Search results for: slump flow
2227 Study of Divalent Phosphate Iron-Oxide Precursor Recycling Technology
Authors: Shinn-Dar Wu
Abstract:
This study aims to synthesize lithium iron phosphate cathode material using a recycling technology involving non-protective gas calcination. The advantages include lower cost and easier production than traditional methods that require a large amount of protective gas. The novel technology may have extensive industrial applications. Given that the traditional gas calcination has a large number of protection free Fe3+ production, this study developed a precursor iron phosphate (Fe2+) material recycling technology and conducted related tests and analyses. It focused on flow field design of calcination and new technology as well as analyzed the best conditions for powder calcination combination. The electrical properties were determined by button batteries and exhibited a capacity of 118 mAh/g (The use of new materials synthesis, capacitance is about 122 mAh/g). The cost reduced to 50% of the original.Keywords: lithium battery, lithium iron phosphate, calcined technology, recycling technology
Procedia PDF Downloads 4812226 A Preliminary Study for Design of Automatic Block Reallocation Algorithm with Genetic Algorithm Method in the Land Consolidation Projects
Authors: Tayfun Çay, Yasar İnceyol, Abdurrahman Özbeyaz
Abstract:
Land reallocation is one of the most important steps in land consolidation projects. Many different models were proposed for land reallocation in the literature such as Fuzzy Logic, block priority based land reallocation and Spatial Decision Support Systems. A model including four parts is considered for automatic block reallocation with genetic algorithm method in land consolidation projects. These stages are preparing data tables for a project land, determining conditions and constraints of land reallocation, designing command steps and logical flow chart of reallocation algorithm and finally writing program codes of Genetic Algorithm respectively. In this study, we designed the first three steps of the considered model comprising four steps.Keywords: land consolidation, landholding, land reallocation, optimization, genetic algorithm
Procedia PDF Downloads 4332225 Different Types of Bismuth Selenide Nanostructures for Targeted Applications: Synthesis and Properties
Authors: Jana Andzane, Gunta Kunakova, Margarita Baitimirova, Mikelis Marnauza, Floriana Lombardi, Donats Erts
Abstract:
Bismuth selenide (Bi₂Se₃) is known as a narrow band gap semiconductor with pronounced thermoelectric (TE) and topological insulator (TI) properties. Unique TI properties offer exciting possibilities for fundamental research as observing the exciton condensate and Majorana fermions, as well as practical application in spintronic and quantum information. In turn, TE properties of this material can be applied for wide range of thermoelectric applications, as well as for broadband photodetectors and near-infrared sensors. Nanostructuring of this material results in improvement of TI properties due to suppression of the bulk conductivity, and enhancement of TE properties because of increased phonon scattering at the nanoscale grains and interfaces. Regarding TE properties, crystallographic growth direction, as well as orientation of the nanostructures relative to the growth substrate, play significant role in improvement of TE performance of nanostructured material. For instance, Bi₂Se₃ layers consisting of randomly oriented nanostructures and/or of combination of them with planar nanostructures show significantly enhanced in comparison with bulk and only planar Bi₂Se₃ nanostructures TE properties. In this work, a catalyst-free vapour-solid deposition technique was applied for controlled obtaining of different types of Bi₂Se₃ nanostructures and continuous nanostructured layers for targeted applications. For example, separated Bi₂Se₃ nanoplates, nanobelts and nanowires can be used for investigations of TI properties; consisting from merged planar and/or randomly oriented nanostructures Bi₂Se₃ layers are useful for applications in heat-to-power conversion devices and infrared detectors. The vapour-solid deposition was carried out using quartz tube furnace (MTI Corp), equipped with an inert gas supply and pressure/temperature control system. Bi₂Se₃ nanostructures/nanostructured layers of desired type were obtained by adjustment of synthesis parameters (process temperature, deposition time, pressure, carrier gas flow) and selection of deposition substrate (glass, quartz, mica, indium-tin-oxide, graphene and carbon nanotubes). Morphology, structure and composition of obtained Bi₂Se₃ nanostructures and nanostructured layers were inspected using SEM, AFM, EDX and HRTEM techniques, as well as home-build experimental setup for thermoelectric measurements. It was found that introducing of temporary carrier gas flow into the process tube during the synthesis and deposition substrate choice significantly influence nanostructures formation mechanism. Electrical, thermoelectric, and topological insulator properties of different types of deposited Bi₂Se₃ nanostructures and nanostructured coatings are characterized as a function of thickness and discussed.Keywords: bismuth seleinde, nanostructures, topological insulator, vapour-solid deposition
Procedia PDF Downloads 2332224 Multiscale Structures and Their Evolution in a Screen Cylinder Wake
