Search results for: Support vector machine (SVM)
7408 Factors Affecting Visual Environment in Mine Lighting
Authors: N. Lakshmipathy, Ch. S. N. Murthy, M. Aruna
Abstract:
The design of lighting systems for surface mines is not an easy task because of the unique environment and work procedures encountered in the mines. The primary objective of this paper is to identify the major problems encountered in mine lighting application and to provide guidance in the solution of these problems. In the surface mining reflectance of surrounding surfaces is one of the important factors, which improve the vision, in the night hours. But due to typical working nature in the mines it is very difficult to fulfill these requirements, and also the orientation of the light at work site is a challenging task. Due to this reason machine operator and other workers in a mine need to be able to orient themselves in a difficult visual environment. The haul roads always keep on changing to tune with the mining activity. Other critical area such as dumpyards, stackyards etc. also change their phase with time, and it is difficult to illuminate such areas. Mining is a hazardous occupation, with workers exposed to adverse conditions; apart from the need for hard physical labor, there is exposure to stress and environmental pollutants like dust, noise, heat, vibration, poor illumination, radiation, etc. Visibility is restricted when operating load haul dumper and Heavy Earth Moving Machinery (HEMM) vehicles resulting in a number of serious accidents. one of the leading causes of these accidents is the inability of the equipment operator to see clearly people, objects or hazards around the machine. Results indicate blind spots are caused primarily by posts, the back of the operator's cab, and by lights and light brackets. The careful designed and implemented, lighting systems provide mine workers improved visibility and contribute to improved safety, productivity and morale. Properly designed lighting systems can improve visibility and safety during working in the opencast mines.Keywords: contrast, efficacy, illuminance, illumination, light, luminaire, luminance, reflectance, visibility
Procedia PDF Downloads 3587407 Mitigation of Cascading Power Outage Caused Power Swing Disturbance Using Real-time DLR Applications
Authors: Dejenie Birile Gemeda, Wilhelm Stork
Abstract:
The power system is one of the most important systems in modern society. The existing power system is approaching the critical operating limits as views of several power system operators. With the increase of load demand, high capacity and long transmission networks are widely used to meet the requirement. With the integration of renewable energies such as wind and solar, the uncertainty, intermittence bring bigger challenges to the operation of power systems. These dynamic uncertainties in the power system lead to power disturbances. The disturbances in a heavily stressed power system cause distance relays to mal-operation or false alarms during post fault power oscillations. This unintended operation of these relays may propagate and trigger cascaded trappings leading to total power system blackout. This is due to relays inability to take an appropriate tripping decision based on ensuing power swing. According to the N-1 criterion, electric power systems are generally designed to withstand a single failure without causing the violation of any operating limit. As a result, some overloaded components such as overhead transmission lines can still work for several hours under overload conditions. However, when a large power swing happens in the power system, the settings of the distance relay of zone 3 may trip the transmission line with a short time delay, and they will be acting so quickly that the system operator has no time to respond and stop the cascading. Misfiring of relays in absence of fault due to power swing may have a significant loss in economic performance, thus a loss in revenue for power companies. This research paper proposes a method to distinguish stable power swing from unstable using dynamic line rating (DLR) in response to power swing or disturbances. As opposed to static line rating (SLR), dynamic line rating support effective mitigation actions against propagating cascading outages in a power grid. Effective utilization of existing transmission lines capacity using machine learning DLR predictions will improve the operating point of distance relay protection, thus reducing unintended power outages due to power swing.Keywords: blackout, cascading outages, dynamic line rating, power swing, overhead transmission lines
Procedia PDF Downloads 1437406 Treatment of Cyanide Effluents with Platinum Impregned on Mg-Al Layered Hydroxides
Authors: María R. Contreras, Diana Endara
Abstract:
Cyanide leaching is the most used technology for gold mining industry, which produces large amounts of effluents requiring treatment. In Ecuador the development of gold mining industry has increased, causing significant environmental impacts due to the highly use of cyanide, it is estimated that 10 gr of extracted gold generates 7000 liters of water contaminated with 300mg/L of free cyanide. The most common methods used nowadays are the treatment with peroxodisulfuric acid, ozonation, H₂O₂ and other reactants which are expensive and present disadvantages. Several methods have been developed to treat this contaminant such as heterogeneous catalysts. Layered double hydroxides (LDHs) have received much attention due to their wide applications like a catalysis support. Therefore, in this study, Mg-Al/ LDH was synthetized by coprecipitation method and then platinum was impregned on it, in order to enhance its catalytic activity. Two methods of impregnation were used, the first one, called incipient wet impregnation and the second one was developed by continuous agitation of LDH in contact with chloroplatinic acid solution for 24 h. The support impregnated was analyzed by X-ray diffraction, FTIR and SEM. Finally, the oxidation of cyanide ion was performed by preparing synthetic solutions of sodium cyanide (NaCN) with an initial concentration of 500 mg/L at pH 10,5 and air flow of 180 NL/h. After 8 hours of treatment, an 80% of oxidation of ion cyanide was achieved.Keywords: catalysis, cyanide, LDHs, mining
Procedia PDF Downloads 1427405 The Influence of Japanese Poetry in Spanish Piano Music: Benet Casablancas and Mercedes Zavala’s Haikus
Authors: Isabel Pérez Dobarro
Abstract:
In the mid-twentieth century, Spanish composers started looking beyond the national folkloric tradition (adopted by Albéniz, Granados, and Falla) and Rodrigo’s neoclassicism, and searched for other sources of inspiration. Japanese Haikus fascinated Spanish musicians, who found in their brevity and imagination a new avenue to develop their creativity. The goal of this research is to study how two renowned Spanish authors, Benet Casablancas and Mercedes Zavala, incorporated Haikus into their piano works. Based on Bruhn’s methodology on text and instrumental music relations, and developing a score and text analysis complemented by interviews with both composers, this study has revealed three possible interactions between the Haikus and these composers’ piano writing: inspiration, transmedialization, and mimesis. Findings also include specific technical gestures to support each of these approaches. Commonalities between their pieces and those by other non-Spanish composers such as Jonathan Harvey, John Cage, and Michael Berkeley have also been explored. According to the author's knowledge, this is the first study on the Japanese influence in Spanish piano music. Thus, it opens a new path for understanding musical exchanges between both countries as well as contemporary piano tools that support the interaction between text and music.Keywords: Haiku, Spanish piano music, Benet Casablancas, Mercedes Zavala
Procedia PDF Downloads 1507404 Conversational Assistive Technology of Visually Impaired Person for Social Interaction
Authors: Komal Ghafoor, Tauqir Ahmad, Murtaza Hanif, Hira Zaheer
Abstract:
Assistive technology has been developed to support visually impaired people in their social interactions. Conversation assistive technology is designed to enhance communication skills, facilitate social interaction, and improve the quality of life of visually impaired individuals. This technology includes speech recognition, text-to-speech features, and other communication devices that enable users to communicate with others in real time. The technology uses natural language processing and machine learning algorithms to analyze spoken language and provide appropriate responses. It also includes features such as voice commands and audio feedback to provide users with a more immersive experience. These technologies have been shown to increase the confidence and independence of visually impaired individuals in social situations and have the potential to improve their social skills and relationships with others. Overall, conversation-assistive technology is a promising tool for empowering visually impaired people and improving their social interactions. One of the key benefits of conversation-assistive technology is that it allows visually impaired individuals to overcome communication barriers that they may face in social situations. It can help them to communicate more effectively with friends, family, and colleagues, as well as strangers in public spaces. By providing a more seamless and natural way to communicate, this technology can help to reduce feelings of isolation and improve overall quality of life. The main objective of this research is to give blind users the capability to move around in unfamiliar environments through a user-friendly device by face, object, and activity recognition system. This model evaluates the accuracy of activity recognition. This device captures the front view of the blind, detects the objects, recognizes the activities, and answers the blind query. It is implemented using the front view of the camera. The local dataset is collected that includes different 1st-person human activities. The results obtained are the identification of the activities that the VGG-16 model was trained on, where Hugging, Shaking Hands, Talking, Walking, Waving video, etc.Keywords: dataset, visually impaired person, natural language process, human activity recognition
Procedia PDF Downloads 587403 You Only Get One Brain: An Exploratory Retrospective Study On Life After Adolescent TBI
Authors: Mulligan T., Barker-Collo S., Gobson K., Jones K.
