainwater harvesting is a common practice in the area, with the majority of the households owning at least one cistern. Rainwater harvesting is of great socioeconomic importance in areas where water sources are scarce or polluted. In this research, the quality of harvested rainwater used for drinking and domestic purposes in the Yatta area was assessed throughout a year. A total of 100 samples, were collected from (cisterns) with an average capacity of 69 m3, which are adjacent to cement-roof catchment areas with an average area of 145 m2. Samples were analyzed for a number of parameters including: pH, alkalinity, hardness, turbidity, Total Dissolved Solids (TDS), NO3, NH4, chloride and salinity. Biological and microbiological contents such as Total Coliforms (TCC) and Fecal Coliforms (FC) bacteria were also tested. Results showed that most of the rainwater samples were within WHO and EPA guidelines set for chemical parameters. The research also addressed the impact of different socioeconomic attributes on rainwater harvesting through questionnaire that was pre-tested before the actual statically sample is collected.

Keywords: rainwater, harvesting, water quality, socio-economic aspects

Procedia PDF Downloads 255
3518 Understanding the Communication Practices of Special Educators with Parents of High School Students with Emotional and Behavioral Disorders

Authors: Carolyn B. Mires, David L. Lee, David B. McNaughton

Abstract:

High school students’ with emotional and behavioral disorders (EBD) are one of the most underserved populations in today's schools. Using a multiple case study methodology, interviews were conducted to examine current practices and perceptions of the communication practices of teachers working with high school students with EBD. These interviews involved questions about general communication instances which occurred each week, communication strategies used each week, and how progress was being made on forming relationships with parents. Results confirm previous researchers’ hypotheses regarding methods, purposes, and regularity of positive communication incidences. Communication that met the positive goals of nurturing and maintaining relationships was open and frequent, reciprocal, and informal. Limitations are discussed as well as issues of trustworthiness. The case study concludes with a discussion and suggestions for high school special educators of students with EBD.

Keywords: emotional behavioral disorders, high school adolescence, home-school communication, relationships between parents and schools

Procedia PDF Downloads 282
3517 Influence of Urban Fabric on Child’s Upbringing: A Comparative Analysis between Modern and Traditional City

Authors: Mohamed A. Tantawy, Nourelhoda A. Hussein, Moataz A. Mahrous

Abstract:

New planning and city design theories are continuously debated and optimized for seeking efficiency and adequacy in economic and life quality aspects. Here, we examine the children-city relationship, to reflect on how modern and traditional cities affect the social climate. We adopt children as a proper caliber for urbanism, as for their very young age, they are independent and attached to family. Their fragility offers a chance to gauge how various urban settings directly affect their feeling of safety, containment, and their perception of belonging for home territory. The importance of street play for the child development process is discussed thoroughly. The authority they have on their play (when and what to play) pushes us to our conclusion. A mediocre built environment characterized by spontaneity and human-scale semi-private urban spaces, is irreplaceable by a perfectly designed far away playgrounds. Street play has a huge role in empowering children for a gradual engagement with grown-ups’ urban flow.

Keywords: child's psychology, social activity, street play, urban fabric

Procedia PDF Downloads 317
3516 Evaluation of Short-Term Load Forecasting Techniques Applied for Smart Micro-Grids

Authors: Xiaolei Hu, Enrico Ferrera, Riccardo Tomasi, Claudio Pastrone

Abstract:

Load Forecasting plays a key role in making today's and future's Smart Energy Grids sustainable and reliable. Accurate power consumption prediction allows utilities to organize in advance their resources or to execute Demand Response strategies more effectively, which enables several features such as higher sustainability, better quality of service, and affordable electricity tariffs. It is easy yet effective to apply Load Forecasting at larger geographic scale, i.e. Smart Micro Grids, wherein the lower available grid flexibility makes accurate prediction more critical in Demand Response applications. This paper analyses the application of short-term load forecasting in a concrete scenario, proposed within the EU-funded GreenCom project, which collect load data from single loads and households belonging to a Smart Micro Grid. Three short-term load forecasting techniques, i.e. linear regression, artificial neural networks, and radial basis function network, are considered, compared, and evaluated through absolute forecast errors and training time. The influence of weather conditions in Load Forecasting is also evaluated. A new definition of Gain is introduced in this paper, which innovatively serves as an indicator of short-term prediction capabilities of time spam consistency. Two models, 24- and 1-hour-ahead forecasting, are built to comprehensively compare these three techniques.