Authors: Azlin Mohd Azmi, Tongming Zhou, Akira Rinoshika, Liang Cheng
Abstract:
The turbulent structures in the wake (x/d =10 to 60) of a screen cylinder have been reduced to understand the roles of the various structures as evolving downstream by comparing with those obtained in a solid circular cylinder wake at Reynolds number, Re of 7000. Using a wavelet multi-resolution technique, the flow structures are decomposed into a number of wavelet components based on their central frequencies. It is observed that in the solid cylinder wake, large-scale structures (of frequency f0 and 1.2 f0) make the largest contribution to the Reynolds stresses although they start to lose their roles significantly at x/d > 20. In the screen cylinder wake, the intermediate-scale structures (2f0 and 4f0) contribute the most to the Reynolds stresses at x/d =10 before being taken over by the large-scale structures (f0) further downstream.Keywords: turbulent structure, screen cylinder, vortex, wavelet multi-resolution analysis
Procedia PDF Downloads 4602223 Polypropylene/Red Mud Polymer Composites: Effects of Powder Size on Mechanical and Thermal Properties
Authors: Munir Tasdemir
Abstract:
Polymer/clay composites have received great attention in the past three decades owing to their light weight coupled with significantly better mechanical and barrier properties than the corresponding neat polymer resins. An investigation was carried out on the effects of red mud powder size and ratio on the mechanical and thermal properties of polypropylene /red mud polymer composites. Red mud, in four different concentrations (0, 10, 20 and 30 wt %) and three different powder size (180, 63 and 38 micron) were added to PP to produce composites. The mechanical properties, including the elasticity modulus, tensile & yield strength, % elongation, hardness, Izod impact strength and the thermal properties including the melt flow index, heat deflection temperature and vicat softening point of the composites were investigated. The structures of the composites were investigated by scanning electron microscopy and compared to mechanical and thermal properties as a function of red mud powder content and size.Keywords: polypropylene, powder, red mud, mechanical properties
Procedia PDF Downloads 3392222 Theoretical Analysis of Performance Parameters of a Microchannel Heat Exchanger
Authors: Shreyas Kotian, Nishant Jainm, Nachiket Methekar
Abstract:
The increase in energy demands in various industrial sectors has called for devices small in size with high heat transfer rates. Microchannel heat exchangers (MCHX) have thus been studied and applied in various fields such as thermal engineering, aerospace engineering and nanoscale heat transfer. They have been a case of investigation due to their augmented thermal characteristics and low-pressure drop. The goal of the current investigation is to analyze the thermohydraulic performance of the heat exchanger analytically. Studies are done for various inlet conditions and flow conditions. At Thi of 90°C, the effectiveness increased by about 22% for an increase in Re from 1000 to 5000 of the cold fluid. It was also observed that at Re = 5000 for the hot fluid, the heat recovered by the hot fluid increases by about 69% for an increase in inlet temperature of the hot fluid from 50°C to 70°C.Keywords: theoretical analysis, performance parameters, microchannel heat exchanger, Reynolds number
Procedia PDF Downloads 1552221 Numerical Study of Heat Release of the Symmetrically Arranged Extruded-Type Heat Sinks
Authors: Man Young Kim, Gyo Woo Lee
Abstract:
In this numerical study, we want to present the design of highly efficient extruded-type heat sink. The symmetrically arranged extruded-type heat sinks are used instead of a single extruded or swaged-type heat sink. In this parametric study, the maximum temperatures, the base temperatures between heaters, and the heat release rates were investigated with respect to the arrangements of heat sources, air flow rates, and amounts of heat input. Based on the results we believe that the use of both side of heat sink is to be much better for release the heat than the use of single side. Also from the results, it is believed that the symmetric arrangement of heat sources is recommended to achieve a higher heat transfer from the heat sink.Keywords: heat sink, forced convection, heat transfer, performance evaluation, symmetrical arrangement
Procedia PDF Downloads 4172220 Performance Analysis of Solar Air Heater with Fins and Perforated Twisted Tape Insert
Authors: Rajesh Kumar, Prabha Chand
Abstract:
The present paper deals with the analytical investigation on the thermal and thermo-hydraulic performance of the solar air collector fitted with fins and perforated twisted tapes (PTT) of twist ratio 2 with different axial pitch ratio. The mathematical models are presented, and the effect of mass flow rate and axial pitch ratios on the thermal and effective efficiency has been discussed. The results obtained are compared with the results of the solar air heater without fins and twisted tapes. Results conveyed that the collectors with fins and perforated twisted tape perform better but at the expense of increased pressure drop. Also, twisted tape with minimum axial pitch ratio is found to be more efficient than others.Keywords: solar air heater, thermal efficiency, twisted tape, twist ratio
Procedia PDF Downloads 2682219 Pyrolysis and Combustion Kinetics of Palm Kernel Shell Using Thermogravimetric Analysis