Abstract:
There is a relatively scarce body of literature regarding adolescent experiences of traumatic brain injury (TBI). This qualitative study explored how sustaining a TBI at this unique stage of development might impact a young person as they navigate the challenges of adolescence and transition to adulthood, and what might support recovery. Thirteen young adults who sustained a mild-moderate TBI as an adolescent (aged 13 – 17 years), approximately 7.7 years (range = 6.7 – 8.0 years) prior, participated in the research. Semi-structured individual interviews were conducted to explore participants’ experiences surrounding and following their TBIs. Thematic analysis of interview data produced five key categories of findings: (1) Following their TBIs, many participants experienced problems with cognitive (e.g., forgetfulness, concentration difficulties), physical (e.g., migraines, fatigue) and emotional (e.g., depression, anxiety) functioning, which were often endured into adulthood. (2) TBI-related problems often adversely affected important areas of life for the participant, including school, work and friendships. (3) Changes following TBI commonly impacted identity formation. (4) Recovery processes evolved over time as the participants coped initially by just ‘getting on with it’, before learning to accept new limitations and, ultimately, growing from their TBI experiences. (5) While the presence of friends and family assisted recovery, struggles were often exacerbated by a lack of emotional support from others, in addition to the absence of any assistance or information-provision from professionals regarding what to expect following TBI. The findings suggest that even mild TBI sustained during adolescence can have consequences for an individual’s functioning, engagement in life and identity development, whilst also giving rise to post-traumatic growth. Recovery following adolescent TBI might be maximised by facilitating greater understanding of the injury and acknowledging its impacts on important areas of life, as well as the provision of emotional support and facilitating self-reflection and meaning-making.Keywords: adolescent, brain Injury, qualitative, post-traumatic growth
Procedia PDF Downloads 547402 Improving Decision Support for Organ Transplant
Authors: Ian McCulloh, Andrew Placona, Darren Stewart, Daniel Gause, Kevin Kiernan, Morgan Stuart, Christopher Zinner, Laura Cartwright
Abstract:
An estimated 22-25% of viable deceased donor kidneys are discarded every year in the US, while waitlisted candidates are dying every day. As many as 85% of transplanted organs are refused at least once for a patient that scored higher on the match list. There are hundreds of clinical variables involved in making a clinical transplant decision and there is rarely an ideal match. Decision makers exhibit an optimism bias where they may refuse an organ offer assuming a better match is imminent. We propose a semi-parametric Cox proportional hazard model, augmented by an accelerated failure time model based on patient specific suitable organ supply and demand to estimate a time-to-next-offer. Performance is assessed with Cox-Snell residuals and decision curve analysis, demonstrating improved decision support for up to a 5-year outlook. Providing clinical decision makers with quantitative evidence of likely patient outcomes (e.g., time to next offer and the mortality associated with waiting) may improve decisions and reduce optimism bias, thus reducing discarded organs and matching more patients on the waitlist.Keywords: decision science, KDPI, optimism bias, organ transplant
Procedia PDF Downloads 1047401 Analytical Technique for Definition of Internal Forces in Links of Robotic Systems and Mechanisms with Statically Indeterminate and Determinate Structures Taking into Account the Distributed Dynamical Loads and Concentrated Forces
Authors: Saltanat Zhilkibayeva, Muratulla Utenov, Nurzhan Utenov
Abstract:
The distributed inertia forces of complex nature appear in links of rod mechanisms within the motion process. Such loads raise a number of problems, as the problems of destruction caused by a large force of inertia; elastic deformation of the mechanism can be considerable, that can bring the mechanism out of action. In this work, a new analytical approach for the definition of internal forces in links of robotic systems and mechanisms with statically indeterminate and determinate structures taking into account the distributed inertial and concentrated forces is proposed. The relations between the intensity of distributed inertia forces and link weight with geometrical, physical and kinematic characteristics are determined in this work. The distribution laws of inertia forces and dead weight make it possible at each position of links to deduce the laws of distribution of internal forces along the axis of the link, in which loads are found at any point of the link. The approximation matrixes of forces of an element under the action of distributed inertia loads with the trapezoidal intensity are defined. The obtained approximation matrixes establish the dependence between the force vector in any cross-section of the element and the force vector in calculated cross-sections, as well as allow defining the physical characteristics of the element, i.e., compliance matrix of discrete elements. Hence, the compliance matrixes of an element under the action of distributed inertial loads of trapezoidal shape along the axis of the element are determined. The internal loads of each continual link are unambiguously determined by a set of internal loads in its separate cross-sections and by the approximation matrixes. Therefore, the task is reduced to the calculation of internal forces in a final number of cross-sections of elements. Consequently, it leads to a discrete model of elastic calculation of links of rod mechanisms. The discrete model of the elements of mechanisms and robotic systems and their discrete model as a whole are constructed. The dynamic equilibrium equations for the discrete model of the elements are also received in this work as well as the equilibrium equations of the pin and rigid joints expressed through required parameters of internal forces. Obtained systems of dynamic equilibrium equations are sufficient for the definition of internal forces in links of mechanisms, which structure is statically definable. For determination of internal forces of statically indeterminate mechanisms (in the way of determination of internal forces), it is necessary to build a compliance matrix for the entire discrete model of the rod mechanism, that is reached in this work. As a result by means of developed technique the programs in the MAPLE18 system are made and animations of the motion of the fourth class mechanisms of statically determinate and statically indeterminate structures with construction on links the intensity of cross and axial distributed inertial loads, the bending moments, cross and axial forces, depending on kinematic characteristics of links are obtained.Keywords: distributed inertial forces, internal forces, statically determinate mechanisms, statically indeterminate mechanisms
Procedia PDF Downloads 2167400 Design Guidelines for an Enhanced Interaction Experience in the Domain of Smartphone-Based Applications for Sport and Fitness
Authors: Paolo Pilloni, Fabrizio Mulas, Salvatore Carta
Abstract:
Nowadays, several research studies point up that an active lifestyle is essential for physical and mental health benefits. Mobile phones have greatly influenced people’s habits and attitudes also in the way they exercise. Our research work is mainly focused on investigating how to exploit mobile technologies to favour people’s exertion experience. To this end, we developed an exertion framework users can exploit through a real world mobile application, called BLINDED, designed to act as a virtual personal trainer to support runners during their trainings. In this work, inspired by both previous findings in the field of interaction design for people with visual impairments, feedback gathered from real users of our framework, and positive results obtained from two experimentations, we present some new interaction facilities we designed to enhance the interaction experience during a training. The positive obtained results helped us to derive some interaction design recommendations we believe will be a valid support for designers of future mobile systems conceived to be used in circumstances where there are limited possibilities of interaction.Keywords: human computer interaction, interaction design guidelines, persuasive mobile technologies for sport and health