Keywords: short-term load forecasting, smart micro grid, linear regression, artificial neural networks, radial basis function network, gain

Procedia PDF Downloads 473
3515 Observing the Effects of Mindfulness-Based Meditation on Anxiety and Depression in Chronic Pain Patients

Authors: Kim Rod

Abstract:

People whose chronic pain limits their independence are especially likely to become anxious and depressed. Mindfulness training has shown promise for stress-related disorders. Methods: Chronic pain patients who complained of anxiety and depression and who scored higher than moderate in Hamilton Depression Rating Scale (HDRS) and Hospital Anxiety and Depression Scale (HADS) as well as moderate in Quality of Life Scale (QOLS) were observed for eight weeks, three days a week for an hour of Mindfulness Meditation training with an hour daily home Mindfulness Meditation practice. Pain was evaluated on study entry and completion, and patients were given the Patients’ Global Impression of Change (PGIC) to score at the end of the training program. Results: Forty-seven patients (47) completed the Mindfulness Meditation Training program. Over the year-long observation, patients demonstrated noticeable improvement in depression, anxiety, pain, and global impression of change. Conclusion: Chronic pain patients who suffer with anxiety and depression may benefit from incorporating Mindfulness Meditation into their treatment plans.

Keywords: mindfulness, meditation, depression, anxiety, chronic pain

Procedia PDF Downloads 448
3514 A Rapid Assessment of the Impacts of COVID-19 on Overseas Labor Migration: Findings from Bangladesh

Authors: Vaiddehi Bansal, Ridhi Sahai, Kareem Kysia

Abstract:

Overseas labor migration is currently one of the most important contributors to the economy of Bangladesh and is a highly profitable form of labor for Gulf Cooperative Council (GCC) countries. In 2019, 700,159 migrant workers from Bangladeshtraveled abroad for employment. GCC countries are a major destination for Bangladeshi migrant workers, with Saudi Arabia being the most common destination for Bangladeshi migrant workers since 2016. Despite the high rate of migration between these countries every year, the OLR industry remains complex and often leaves migrants susceptible to human trafficking, forced labor, and modern slavery. While the prevalence of forced labor among Bangladeshi migrants in GCC countries is still unknown, the IOM estimates international migrant workers comprise one fourth of the victims of forced labor. Moreover, the onset of the global COVID-19 pandemic has exposed migrant workers to additional adverse situations, making them even more vulnerable to forced labor and health risks. This paper presents findings from a rapid assessment of the impacts of COVID-19 on OLR in Bangladesh, with an emphasis on the increased risk of forced labor among vulnerable migrant worker populations, particularly women.Rapid reviews are a useful approach to swiftly provide actionable evidence for informed decision-making during emergencies, such as the COVID-19 pandemic. The research team conducted semi-structured key information interviews (KIIs) with a range of stakeholders, including government officials, local NGOs, international organizations, migration researchers, and formal and informal recruiting agencies, to obtain insights on the multi-facted impacts of COVID-19 on the OLR sector. The research team also conducted a comprehensive review of available resources, including media articles, blogs, policy briefs, reports, white papers, and other online content, to triangulate findings from the KIIs. After screening for inclusion criteria, a total of 110 grey literature documents were included in the review. A total of 31 KIIs were conducted, data from which was transcribed and translated from Bangla to English, andanalyzed using a detailed codebook. Findings indicate that there was limited reintegration support for returnee migrants. Facing increasing amounts of debt, financial insecurity, and social discrimination, returnee migrants, were extremely vulnerable to forced labor and exploitation. Growing financial debt and limited job opportunities in their home country will likely push migrants to resort to unsafe migration channels. Evidence suggests that women, who are primarily domestic works in GCC countries, were exposed to increased risk of forced labor and workplace violence. Due to stay-at-home measures, women migrant workers were tasked with additional housekeeping working and subjected to longer work hours, wage withholding, and physical abuse. In Bangladesh, returnee women migrant workers also faced an increased risk of domestic violence.