Authors: Kanit Manatura
Abstract:
The combustion and pyrolysis behavior of Palm Kernel Shell (PKS) were investigated in a thermogravimetric analyzer. A 10 mg sample of each biomass was heated from 30 °C to 800 °C at four heating rates (within 5, 10, 15 and 30 °C/min) in nitrogen and dry air flow of 20 ml/min instead of pyrolysis and combustion process respectively. During pyrolysis, thermal decomposition occurred on three different stages include dehydration, hemicellulose-cellulose and lignin decomposition on each temperature range. The TG/DTG curves showed the degradation behavior and the pyrolysis/combustion characteristics of the PKS samples which led to apply in thermogravimetric analysis. The kinetic factors including activation energy and pre-exponential factor were determined by the Coats-Redfern method. The obtained kinetic factors are used to simulate the thermal decomposition and compare with experimental data. Rising heating rate leads to shift the mass loss towards higher temperature.Keywords: combustion, palm kernel shell, pyrolysis, thermogravimetric analyzer
Procedia PDF Downloads 2302218 In vitro Regeneration of Neural Cells Using Human Umbilical Cord Derived Mesenchymal Stem Cells
Authors: Urvi Panwar, Kanchan Mishra, Kanjaksha Ghosh, ShankerLal Kothari
Abstract:
Background: Day-by-day the increasing prevalence of neurodegenerative diseases have become a global issue to manage them by medical sciences. The adult neural stem cells are rare and require an invasive and painful procedure to obtain it from central nervous system. Mesenchymal stem cell (MSCs) therapies have shown remarkable application in treatment of various cell injuries and cell loss. MSCs can be derived from various sources like adult tissues, human bone marrow, umbilical cord blood and cord tissue. MSCs have similar proliferation and differentiation capability, but the human umbilical cord-derived mesenchymal stem cells (hUCMSCs) are proved to be more beneficial with respect to cell procurement, differentiation to other cells, preservation, and transplantation. Material and method: Human umbilical cord is easily obtainable and non-controversial comparative to bone marrow and other adult tissues. The umbilical cord can be collected after delivery of baby, and its tissue can be cultured using explant culture method. Cell culture medium such as DMEMF12+10% FBS and DMEMF12+Neural growth factors (bFGF, human noggin, B27) with antibiotics (Streptomycin/Gentamycin) were used to culture and differentiate mesenchymal stem cells into neural cells, respectively. The characterisations of MSCs were done with Flow Cytometer for surface markers CD90, CD73 and CD105 and colony forming unit assay. The differentiated various neural cells will be characterised by fluorescence markers for neurons, astrocytes, and oligodendrocytes; quantitative PCR for genes Nestin and NeuroD1 and Western blotting technique for gap43 protein. Result and discussion: The high quality and number of MSCs were isolated from human umbilical cord via explant culture method. The obtained MSCs were differentiated into neural cells like neurons, astrocytes and oligodendrocytes. The differentiated neural cells can be used to treat neural injuries and neural cell loss by delivering cells by non-invasive administration via cerebrospinal fluid (CSF) or blood. Moreover, the MSCs can also be directly delivered to different injured sites where they differentiate into neural cells. Therefore, human umbilical cord is demonstrated to be an inexpensive and easily available source for MSCs. Moreover, the hUCMSCs can be a potential source for neural cell therapies and neural cell regeneration for neural cell injuries and neural cell loss. This new way of research will be helpful to treat and manage neural cell damages and neurodegenerative diseases like Alzheimer and Parkinson. Still the study has a long way to go but it is a promising approach for many neural disorders for which at present no satisfactory management is available.Keywords: bone marrow, cell therapy, explant culture method, flow cytometer, human umbilical cord, mesenchymal stem cells, neurodegenerative diseases, neuroprotective, regeneration
Procedia PDF Downloads 2032217 Reliable Method for Estimating Rating Curves in the Natural Rivers
Authors: Arash Ahmadi, Amirreza Kavousizadeh, Sanaz Heidarzadeh
Abstract:
Stage-discharge curve is one of the conventional methods for continuous river flow measurement. In this paper, an innovative approach is proposed for predicting the stage-discharge relationship using the application of isovel contours. Using the proposed method, it is possible to estimate the stage-discharge curve in the whole section with only using discharge information from just one arbitrary water level. For this purpose, multivariate relationships are used to determine the mean velocity in a cross-section. The unknown exponents of the proposed relationship have been obtained by using the second version of the Strength Pareto Evolutionary Algorithm (SPEA2), and the appropriate equation was selected by applying the TOPSIS (Technique for Order Preferences by Similarity to an Ideal Solution) approach. Results showed a close agreement between the estimated and observed data in the different cross-sections.Keywords: rating curves, SPEA2, natural rivers, bed roughness distribution
Procedia PDF Downloads 1612216 MyAds: A Social Adaptive System for Online Advertisment from Hypotheses to Implementation