Procedia PDF Downloads 5317399 Frequency Decomposition Approach for Sub-Band Common Spatial Pattern Methods for Motor Imagery Based Brain-Computer Interface
Authors: Vitor M. Vilas Boas, Cleison D. Silva, Gustavo S. Mafra, Alexandre Trofino Neto
Abstract:
Motor imagery (MI) based brain-computer interfaces (BCI) uses event-related (de)synchronization (ERS/ ERD), typically recorded using electroencephalography (EEG), to translate brain electrical activity into control commands. To mitigate undesirable artifacts and noise measurements on EEG signals, methods based on band-pass filters defined by a specific frequency band (i.e., 8 – 30Hz), such as the Infinity Impulse Response (IIR) filters, are typically used. Spatial techniques, such as Common Spatial Patterns (CSP), are also used to estimate the variations of the filtered signal and extract features that define the imagined motion. The CSP effectiveness depends on the subject's discriminative frequency, and approaches based on the decomposition of the band of interest into sub-bands with smaller frequency ranges (SBCSP) have been suggested to EEG signals classification. However, despite providing good results, the SBCSP approach generally increases the computational cost of the filtering step in IM-based BCI systems. This paper proposes the use of the Fast Fourier Transform (FFT) algorithm in the IM-based BCI filtering stage that implements SBCSP. The goal is to apply the FFT algorithm to reduce the computational cost of the processing step of these systems and to make them more efficient without compromising classification accuracy. The proposal is based on the representation of EEG signals in a matrix of coefficients resulting from the frequency decomposition performed by the FFT, which is then submitted to the SBCSP process. The structure of the SBCSP contemplates dividing the band of interest, initially defined between 0 and 40Hz, into a set of 33 sub-bands spanning specific frequency bands which are processed in parallel each by a CSP filter and an LDA classifier. A Bayesian meta-classifier is then used to represent the LDA outputs of each sub-band as scores and organize them into a single vector, and then used as a training vector of an SVM global classifier. Initially, the public EEG data set IIa of the BCI Competition IV is used to validate the approach. The first contribution of the proposed method is that, in addition to being more compact, because it has a 68% smaller dimension than the original signal, the resulting FFT matrix maintains the signal information relevant to class discrimination. In addition, the results showed an average reduction of 31.6% in the computational cost in relation to the application of filtering methods based on IIR filters, suggesting FFT efficiency when applied in the filtering step. Finally, the frequency decomposition approach improves the overall system classification rate significantly compared to the commonly used filtering, going from 73.7% using IIR to 84.2% using FFT. The accuracy improvement above 10% and the computational cost reduction denote the potential of FFT in EEG signal filtering applied to the context of IM-based BCI implementing SBCSP. Tests with other data sets are currently being performed to reinforce such conclusions.Keywords: brain-computer interfaces, fast Fourier transform algorithm, motor imagery, sub-band common spatial patterns
Procedia PDF Downloads 1287398 Evaluation of the Efficacy of Basic Life Support Teaching in Second and Third Year Medical Students
Authors: Bianca W. O. Silva, Adriana C. M. Andrade, Gustavo C. M. Lucena, Virna M. S. Lima
Abstract:
Introduction: Basic life support (BLS) involves the immediate recognition of cardiopulmonary arrest. Each year, 359.400 and 275.000 individuals with cardiac arrest are attended in emergency departments in USA and Europe. Brazilian data shows that 200.000 cardiac arrests occur every year, and half of them out of the hospital. Medical schools around the world teach BLS in the first years of the course, but studies show that there is a decline of the knowledge as the years go by, affecting the chain of survival. The objective was to analyze the knowledge of medical students about BLS and the retention of this learning throughout the course. Methods: This study included 150 students who were at the second and third year of a medical school in Salvador, Bahia, Brazil. The instrument of data collection was a structured questionnaire composed of 20 questions based on the 2015 American Heart Association guideline. The Pearson Chi-square test was used in order to study the association between previous training, sex and semester with the degree of knowledge of the students. The Kruskal-Wallis test was used to evaluate the different yields obtained between the various semesters. The number of correct answers was described by average and quartiles. Results: Regarding the degree of knowledge, 19.6% of the female students reached the optimal classification, a better outcome than the achieved by the male participants. Of those with previous training, 33.33% were classified as good and optimal, none of the students reached the optimal classification and only 2.2% of them were classified as bad (those who did not have 52.6% of correct answers). The analysis of the degree of knowledge related to each semester revealed that the 5th semester had the highest outcome: 30.5%. However, the acquaintance presented by the semesters was generally unsatisfactory, since 50% of the students, or more, demonstrated knowledge levels classified as bad or regular. When confronting the different semesters and the achieved scores, the value of p was 0.831. Conclusion: It is important to focus on the training of medical professionals that are capable of facing emergency situations, improving the systematization of care, and thereby increasing the victims' possibility of survival.Keywords: basic life support, cardiopulmonary ressucitacion, education, medical students
Procedia PDF Downloads 1857397 Digital Architectural Practice as a Challenge for Digital Architectural Technology Elements in the Era of Digital Design
Authors: Ling Liyun
Abstract:
In the field of contemporary architecture, complex forms of architectural works continue to emerge in the world, along with some new terminology emerged: digital architecture, parametric design, algorithm generation, building information modeling, CNC construction and so on. Architects gradually mastered the new skills of mathematical logic in the form of exploration, virtual simulation, and the entire design and coordination in the construction process. Digital construction technology has a greater degree in controlling construction, and ensure its accuracy, creating a series of new construction techniques. As a result, the use of digital technology is an improvement and expansion of the practice of digital architecture design revolution. We worked by reading and analyzing information about the digital architecture development process, a large number of cases, as well as architectural design and construction as a whole process. Thus current developments were introduced and discussed in our paper, such as architectural discourse, design theory, digital design models and techniques, material selecting, as well as artificial intelligence space design. Our paper also pays attention to the representative three cases of digital design and construction experiment at great length in detail to expound high-informatization, high-reliability intelligence, and high-technique in constructing a humane space to cope with the rapid development of urbanization. We concluded that the opportunities and challenges of the shift existed in architectural paradigms, such as the cooperation methods, theories, models, technologies and techniques which were currently employed in digital design research and digital praxis. We also find out that the innovative use of space can gradually change the way people learn, talk, and control information. The past two decades, digital technology radically breaks the technology constraints of industrial technical products, digests the publicity on a particular architectural style (era doctrine). People should not adapt to the machine, but in turn, it’s better to make the machine work for users.Keywords: artificial intelligence, collaboration, digital architecture, digital design theory, material selection, space construction