Keywords: forced labor, migration, gender, human trafficking

Procedia PDF Downloads 119
3513 Evaluation of Railway Network and Service Performance Based on Transportation Sustainability in DKI Jakarta

Authors: Nur Bella Octoria Bella, Ayomi Dita Rarasati

Abstract:

DKI Jakarta is Indonesia's capital city with the 10th highest congestion rate in the world based on the 2019 traffic index. Other than that based on World Air Quality Report in 2019 showed DKI Jakarta's air pollutant concentrate 49.4 µg and the 5th highest air pollutant in the world. In the urban city nowadays, the mobility rate is high enough and the efficiency for sustainability assessment in transport infrastructure development is needed. This efficiency is the important key for sustainable infrastructure development. DKI Jakarta is nowadays in the process of constructing the railway infrastructure to support the transportation system. The problems appearing are the railway infrastructure networks and the service in DKI Jakarta already planned based on sustainability factors or not. Therefore, the aim of this research is to make the evaluation of railways infrastructure networks performance and services in DKI Jakarta regards on the railway sustainability key factors. Further, this evaluation will be used to make the railway sustainability assessment framework and to offer some of the alternative solutions to improve railway transportation sustainability in DKI Jakarta. Firstly a very detailed literature review of papers that have focused on railway sustainability factors and their improvements of railway sustainability, published in the scientific journal in the period 2011 until 2021. Regarding the sustainability factors from the literature review, further, it is used to assess the current condition of railway infrastructure in DKI Jakarta. The evaluation will be using a Likert rate questionnaire and directed to the transportation railway expert and the passenger. Furthermore, the mapping and evaluation rate based on the sustainability factors will be compared to the effect factors using the Analytical Hierarchical Process (AHP). This research offers the network's performance and service rate impact on the sustainability aspect and the passenger willingness for using the rail public transportation in DKI Jakarta.

Keywords: transportation sustainability, railway transportation, sustainability, DKI Jakarta

Procedia PDF Downloads 168
3512 Prediction of Coronary Artery Stenosis Severity Based on Machine Learning Algorithms

Authors: Yu-Jia Jian, Emily Chia-Yu Su, Hui-Ling Hsu, Jian-Jhih Chen

Abstract:

Coronary artery is the major supplier of myocardial blood flow. When fat and cholesterol are deposit in the coronary arterial wall, narrowing and stenosis of the artery occurs, which may lead to myocardial ischemia and eventually infarction. According to the World Health Organization (WHO), estimated 740 million people have died of coronary heart disease in 2015. According to Statistics from Ministry of Health and Welfare in Taiwan, heart disease (except for hypertensive diseases) ranked the second among the top 10 causes of death from 2013 to 2016, and it still shows a growing trend. According to American Heart Association (AHA), the risk factors for coronary heart disease including: age (> 65 years), sex (men to women with 2:1 ratio), obesity, diabetes, hypertension, hyperlipidemia, smoking, family history, lack of exercise and more. We have collected a dataset of 421 patients from a hospital located in northern Taiwan who received coronary computed tomography (CT) angiography. There were 300 males (71.26%) and 121 females (28.74%), with age ranging from 24 to 92 years, and a mean age of 56.3 years. Prior to coronary CT angiography, basic data of the patients, including age, gender, obesity index (BMI), diastolic blood pressure, systolic blood pressure, diabetes, hypertension, hyperlipidemia, smoking, family history of coronary heart disease and exercise habits, were collected and used as input variables. The output variable of the prediction module is the degree of coronary artery stenosis. The output variable of the prediction module is the narrow constriction of the coronary artery. In this study, the dataset was randomly divided into 80% as training set and 20% as test set. Four machine learning algorithms, including logistic regression, stepwise regression, neural network and decision tree, were incorporated to generate prediction results. We used area under curve (AUC) / accuracy (Acc.) to compare the four models, the best model is neural network, followed by stepwise logistic regression, decision tree, and logistic regression, with 0.68 / 79 %, 0.68 / 74%, 0.65 / 78%, and 0.65 / 74%, respectively. Sensitivity of neural network was 27.3%, specificity was 90.8%, stepwise Logistic regression sensitivity was 18.2%, specificity was 92.3%, decision tree sensitivity was 13.6%, specificity was 100%, logistic regression sensitivity was 27.3%, specificity 89.2%. From the result of this study, we hope to improve the accuracy by improving the module parameters or other methods in the future and we hope to solve the problem of low sensitivity by adjusting the imbalanced proportion of positive and negative data.