Authors: Dana A. Al Qudah, Alexandra I. Critea, Rizik M. H. Al Sayyed, Amer Obeidah
Abstract:
Online advertisement is one of the major incomes for many companies; it has a role in the overall business flow and affects the consumer behavior directly. Unfortunately most users tend to block their ads or ignore them. MyAds is a social adaptive hypermedia system for online advertising and its main goal is to explore how to make online ads more acceptable. In order to achieve such a goal, various technologies and techniques are used. This paper presents a theoretical framework as well as the system architecture for MyAds that was designed based on a set of hypotheses and an exploratory study. The system then was implemented and a pilot experiment was conducted to validate it. The main outcomes suggest that the system has provided personalized ads for users. The main implications suggest that the system can be used for further testing and validating.Keywords: adaptive hypermedia, e-advertisement, social, hypotheses, exploratory study, framework
Procedia PDF Downloads 4132215 Exergy: An Effective Tool to Quantify Sustainable Development of Biodiesel Production
Authors: Mahmoud Karimi, Golmohammad Khoobbakht
Abstract:
This study focuses on the exergy flow analysis in the transesterification of waste cooking oil with methanol to decrease the consumption of materials and energy and promote the use of renewable resources. The exergy analysis performed is based on the thermodynamic performance parameters namely exergy destruction and exergy efficiency to investigate the effects of variable parameters on renewability of transesterification. The experiment variables were methanol to WCO ratio, catalyst concentration and reaction temperature in the transesterification reaction. The optimum condition with yield of 90.2% and exergy efficiency of 95.2% was obtained at methanol to oil molar ratio of 8:1, 1 wt.% of KOH, at 55 °C. In this condition, the total waste exergy was found to be 45.4 MJ for 1 kg biodiesel production. However high yield in the optimal condition resulted high exergy efficiency in the transesterification of WCO with methanol.Keywords: biodiesel, exergy, thermodynamic analysis, transesterification, waste cooking oil
Procedia PDF Downloads 1952214 Structural Analysis of Hydro-Turbine Spiral Casing and Stay Ring Using Ansys
Authors: Surjit Angra, Pooja Rani, Vinod Kumar
Abstract:
In hydro power plant spiral casing and Stay ring is meant to guide the water flow to guide vane and runner. Spiral casing and Stay ring is subjected to static i.e. pressure load as well as fluctuating load acting on the structure due to water hammer effect in water conductor system. Finite element method has been used to calculate stresses on spiral casing and stay ring. These calculations were done for the maximum possible loading under operating condition "LC1 Quick Shut Down”. The design load is reached for the spiral casing and stay ring during the emergency closure of the guide apparatus "LC1 Quick Shut Down”. During this operation the forces from the head cover to the stay ring also reach their maximum.Keywords: hydro-turbine, spiral casing, stay ring, structural analysis
Procedia PDF Downloads 5212213 Comparison of Particle Size for ɑ(Alpha) Fe2O3 and ɤ(Gamma)Fe2O3 on Heat Transfer Performance in an Copper Oscillating Heat Pipe
Authors: Hamid Reza Goshayeshi
Abstract:
The effect of ɑ(alpha) Fe2O3 and ɤ(gamma)Fe2O3 particles on the heat transfer performance of an oscillating heat pipe was investigated experimentally. Kerosene was used as the base fluid for the OHP. Six size particles with average diameters of 10 nm, 20 nm, and 30 nm ɑFe2O3 and ɤFe2O3 were investigated, respectively. Experimental results show that the ɤFe2O3 particles added in the OHP significantly affect the heat transfer performance. When the OHP was charged with kerosene and 20 nm ɤ Fe2O3 particles, the OHP can achieve the best heat transfer performance among six particles investigated in this research.Keywords: copper oscillating heat pipe, heat transfer, flow, comparison of ɑ(alpha)Fe2O3 and ɤ(gamma)Fe2O3, increase heat transfer
Procedia PDF Downloads 3222212 Lightweight High-Pressure Ratio Centrifugal Compressor for Vehicles-Investigation of Pipe Diffuser Designs by Means of CFD
Authors: Eleni Ioannou, Pascal Nucara, Keith Pullen
Abstract:
The subject of this paper is the investigation of the best efficiency design of a compressor diffuser applied in new lightweight, ultra efficient micro-gas turbine engines for vehicles. The Computational Fluid Dynamics (CFD) results are obtained utilizing steady state simulations for a wedge and an ”oval” type pipe diffuser in an effort to identify the beneficial effects of the pipe diffuser design. The basic flow features are presented with particular focus on the optimization of the pipe diffuser leading to higher efficiencies for the compressor stage. The optimised pipe diffuser is designed to exploit the 3D freedom enabled by Selective Laser Melting, hence purposely involves an investigation of geometric characteristics that do not follow the traditional diffuser concept.Keywords: CFD, centrifugal compressor, micro-gas turbine, pipe diffuser, SLM, wedge diffuser
Procedia PDF Downloads 4072211 Liquid Fuel Production via Catalytic Pyrolysis of Waste Oil
Authors: Malee Santikunaporn, Neera Wongtyanuwat, Channarong Asavatesanupap
Abstract:
Pyrolysis of waste oil is an effective process to produce high quality liquid fuels. In this work, pyrolysis experiments of waste oil over Y zeolite were carried out in a semi-batch reactor under a flow of nitrogen at atmospheric pressure and at different reaction temperatures (350-450 oC). The products were gas, liquid fuel, and residue. Only liquid fuel was further characterized for its composition and properties by using gas chromatography, thermogravimetric analyzer, and bomb calorimeter. Experimental results indicated that the pyrolysis reaction temperature significantly affected both yield and composition distribution of pyrolysis oil. An increase in reaction temperature resulted in increased fuel yield, especially gasoline fraction. To obtain high amount of fuel, the optimal reaction temperature should be higher than 350 oC. A presence of Y zeolite in the system enhanced the cracking activity. In addition, the pyrolysis oil yield is proportional to the catalyst quantity.Keywords: gasoline, diesel, pyrolysis, waste oil, Y zeolite
Procedia PDF Downloads 2002210 Coordinated Voltage Control in Radial Distribution System with Distributed Generators Using Sensitivity Analysis
Authors: Anubhav Shrivastava Shivarudraswamy, Bhat Lakshya
Abstract:
Distributed generation has indeed become a major area of interest in recent years. Distributed generation can address a large number of loads in a power line and hence has better efficiency over the conventional methods. However, there are certain drawbacks associated with it, an increase in voltage being the major one. This paper addresses the voltage control at the buses for an IEEE 30 bus system by regulating reactive power. For carrying out the analysis, the suitable location for placing distributed generators (DG) is identified through load flow analysis and seeing where the voltage profile is dipping. MATLAB programming is used to regulate the voltage at all buses within +/- 5% of the base value even after the introduction of DGs. Three methods for regulation of voltage are discussed. A sensitivity based analysis is then carried out to determine the priority among the various methods listed in the paper.Keywords: distributed generators, distributed system, reactive power, voltage control, sensitivity analysis
Procedia PDF Downloads 6602209 Validation of a Fluid-Structure Interaction Model of an Aortic Dissection versus a Bench Top Model
Authors: K. Khanafer
Abstract:
The aim of this investigation was to validate the fluid-structure interaction (FSI) model of type B aortic dissection with our experimental results from a bench-top-model. Another objective was to study the relationship between the size of a septectomy that increases the outflow of the false lumen and its effect on the values of the differential of pressure between true lumen and false lumen. FSI analysis based on Galerkin’s formulation was used in this investigation to study flow pattern and hemodynamics within a flexible type B aortic dissection model using boundary conditions from our experimental data. The numerical results of our model were verified against the experimental data for various tear size and location. Thus, CFD tools have a potential role in evaluating different scenarios and aortic dissection configurations.Keywords: aortic dissection, fluid-structure interaction, in vitro model, numerical
Procedia PDF Downloads 2732208 Experimental Study and Analysis of Parabolic Trough Collector with Various Reflectors
Authors: Avadhesh Yadav, Balram Manoj Kumar
Abstract:
A solar powered air heating system using parabolic trough collector was experimentally investigated. In this experimental setup, the reflected solar radiations were focused on absorber tube which was placed at focal length of the parabolic trough. In this setup, air was used as working fluid which collects the heat from absorber tube. To enhance the performance of parabolic trough, collector with different type of reflectors were used. It was observed for aluminum sheet maximum temperature is 52.3ºC, which 24.22% more than steel sheet as reflector and 8.5% more than aluminum foil as reflector, also efficiency by using Aluminum sheet as reflector compared to steel sheet as reflector is 61.18% more. Efficiency by using aluminum sheet as reflector compared to aluminum foil as reflector is 18.98% more.Keywords: parabolic trough collector, reflectors, air flow rates, solar power, aluminum sheet
Procedia PDF Downloads 3622207 Experimental Performance and Numerical Simulation of Double Glass Wall
Authors: Thana Ananacha
Abstract:
This paper reports the numerical and experimental performances of Double Glass Wall are investigated. Two configurations were considered namely, the Double Clear Glass Wall (DCGW) and the Double Translucent Glass Wall (DTGW). The coupled governing equations as well as boundary conditions are solved using the finite element method (FEM) via COMSOLTM Multiphysics. Temperature profiles and flow field of the DCGW and DTGW are reported and discussed. Different constant heat fluxes were considered namely 400 and 800 W.m-2 the corresponding initial condition temperatures were to 30.5 and 38.5 ºC respectively. The results show that the simulation results are in agreement with the experimental data. Conclusively, the model considered in this study could reasonable be used simulate the thermal and ventilation performance of the DCGW and DTGW configurations.Keywords: thermal simulation, Double Glass Wall, velocity field, finite element method (FEM)