Procedia PDF Downloads 1357396 Improving Subjective Bias Detection Using Bidirectional Encoder Representations from Transformers and Bidirectional Long Short-Term Memory
Authors: Ebipatei Victoria Tunyan, T. A. Cao, Cheol Young Ock
Abstract:
Detecting subjectively biased statements is a vital task. This is because this kind of bias, when present in the text or other forms of information dissemination media such as news, social media, scientific texts, and encyclopedias, can weaken trust in the information and stir conflicts amongst consumers. Subjective bias detection is also critical for many Natural Language Processing (NLP) tasks like sentiment analysis, opinion identification, and bias neutralization. Having a system that can adequately detect subjectivity in text will boost research in the above-mentioned areas significantly. It can also come in handy for platforms like Wikipedia, where the use of neutral language is of importance. The goal of this work is to identify the subjectively biased language in text on a sentence level. With machine learning, we can solve complex AI problems, making it a good fit for the problem of subjective bias detection. A key step in this approach is to train a classifier based on BERT (Bidirectional Encoder Representations from Transformers) as upstream model. BERT by itself can be used as a classifier; however, in this study, we use BERT as data preprocessor as well as an embedding generator for a Bi-LSTM (Bidirectional Long Short-Term Memory) network incorporated with attention mechanism. This approach produces a deeper and better classifier. We evaluate the effectiveness of our model using the Wiki Neutrality Corpus (WNC), which was compiled from Wikipedia edits that removed various biased instances from sentences as a benchmark dataset, with which we also compare our model to existing approaches. Experimental analysis indicates an improved performance, as our model achieved state-of-the-art accuracy in detecting subjective bias. This study focuses on the English language, but the model can be fine-tuned to accommodate other languages.Keywords: subjective bias detection, machine learning, BERT–BiLSTM–Attention, text classification, natural language processing
Procedia PDF Downloads 1287395 Ubuntu: A Holistic Social Framework for Preserving Ecosystem Amidst the Climate Change Challenges
Authors: Gabriel Sunday Ayayia
Abstract:
The paper argues that Ubuntu, as a philosophy that emphasizes the interconnectedness of all living things and importance of community and mutual support, can be used as a social framework to address the problems of climate change and promote environmental sustainability. The research demonstrate that Ubuntu is an ideological concept that encourages collective action on climate change, with the emphasis on individual and collective commitment to taking concrete action to address the problems of climate change. The paper shows that Ubuntu can be employed as a social tool that would enhance the cultivation of shared identity and promote the sense of shared response responsibility to develop the resilience to cope with climate change. Using qualitative and quantitative methodologies, the study establishes the imperativeness of mutual support and cooperation through the lens of Ubuntu as a human-centered scalable response to the debacle of climate change. It recommends that we can build a society that values the environment and promotes sustainable practices by encouraging community involvement in sustainable initiatives by integrating Ubuntu-based principles to our decision-making processes, collaboration, leadership, human agency and governance.Keywords: ubuntu, climate change, humanity, collective actions, community-based
Procedia PDF Downloads 1867394 The Application of Dynamic Network Process to Environment Planning Support Systems
Authors: Wann-Ming Wey
Abstract:
In recent years, in addition to face the external threats such as energy shortages and climate change, traffic congestion and environmental pollution have become anxious problems for many cities. Considering private automobile-oriented urban development had produced many negative environmental and social impacts, the transit-oriented development (TOD) has been considered as a sustainable urban model. TOD encourages public transport combined with friendly walking and cycling environment designs, however, non-motorized modes help improving human health, energy saving, and reducing carbon emissions. Due to environmental changes often affect the planners’ decision-making; this research applies dynamic network process (DNP) which includes the time dependent concept to promoting friendly walking and cycling environmental designs as an advanced planning support system for environment improvements. This research aims to discuss what kinds of design strategies can improve a friendly walking and cycling environment under TOD. First of all, we collate and analyze environment designing factors by reviewing the relevant literatures as well as divide into three aspects of “safety”, “convenience”, and “amenity” from fifteen environment designing factors. Furthermore, we utilize fuzzy Delphi Technique (FDT) expert questionnaire to filter out the more important designing criteria for the study case. Finally, we utilized DNP expert questionnaire to obtain the weights changes at different time points for each design criterion. Based on the changing trends of each criterion weight, we are able to develop appropriate designing strategies as the reference for planners to allocate resources in a dynamic environment. In order to illustrate the approach we propose in this research, Taipei city as one example has been used as an empirical study, and the results are in depth analyzed to explain the application of our proposed approach.Keywords: environment planning support systems, walking and cycling, transit-oriented development (TOD), dynamic network process (DNP)
Procedia PDF Downloads 3447393 Designing a Patient Monitoring System Using Cloud and Semantic Web Technologies
Authors: Chryssa Thermolia, Ekaterini S. Bei, Stelios Sotiriadis, Kostas Stravoskoufos, Euripides G. M. Petrakis
Abstract:
Moving into a new era of healthcare, new tools and devices are developed to extend and improve health services, such as remote patient monitoring and risk prevention. In this concept, Internet of Things (IoT) and Cloud Computing present great advantages by providing remote and efficient services, as well as cooperation between patients, clinicians, researchers and other health professionals. This paper focuses on patients suffering from bipolar disorder, a brain disorder that belongs to a group of conditions called effective disorders, which is characterized by great mood swings.We exploit the advantages of Semantic Web and Cloud Technologies to develop a patient monitoring system to support clinicians. Based on intelligently filtering of evidence-knowledge and individual-specific information we aim to provide treatment notifications and recommended function tests at appropriate times or concluding into alerts for serious mood changes and patient’s non-response to treatment. We propose an architecture, as the back-end part of a cloud platform for IoT, intertwining intelligence devices with patients’ daily routine and clinicians’ support.Keywords: bipolar disorder, intelligent systems patient monitoring, semantic web technologies, healthcare