Keywords: decision support, computed tomography, coronary artery, machine learning

Procedia PDF Downloads 231
3511 Rabies Free Pakistan - Eliminating Rabies Through One Health Approach

Authors: Anzal Abbas Jaffari, Wajiha Javed, Naseem Salahuddin

Abstract:

Rationale: Rabies, a vaccine preventable disease, continues to be a critical public health issue as it kills around 2000-5000 people annually in Pakistan. Along with the disease spread among animals, the dog population remains a victim of brutal culling practices by the local authorities, which adversely affects ecosystem (sinking of poison in the soil – affecting vegetation & contaminating water) and the disease spread. The dog population has been exponentially rising primarily because a lack of a consolidated nationwide Animal Birth Control program and awareness among the local communities in general and children in particular. This is reflected in Pakistan’s low SARE score - 1.5, which makes the country trails behind other developing countries like Bangladesh (2.5) and Philippines (3.5).According to an estimate, the province of Sindh alone is home to almost 2.5 million dogs. The clustering of dogs in Peri-Urban areas and inner cities localities leads to an increase of reported dog bite cases in these areas specifically. Objective: Rabies Free Pakistan (RFP), which is a joint venture of Getz Pharma Private Limited and Indus Hospital & Health Network (IHHN); it was established in 2018 to eliminate Rabies from Pakistan by 2030 using the One Health Approach. Methodology: The RFP team is actively working on advocacy and policy front with both the Federal & Provincial government to ensure that all stakeholders currently involved in dog culling in Pakistan have a paradigm shift towards humane methods of vaccination and ABC. Along with the federal government, RFP aims to declare Rabies as a notifiable disease. Whereas RFP closely works with the provincial government of Sindh to initiate a province wide Rabies Control Program.RFP program follows international standards and WHO approved protocols for this program in Pakistan.RFP team has achieved various milestones in the fight against Rabies after successfully scaling up project operations and has vaccinated more than 30,000 dogs and neutered around 7,000 dogs since 2018. Recommendations: Effective implementation of Rabies program (MDV and ABC) requires a concentrated effort to address a variety of structural and policy challenges. This essentially demands a massive shift in the attitude of individuals towards rabies. The two most significant challenges in implementing a standard policy at the structural level are lack of institutional capacity, shortage of vaccine, and absence of inter-departmental coordination among major stakeholders: federal government, provincial ministry of health, livestock, and local bodies (including local councils). The lack of capacity in health care workers to treat dog bite cases emerges as a critical challenge at the clinical level. Conclusion: Pakistan can learn from the successful international models of Sri Lanka and Mexico as they adopted the One Health Approach to eliminate rabies like RFP. The WHO advised One Health approach provides the policymakers with an interactive and cross-sectoral guide, which involves all the essential elements of the eco system (including animals, humans, and other components).

Keywords: animal birth control, dog population, mass dog vaccination, one health, rabies elimination

Procedia PDF Downloads 186
3510 Risk Factors of Becoming NEET Youth in Iran: A Machine Learning Approach

Authors: Hamed Rahmani, Wim Groot

Abstract:

The term "youth not in employment, education or training (NEET)" refers to a combination of youth unemployment and school dropout. This study investigates the variables that increase the risk of becoming NEET in Iran. A selection bias-adjusted Probit model was employed using machine learning to identify these risk factors. We used cross-sectional data obtained from the Statistical Centre of Iran and the Ministry of Cooperatives Labour and Social Welfare that was taken from the labour force survey conducted in the spring of 2021. We look at years of education, work experience, housework, the number of children under the age of six in the home, family education, birthplace, and the amount of land owned by households. Results show that hours spent performing domestic chores enhance the likelihood of youth becoming NEET, and years of education and years of potential work experience decrease the chance of being NEET. The findings also show that female youth born in cities were less likely than those born in rural regions to become NEET.

Keywords: NEET youth, probit, CART, machine learning, unemployment

Procedia PDF Downloads 111