Procedia PDF Downloads 3622206 Erosion and Deposition of Terrestrial Soil Supplies Nutrients to Estuaries and Coastal Bays: A Flood Simulation Study of Sediment-Nutrient Flux
Authors: Kaitlyn O'Mara, Michele Burford
Abstract:
Estuaries and coastal bays can receive large quantities of sediment from surrounding catchments during flooding or high flow periods. Large river systems that feed freshwater into estuaries can flow through several catchments of varying geology. Human modification of catchments for agriculture, industry and urban use can contaminate soils with excess nutrients, trace metals and other pollutants. Land clearing, especially clearing of riparian vegetation, can accelerate erosion, mobilising, transporting and depositing soil particles into rivers, estuaries and coastal bays. In this study, a flood simulation experiment was used to study the flux of nutrients between soil particles and water during this erosion, transport and deposition process. Granite, sedimentary and basalt surface soils (as well as sub-soils of granite and sedimentary) were collected from eroding areas surrounding the Brisbane River, Australia. The <63 µm size fraction of each soil type was tumbled in freshwater for 3 days, to simulation flood erosion and transport, followed by stationary exposure to seawater for 4 weeks, to simulate deposition into estuaries. Filtered water samples were taken at multiple time points throughout the experiment and analysed for water nutrient concentrations. The highest rates of nutrient release occurred during the first hour of exposure to freshwater and seawater, indicating a chemical reaction with seawater that may act to release some nutrient particles that remain bound to the soil during turbulent freshwater transport. Although released at a slower rate than the first hour, all of the surface soil types showed continual ammonia, nitrite and nitrate release over the 4-week seawater exposure, suggesting that these soils may provide ongoing supply of these nutrients to estuarine waters after deposition. Basalt surface soil released the highest concentrations of phosphates and dissolved organic phosphorus. Basalt soils are found in much of the agricultural land surrounding the Brisbane River and contributed largely to the 2011 Brisbane River flood plume deposit in Moreton Bay, suggesting these soils may be a source of phosphate enrichment in the bay. The results of this study suggest that erosion of catchment soils during storm and flood events may be a source of nutrient supply in receiving waterways, both freshwater and marine, and that the amount of nutrient release following these events may be affected by the type of soil deposited. For example, flooding in different catchments of a river system over time may result in different algal and food web responses in receiving estuaries.Keywords: flood, nitrogen, nutrient, phosphorus, sediment, soil
Procedia PDF Downloads 1902205 [Keynote Talk]: Photocatalytic Cleaning Performance of Air Filters for a Binary Mixture
Authors: Lexuan Zhong, Chang-Seo Lee, Fariborz Haghighat, Stuart Batterman, John C. Little
Abstract:
Ultraviolet photocatalytic oxidation (UV-PCO) technology has been recommended as a green approach to health indoor environment when it is integrated into mechanical ventilation systems for inorganic and organic compounds removal as well as energy saving due to less outdoor air intakes. Although much research has been devoted to UV-PCO, limited information is available on the UV-PCO behavior tested by the mixtures in literature. This project investigated UV-PCO performance and by-product generation using a single and a mixture of acetone and MEK at 100 ppb each in a single-pass duct system in an effort to obtain knowledge associated with competitive photochemical reactions involved in. The experiments were performed at 20 % RH, 22 °C, and a gas flow rate of 128 m3/h (75 cfm). Results show that acetone and MEK mutually reduced each other’s PCO removal efficiency, particularly negative removal efficiency for acetone. These findings were different from previous observation of facilitatory effects on the adsorption of acetone and MEK on photocatalyst surfaces.Keywords: by-products, inhibitory effect, mixture, photocatalytic oxidation
Procedia PDF Downloads 5022204 Modelling of Groundwater Resources for Al-Najaf City, Iraq
Authors: Hayder H. Kareem, Shunqi Pan
Abstract:
Groundwater is a vital water resource in many areas in the world, particularly in the Middle-East region where the water resources become scarce and depleting. Sustainable management and planning of the groundwater resources become essential and urgent given the impact of the global climate change. In the recent years, numerical models have been widely used to predict the flow pattern and assess the water resources security, as well as the groundwater quality affected by the contaminants transported. In this study, MODFLOW is used to study the current status of groundwater resources and the risk of water resource security in the region centred at Al-Najaf City, which is located in the mid-west of Iraq and adjacent to the Euphrates River. In this study, a conceptual model is built using the geologic and hydrogeologic collected for the region, together with the Digital Elevation Model (DEM) data obtained from the "Global Land Cover Facility" (GLCF) and "United State Geological Survey" (USGS) for the