Procedia PDF Downloads 5047392 Co-Integration Model for Predicting Inflation Movement in Nigeria
Authors: Salako Rotimi, Oshungade Stephen, Ojewoye Opeyemi
Abstract:
The maintenance of price stability is one of the macroeconomic challenges facing Nigeria as a nation. This paper attempts to build a co-integration multivariate time series model for inflation movement in Nigeria using data extracted from the abstract of statistics of the Central Bank of Nigeria (CBN) from 2008 to 2017. The Johansen cointegration test suggests at least one co-integration vector describing the long run relationship between Consumer Price Index (CPI), Food Price Index (FPI) and Non-Food Price Index (NFPI). All three series show increasing pattern, which indicates a sign of non-stationary in each of the series. Furthermore, model predictability was established with root-mean-square-error, mean absolute error, mean average percentage error, and Theil’s unbiased statistics for n-step forecasting. The result depicts that the long run coefficient of a consumer price index (CPI) has a positive long-run relationship with the food price index (FPI) and non-food price index (NFPI).Keywords: economic, inflation, model, series
Procedia PDF Downloads 2427391 Analysis of Biomarkers Intractable Epileptogenic Brain Networks with Independent Component Analysis and Deep Learning Algorithms: A Comprehensive Framework for Scalable Seizure Prediction with Unimodal Neuroimaging Data in Pediatric Patients
Authors: Bliss Singhal
Abstract:
Epilepsy is a prevalent neurological disorder affecting approximately 50 million individuals worldwide and 1.2 million Americans. There exist millions of pediatric patients with intractable epilepsy, a condition in which seizures fail to come under control. The occurrence of seizures can result in physical injury, disorientation, unconsciousness, and additional symptoms that could impede children's ability to participate in everyday tasks. Predicting seizures can help parents and healthcare providers take precautions, prevent risky situations, and mentally prepare children to minimize anxiety and nervousness associated with the uncertainty of a seizure. This research proposes a comprehensive framework to predict seizures in pediatric patients by evaluating machine learning algorithms on unimodal neuroimaging data consisting of electroencephalogram signals. The bandpass filtering and independent component analysis proved to be effective in reducing the noise and artifacts from the dataset. Various machine learning algorithms’ performance is evaluated on important metrics such as accuracy, precision, specificity, sensitivity, F1 score and MCC. The results show that the deep learning algorithms are more successful in predicting seizures than logistic Regression, and k nearest neighbors. The recurrent neural network (RNN) gave the highest precision and F1 Score, long short-term memory (LSTM) outperformed RNN in accuracy and convolutional neural network (CNN) resulted in the highest Specificity. This research has significant implications for healthcare providers in proactively managing seizure occurrence in pediatric patients, potentially transforming clinical practices, and improving pediatric care.Keywords: intractable epilepsy, seizure, deep learning, prediction, electroencephalogram channels
Procedia PDF Downloads 837390 Hybrid Beam-Forming Techniques for 6G Terahertz Communication: Challenges
Authors: Mridula Korde
Abstract:
The terahertz band is the main pillar of 6G wireless communication system. It is difficult to meet the high data rate of 1Tbps by millimeter frequency support systems. The terahertz band suffers huge propagation loss limiting wireless distance. Terahertz band imposes ultra massive multiple input multiple output antenna (UM-MIMO) systems which produce high array gain with narrow beamforming. The conventional methods for MIMO beamforming are Analog and Digital beamforming. The fully digital beamforming methods utilize dedicated structure of DAC/ADC and RF chains. These structures increase hardware complexity and are power hungry. The analog beamforming structures utilize ADC/DAC with phase shifters with less hardware complexity but support less data rates. As a result, a hybrid beamforming method can be adapted for UM-MIMO systems. This paper will investigate challenges in hybrid beamforming architecture which will address the low spatial degrees of freedom (SDoF) limitation in Terahertz (THz) Communication. The flexible hardware connections are proposed, in order to switch the system in an adaptive manner so as to minimize the power requirements.Keywords: 6G, terahertz communication, beamforming, challenges
Procedia PDF Downloads 347389 The Academic Experience of Vocational Training Teachers
Authors: Andréanne Gagné, Jo Anni Joncas, Éric Tendon
Abstract:
Teaching in vocational training requires an excellent mastery of the trade being taught, but also solid professional skills in pedagogy. Teachers are typically recruited on the basis of their trade expertise, and they do not necessarily have training or experience in pedagogy. In order to counter this lack, the Ministry of Education (Québec, Canada) requires them to complete a 120-credit university program to obtain their teaching certificate. They must complete this training in addition to their teaching duties. This training was rarely planned in the teacher’s life course, and each teacher approaches it differently: some are enthusiastic, but many feel reluctant discouragement and even frustration at the idea of committing to a training program lasting an average of 10 years to completion. However, Quebec is experiencing an unprecedented shortage of teachers, and the perseverance of vocational teachers in their careers requires special attention because of the conditions of their specific integration conditions. Our research examines the perceptions that vocational teachers in training have of their academic experience in pre-service teaching. It differs from previous research in that it focuses on the influence of the academic experience on the teaching employment experience. The goal is that by better understanding the university experience of teachers in vocational education, we can identify support strategies to support their school experience and their teaching. To do this, the research is based on the theoretical framework of the sociology of experience, which allows us to study the way in which these “teachers-students” give meaning to their university program in articulation with their jobs according to three logics of action. The logic of integration is based on the process of socialization, where the action is preceded by the internalization of values, norms, and cultural models associated with the training context. The logic of strategy refers to the usefulness of this experience where the individual constructs a form of rationality according to his objectives, resources, social position, and situational constraints. The logic of subjectivation refers to reflexivity activities aimed at solving problems and making choices. These logics served as a framework for the development of an online questionnaire. Three hundred respondents, newly enrolled in an undergraduate teaching program (bachelor's degree in vocational education), expressed themselves about their academic experience. This paper relates qualitative data (open-ended questions) subjected to an interpretive repertory analysis approach to descriptive data (closed-ended questions) that emerged. The results shed light on how the respondents perceive themselves as teachers and students, their perceptions of university training and the support offered, and the place that training occupies in their professional path. Indeed, their professional and academic paths are inextricably linked, and it seems essential to take them into account simultaneously to better meet their needs and foster the development of their expertise in pedagogy. The discussion focuses on the strengths and limitations of university training from the perspective of the logic of action. The results also suggest support strategies that can be implemented to better support the integration and retention of student teachers in professional education.Keywords: teacher, vocational training, pre-service training, academic experience
Procedia PDF Downloads 1137388 Reading and Writing Memories in Artificial and Human Reasoning
Authors: Ian O'Loughlin
Abstract:
Memory networks aim to integrate some of the recent successes in machine learning with a dynamic memory base that can be updated and deployed in artificial reasoning tasks. These models involve training networks to identify, update, and operate over stored elements in a large memory array in order, for example, to ably perform question and answer tasks parsing real-world and simulated discourses. This family of approaches still faces numerous challenges: the performance of these network models in simulated domains remains considerably better than in open, real-world domains, wide-context cues remain elusive in parsing words and sentences, and even moderately complex sentence structures remain problematic. This innovation, employing an array of stored and updatable ‘memory’ elements over which the system operates as it parses text input and develops responses to questions, is a compelling one for at least two reasons: first, it addresses one of the difficulties that standard machine learning techniques face, by providing a way to store a large bank of facts, offering a way forward for the kinds of long-term reasoning that, for example, recurrent neural networks trained on a corpus have difficulty performing. Second, the addition of a stored long-term memory component in artificial reasoning seems psychologically plausible; human reasoning appears replete with invocations of long-term memory, and the stored but dynamic elements in the arrays of memory networks are deeply reminiscent of the way that human memory is readily and often characterized. However, this apparent psychological plausibility is belied by a recent turn in the study of human memory in cognitive science. In recent years, the very notion that there is a stored element which enables remembering, however dynamic or reconstructive it may be, has come under deep suspicion. In the wake of constructive memory studies, amnesia and impairment studies, and studies of implicit memory—as well as following considerations from the cognitive neuroscience of memory and conceptual analyses from the philosophy of mind and cognitive science—researchers are now rejecting storage and retrieval, even in principle, and instead seeking and developing models of human memory wherein plasticity and dynamics are the rule rather than the exception. In these models, storage is entirely avoided by modeling memory using a recurrent neural network designed to fit a preconceived energy function that attains zero values only for desired memory patterns, so that these patterns are the sole stable equilibrium points in the attractor network. So although the array of long-term memory elements in memory networks seem psychologically appropriate for reasoning systems, they may actually be incurring difficulties that are theoretically analogous to those that older, storage-based models of human memory have demonstrated. The kind of emergent stability found in the attractor network models more closely fits our best understanding of human long-term memory than do the memory network arrays, despite appearances to the contrary.Keywords: artificial reasoning, human memory, machine learning, neural networks
Procedia PDF Downloads 2717387 Important role of HLA-B*58:01 Allele and Distribution Among Healthy Thais: Avoid Severe Cutaneous Adverse Reactions
Authors: Jaomai Tungsiripat, Patompong Satapornpong
Abstract:
Allopurinol have been used to treat diseases that relating with the reduction of uric acid and be a treatment preventing the severity of, including gout, chronic kidney disease, chronic heart failure, and diabetes mellitus (type 2). However, allopurinol metabolites can cause a severe cutaneous adverse reaction (SCARs) consist of Drug Rash with Eosinophilia and Systemic Symptoms (DRESS) and Stevens-Johnson Syndrome(SJS)/Toxic Epidermal Necrolysis (TEN). Previous studies, we found only HLA-B*58:01 allele has a strongly association with allopurinol-induced SCARs in many populations: Han Chinese [P value = 4.7 x 10−24], European [P value <10−6], and Thai [P value <0.001].However, there was no update the frequency of HLA-B alleles and pharmacogenetics markers distribution in healthy Thais and support for screening before the initiation of treatment. The aim of this study was to investigate the prevalence of HLA-B*58:01 allele associated with allopurinol-induced SCARs in healthy Thai population. A retrospective study of 260 individual healthy subjects who living in Thailand. HLA-B were genotyped using sequence-specific oligonucleotides (PCR-SSOs).In this study, we identified the prevalence of HLA-B alleles consist ofHLA-B*46:01 (12.69%), HLA-B*15:02 (8.85%), HLA-B*13:01 (6.35%), HLA-B*40:01 (6.35%), HLA-B*38:02 (5.00%), HLA-B*51:01 (5.00%), HLA-B*58:01 (4.81%), HLA-B*44:03 (4.62%), HLA-B*18:01 (3.85%) and HLA-B*15:25 (3.08%). Therefore, the distribution of HLA-B*58:01 will support the clinical implementation and screening usage of allopurinol in Thai population.Keywords: allopurinol, HLA-B*58: 01, Thai population, SCARs
Procedia PDF Downloads 1377386 Trends of Conservation and Development in Mexican Biosphere Reserves: Spatial Analysis and Linear Mixed Model
Authors: Cecilia Sosa, Fernanda Figueroa, Leonardo Calzada
Abstract:
Biosphere reserves (BR) are considered as the main strategy for biodiversity and ecosystems conservation. Mexican BR are mainly inhabited by rural communities who strongly depend on forests and their resources. Even though the dual objective of conservation and development has been sought in BR, land cover change is a common process in these areas, while most rural communities are highly marginalized, partly as a result of restrictions imposed by conservation to the access and use of resources. Achieving ecosystems conservation and social development face serious challenges. Factors such as financial support for development projects (public/private), environmental conditions, infrastructure and regional economic conditions might influence both land use change and wellbeing. Examining the temporal trends of conservation and development in BR is central for the evaluation of outcomes for these conservation strategies. In this study, we analyzed changes in primary vegetation cover (as a proxy for conservation) and the index of marginalization (as a proxy for development) in Mexican BR (2000-2015); we also explore the influence of various factors affecting these trends, such as conservation-development projects financial support (public or private), geographical distribution in ecoregions (as a proxy for shared environmental conditions) and in economic zones (as a proxy for regional economic conditions). We developed a spatial analysis at the municipal scale (2,458 municipalities nationwide) in ArcGIS, to obtain road densities, geographical distribution in ecoregions and economic zones, the financial support received, and the percent of municipality area under protection by protected areas and, particularly, by BR. Those municipalities with less than 25% of area under protection were regarded as part of the protected area. We obtained marginalization indexes for all municipalities and, using MODIS in Google Earth Engine, the number of pixels covered by primary vegetation. We used a linear mixed model in RStudio for the analysis. We found a positive correlation between the marginalization