study area. The computer model is also implemented with the distributions of 69 wells in the area with the steady pro-defined hydraulic head along its boundaries. The model is then applied with the recharge rate (from precipitation) of 7.55 mm/year, given from the analysis of the field data in the study area for the period of 1980-2014. The hydraulic conductivity from the measurements at the locations of wells is interpolated for model use. The model is calibrated with the measured hydraulic heads at the locations of 50 of 69 wells in the domain and results show a good agreement. The standard-error-of-estimate (SEE), root-mean-square errors (RMSE), Normalized RMSE and correlation coefficient are 0.297 m, 2.087 m, 6.899% and 0.971 respectively. Sensitivity analysis is also carried out, and it is found that the model is sensitive to recharge, particularly when the rate is greater than (15mm/year). Hydraulic conductivity is found to be another parameter which can affect the results significantly, therefore it requires high quality field data. The results show that there is a general flow pattern from the west to east of the study area, which agrees well with the observations and the gradient of the ground surface. It is found that with the current operational pumping rates of the wells in the area, a dry area is resulted in Al-Najaf City due to the large quantity of groundwater withdrawn. The computed water balance with the current operational pumping quantity shows that the Euphrates River supplies water into the groundwater of approximately 11759 m3/day, instead of gaining water of 11178 m3/day from the groundwater if no pumping from the wells. It is expected that the results obtained from the study can provide important information for the sustainable and effective planning and management of the regional groundwater resources for Al-Najaf City.Keywords: Al-Najaf city, conceptual modelling, groundwater, unconfined aquifer, visual MODFLOW
Procedia PDF Downloads 2162203 The Impact of Online Advertising on Consumer Purchase Behaviour Based on Malaysian Organizations
Authors: Naser Zourikalatehsamad, Seyed Abdorreza Payambarpour, Ibrahim Alwashali, Zahra Abdolkarimi
Abstract:
The paper aims to evaluate the effect of online advertising on consumer purchase behavior in Malaysian organizations. The paper has potential to extend and refine theory. A survey was distributed among Students of UTM university during the winter 2014 and 160 responses were collected. Regression analysis was used to test the hypothesized relationships of the model. Result shows that the predictors (cost saving factor, convenience factor and customized product or services) have positive impact on intention to continue seeking online advertising.Keywords: consumer purchase, convenience, customized product, cost saving, customization, flow theory, mass communication, online advertising ads, online advertising measurement, online advertising mechanism, online intelligence system, self-confidence, willingness to purchase
Procedia PDF Downloads 4812202 Nano and Micro Silica Cooperating Effect on Ferrocement Mortar
Authors: Aziz Ibrahim Abdulla, Omar Mohanad Mahdi
Abstract:
The objective of this paper is to explore the effect of incorporating Nano-Silica with Silica-fume in ferrocement mortar to enhancing mechanical properties of it. One type of Nano silica with average diameter size 23nm and silica fume have been used with two percentage (1%, 2% Nano silica and 5%, 10% silica fume per weight of cement) and w/c with / without superplasticizer was been calculated by flow test method. Also three sand: cement ratios have been used (1.5, 2.0 and 2.5) with max. Aggregate size 0.6mm in this study for reference and other mixtures. Results reveal adding Nano silica with silica fume to ferrocement mortar enhances its physical and mechanical properties such as compressive strength and flexural strength. The SEM pictures and density with absorption ratio demonstrate that Nano silica with silica fume contributes to enhancement of mortar through yielding denser, more compact and uniform mixtures.Keywords: nano silica, ferrocement mortar, compresion strength, flexural strength
Procedia PDF Downloads 3842201 Strategies to Mitigate Disasters at the Hajj Religious Festival Using GIS and Agent Based Modelling
Authors: Muteb Alotaibi, Graham Clarke, Nick Malleson
Abstract:
The Hajj religious festival at Mina in Saudi Arabia has always presented the opportunity for injuries or deaths. For example, in 1990, a stampede killed 1426 pilgrims, whilst in 1997, 343 people were killed and 1500 injured due to a fire fuelled by high winds sweeping through the tent city in Mina.Many more minor incidents have occurred since then. It is predicted that 5 million pilgrims will soon perform the ritual at Mina (which is, in effect, a temporary city built each year in the desert), which might lead in the future to severe congestion and accidents unless the research is conducted on actions that contribute positively to improving the management of the crowd and facilitating the flow of pilgrims safely and securely. To help prevent further disasters, it is important to first plan better, more accessible locations for emergency services across Mina to ensure a good service for pilgrims. In this paper, we first use a Location Allocation Model (LAM) within a network GIS to examine the optimal locations for key services in the temporary city of Mina. This has been