index and the percent of primary vegetation cover per year (r=0.49-0.5); i.e., municipalities with higher marginalization also show higher percent of primary vegetation cover. Also, those municipalities with higher area under protection have more development projects (r=0.46) and some environmental conditions were relevant for percent of vegetation cover. Time, economic zones and marginalization index were all important. Time was particularly, in 2005, when both marginalization and deforestation decreased. Road densities and financial support for conservation-development projects were irrelevant as factors in the general correlation. Marginalization is still being affected by the conservation strategies applied in BR, even though that this management category considers both conservation and development of local communities as its objectives. Our results suggest that roads densities and support for conservation-development projects have not been a factor of poverty alleviation. As better conservation is being attained in the most impoverished areas, we face the dilemma of how to improve wellbeing in rural communities under conservation, since current strategies have not been able to leave behind the conservation-development contraposition.Keywords: deforestation, local development, marginalization, protected areas
Procedia PDF Downloads 1347385 Material Failure Process Simulation by Improved Finite Elements with Embedded Discontinuities
Authors: Gelacio Juárez-Luna, Gustavo Ayala, Jaime Retama-Velasco
Abstract:
This paper shows the advantages of the material failure process simulation by improve finite elements with embedded discontinuities, using a new definition of traction vector, dependent on the discontinuity length and the angle. Particularly, two families of this kind of elements are compared: kinematically optimal symmetric and statically and kinematically optimal non-symmetric. The constitutive model to describe the behavior of the material in the symmetric formulation is a traction-displacement jump relationship equipped with softening after reaching the failure surface. To show the validity of this symmetric formulation, representative numerical examples illustrating the performance of the proposed formulation are presented. It is shown that the non-symmetric family may over or underestimate the energy required to create a discontinuity, as this effect is related with the total length of the discontinuity, fact that is not noticed when the discontinuity path is a straight line.Keywords: variational formulation, strong discontinuity, embedded discontinuities, strain localization
Procedia PDF Downloads 7797384 The Relationship between Depression, HIV Stigma and Adherence to Antiretroviral Therapy among Adult Patients Living with HIV at a Tertiary Hospital in Durban, South Africa: The Mediating Roles of Self-Efficacy and Social Support
Authors: Muziwandile Luthuli
Abstract:
Although numerous factors predicting adherence to antiretroviral therapy (ART) among people living with HIV/AIDS (PLWHA) have been broadly studied on both regional and global level, up-to-date adherence of patients to ART remains an overarching, dynamic and multifaceted problem that needs to be investigated over time and across various contexts. There is a rarity of empirical data in the literature on interactive mechanisms by which psychosocial factors influence adherence to ART among PLWHA within the South African context. Therefore, this study was designed to investigate the relationship between depression, HIV stigma, and adherence to ART among adult patients living with HIV at a tertiary hospital in Durban, South Africa, and the mediating roles of self-efficacy and social support. The health locus of control theory and the social support theory were the underlying theoretical frameworks for this study. Using a cross-sectional research design, a total of 201 male and female adult patients aged between 18-75 years receiving ART at a tertiary hospital in Durban, KwaZulu-Natal were sampled, using time location sampling (TLS). A self-administered questionnaire was employed to collect the data in this study. Data were analysed through SPSS version 27. Several statistical analyses were conducted in this study, namely univariate statistical analysis, correlational analysis, Pearson’s chi-square analysis, cross-tabulation analysis, binary logistic regression analysis, and mediational analysis. Univariate analysis indicated that the sample mean age was 39.28 years (SD=12.115), while most participants were females 71.0% (n=142), never married 74.2% (n=147), and most were also secondary school educated 48.3% (n=97), as well as unemployed 65.7% (n=132). The prevalence rate of participants who had high adherence to ART was 53.7% (n=108), and 46.3% (n=93) of participants had low adherence to ART. Chi-square analysis revealed that employment status was the only statistically significant socio-demographic influence of adherence to ART in this study (χ2 (3) = 8.745; p < .033). Chi-square analysis showed that there was a statistically significant difference found between depression and adherence to ART (χ2 (4) = 16.140; p < .003), while between HIV stigma and adherence to ART, no statistically significant difference was found (χ2 (1) = .323; p >.570). Binary logistic regression indicated that depression was statistically associated with adherence to ART (OR= .853; 95% CI, .789–.922, P < 001), while the association between self-efficacy and adherence to ART was statistically significant (OR= 1.04; 95% CI, 1.001– 1.078, P < .045) after controlling for the effect of depression. However, the findings showed that the effect of depression on adherence to ART was not significantly mediated by self-efficacy (Sobel test for indirect effect, Z= 1.01, P > 0.31). Binary logistic regression showed that the effect of HIV stigma on adherence to ART was not statistically significant (OR= .980; 95% CI, .937– 1.025, P > .374), but the effect of social support on adherence to ART was statistically significant, only after the effect of HIV stigma was controlled for (OR= 1.017; 95% CI, 1.000– 1.035, P < .046). This study promotes behavioral and social change effected through evidence-based interventions by emphasizing the need for additional research that investigates the interactive mechanisms by which psychosocial factors influence adherence to ART. Depression is a significant predictor of adherence to ART. Thus, to alleviate the psychosocial impact of depression on adherence to ART, effective interventions must be devised, along with special consideration of self-efficacy and social support. Therefore, this study is helpful in informing and effecting change in health policy and healthcare services through its findingsKeywords: ART adherence, depression, HIV/AIDS, PLWHA
Procedia PDF Downloads 1787383 Fetal Movement Study Using Biomimics of the Maternal March
Authors: V. Diaz, B. Pardo , D. Villegas
Abstract:
In premature births most babies have complications at birth, these complications can be reduced, if an atmosphere of relaxation is provided and is also similar to intrauterine life, for this, there are programs where their mothers lull and sway them; however, the conditions in which they do so and the way in they do it may not be the indicated. Here we describe an investigation based on the biomimics of the kinematics of human fetal movement, which consists of determining the movements that the fetus experiences and the deformations of the components that surround the fetus during a gentle walk at week 32 of the gestation stage. This research is based on a 3D model that has the anatomical structure of the pelvis, fetus, muscles, uterus and its most important supporting elements (ligaments). Normal load conditions are applied to this model according to the stage of gestation and the kinematics of a gentle walk of a pregnant mother, which focuses on the pelvic bone, this allows to receive a response from the other elements of the model. To accomplish this modeling and subsequent simulation Solidworks software was used. From this analysis, the curves that describe the movement of the fetus at three different points were obtained. Additionally, we could found the deformation of the uterus and the ligaments that support it, showing the characteristics that these tissues can have in the face of the support of the fetus. These data can be used for the construction of artifacts that help the normal development of premature infants.Keywords: simulation, biomimic, uterine model, fetal movement study
Procedia PDF Downloads 1647382 BFDD-S: Big Data Framework to Detect and Mitigate DDoS Attack in SDN Network
Authors: Amirreza Fazely Hamedani, Muzzamil Aziz, Philipp Wieder, Ramin Yahyapour
Abstract:
Software-defined networking in recent years came into the sight of so many network designers as a successor to the traditional networking. Unlike traditional networks where control and data planes engage together within a single device in the network infrastructure such as switches and routers, the two planes are kept separated in software-defined networks (SDNs). All critical decisions about packet routing are made on the network controller, and the data level devices forward the packets based on these decisions. This type of network is vulnerable to DDoS attacks, degrading the overall functioning and performance of the network by continuously injecting the fake flows into it. This increases substantial burden on the controller side, and the result ultimately leads to the inaccessibility of the controller and the lack of network service to the legitimate users. Thus, the protection of this novel network architecture against denial of service attacks is essential. In the world of cybersecurity, attacks and new threats emerge every day. It is essential to have tools capable of managing and analyzing all this new information to detect possible attacks in real-time. These tools should provide a comprehensive solution to automatically detect, predict and prevent abnormalities in the network. Big data encompasses a wide range of studies, but it mainly refers to the massive amounts of structured and unstructured data that organizations deal with on a regular basis. On the other hand, it regards not only the volume of the data; but also that how data-driven information can be used to enhance decision-making processes, security, and the overall efficiency of a business. This paper presents an intelligent big data framework as a solution to handle illegitimate traffic burden on the SDN network created by the numerous DDoS attacks. The framework entails an efficient defence and monitoring mechanism against DDoS attacks by employing the state of the art machine learning techniques.Keywords: apache spark, apache kafka, big data, DDoS attack, machine learning, SDN network
Procedia PDF Downloads 1687381 Linking Excellence in Biomedical Knowledge and Computational Intelligence Research for Personalized Management of Cardiovascular Diseases within Personal Health Care
Authors: T. Rocha, P. Carvalho, S. Paredes, J. Henriques, A. Bianchi, V. Traver, A. Martinez
Abstract:
The main goal of LINK project is to join competences in intelligent processing in order to create a research ecosystem to address two central scientific and technical challenges for personal health care (PHC) deployment: i) how to merge clinical evidence knowledge in computational decision support systems for PHC management and ii) how to provide achieve personalized services, i.e., solutions adapted to the specific user needs and characteristics. The final goal of one of the work packages (WP2), designated Sustainable Linking and Synergies for Excellence, is the definition, implementation and coordination of the necessary activities to create and to strengthen durable links between the LiNK partners. This work focuses on the strategy that has been followed to achieve the definition of the Research Tracks (RT), which will support a set of actions to be pursued along the LiNK project. These include common research activities, knowledge transfer among the researchers of the consortium, and PhD student and post-doc co-advisement. Moreover, the RTs will establish the basis for the definition of concepts and their evolution to project proposals.Keywords: LiNK Twin European Project, personal health care, cardiovascular diseases, research tracks
Procedia PDF Downloads 2157380 A Study on the Application of Machine Learning and Deep Learning Techniques for Skin Cancer Detection
Authors: Hritwik Ghosh, Irfan Sadiq Rahat, Sachi Nandan Mohanty, J. V. R. Ravindra
Abstract:
In the rapidly evolving landscape of medical diagnostics, the early detection and accurate classification of skin cancer remain paramount for effective treatment outcomes. This research delves into the transformative potential of Artificial Intelligence (AI), specifically Deep Learning (DL), as a tool for discerning and categorizing various skin conditions. Utilizing a diverse dataset of 3,000 images representing nine distinct skin conditions, we confront the inherent challenge of class imbalance. This imbalance, where conditions like melanomas are over-represented, is addressed by incorporating class weights during the model training phase, ensuring an equitable representation of all conditions in the learning process. Our pioneering approach introduces a hybrid model, amalgamating the strengths of two renowned Convolutional Neural Networks (CNNs), VGG16 and ResNet50. These networks, pre-trained on the ImageNet dataset, are adept at extracting intricate features from images. By synergizing these models, our research aims to capture a holistic set of features, thereby bolstering classification performance. Preliminary findings underscore the hybrid model's superiority over individual models, showcasing its prowess in feature extraction and classification. Moreover, the research emphasizes the significance of rigorous data pre-processing, including image resizing, color normalization, and segmentation, in ensuring data quality and model reliability. In essence, this study illuminates the promising role of AI and DL in revolutionizing skin cancer diagnostics, offering insights into its potential applications in broader medical domains.Keywords: artificial intelligence, machine learning, deep learning, skin cancer, dermatology, convolutional neural networks, image classification, computer vision, healthcare technology, cancer detection, medical imaging
Procedia PDF Downloads 857379 Predictors of Korean Women’s Attitudes toward Family Formation and the Intrahousehold Division of Labor
Authors: Damla Tas, Robert Rudolf
Abstract:
Fast economic development and women empowerment in Korea have contributed to an unprecedented family and gender crisis, with Korean fertility rates at a global record low. This study explores the predictors and time trends of Korean women’s attitudes toward family formation and the household division of labor by using the Korean Longitudinal Survey of Women and Families from 2007 to 2018. Results indicate that education, age, marital status, and motherhood are significantly associated with women’s attitudes toward family formation and gender attitudes toward the intrahousehold division of labor. In addition, more educated women and those aged 26 to 45 are less likely to support traditional marriage and traditional household division of labor statements. Unmarried and divorced women are more likely to support progressive values and roles. Also, retrospective factors such as mothers’ schooling and parents’ relationship are significantly associated with gender role ideology. Our findings also indicate a downward trend in the number of Korean women stating one must have children. The study suggests that Korean families and society need to adjust to women’s changing preferences concerning their societal roles toward less traditional. Hence, a new agreement between men and women is needed on how work can be divided more equally.Keywords: marriage, family formation, intrahousehold division of labor, gender role attitudes, Korea
Procedia PDF Downloads 73