undertaken in relation to the location and movement of the pilgrims during the six day religious festival. The results of various what-if scenarios have been compared against the current location of services. A major argument is that planners should be flexible and locate facilities at different locations throughout the day and night. The use of location-allocation models in this type of comparative static mode has rarely been operationalised in the literature. Second, we model pilgrim movements and behaviours along with the most crowded parts of the network. This has been modelled using an agent-based model. This model allows planners to understand the key bottlenecks in the network and at what usage levels the paths become critically congested. Thus the paper has important implications and recommendations for future disaster planning strategies. This will enable planners to see at what stage in the movements of pilgrims problems occur in terms of potential crushes and trampling incidents. The main application of this research was only customised for pedestrians as the concentration only for pedestrians who move to Jamarat via foot. Further, the network in the middle of Mina was only dedicated for pedestrians for safety, so no Buses, trains and private cars were allowed in this area to prevent the congestion within this network. Initially, this research focus on Mina city as ‘temporary city’ and also about service provision in temporary cities, which is not highlighted in literature so far. Further, it is the first study which use the dynamic demand to optimise the services in the case of day and night time. Moreover, it is the first study which link the location allocation model for optimising services with ABM to find out whether or not the service location is located in the proper location in which it’s not affecting on crowd movement in mainstream flow where some pilgrims need to have health services.Keywords: ABM, crowd management, hajj, temporary city
Procedia PDF Downloads 1252200 An Improvement Study for Mattress Manufacturing Line with a Simulation Model
Authors: Murat Sarı, Emin Gundogar, Mumtaz Ipek
Abstract:
Nowadays, in a furniture sector, competition of market share (portion) and production variety and changeability enforce the firm to reengineer operations on manufacturing line to increase the productivity. In this study, spring mattress manufacturing line of the furniture manufacturing firm is analyzed analytically. It’s intended to search and find the bottlenecks of production to balance the semi-finished material flow. There are four base points required to investigate in bottleneck elimination process. These are bottlenecks of Method, Material, Machine and Man (work force) resources, respectively. Mentioned bottlenecks are investigated and varied scenarios are created for recruitment of manufacturing system. Probable near optimal alternatives are determined by system models built in Arena simulation software.Keywords: bottleneck search, buffer stock, furniture sector, simulation
Procedia PDF Downloads 3592199 Analysis and Treatment of Sewage Treatment Plant Wastewater of El-Karma, Oran
Authors: Larbi Hammadi, Abdellatif El Bari Tidjani
Abstract:
In order to reduce the flow of pollutants in the wastewater of the urban agglomerations of the city of Oran, a preliminary study was carried out at the El-Karma wastewater treatment plant. The primary objective of this study was to estimate the overall physicochemical pollution in the effluents of the El-Karma sewage treatment plant wastewater. It was found that the effluent of El-Karma wastewater treatment plant contains a significant amount of insoluble. Total suspended soli TSS concentrations ranged from 112 to 475 mg/l, with an average of 220.5 mg/l. The chemical oxygen demand (COD) and biochemical oxygen demand (BOD₅) values remain within the reference range for domestic wastewater with an average value of COD < 125 and BOD₅ < 25. The COD/BOD₅ ratio of raw water entering the treatment plant is less than 2. This ratio would predict that the raw sewage from the El-Karma treatment plant is polluted by inorganic pollution strong enough.Keywords: El-Karma wastewater, TSS concentrations, COD and BOD5, COD/BOD5 ratio, treatment
Procedia PDF Downloads 2732198 Preliminary Study of Desiccant Cooling System under Algerian Climates
Abstract:
The interest in air conditioning using renewable energies is increasing. The thermal energy produced from the solar energy can be converted to useful cooling and heating through the thermochemical or thermophysical processes by using thermally activated energy conversion systems. The ambient air contains so much water that very high dehumidification rates are required. For a continuous dehumidification of the process air, the water adsorbed on the desiccant material has to be removed, which is done by allowing hot air to flow through the desiccant material (regeneration). A solid desiccant cooling system transfers moisture from the inlet air to the silica gel by using two processes: Absorption process and the regeneration process. The main aim of this paper is to study how the dehumidification rate, the generation temperature and many other factors influence the efficiency of a solid desiccant system by using TRNSYS software. The results show that the desiccant system could be used to decrease the humidity rate of the entering air.Keywords: dehumidification, efficiency, humidity, Trnsys
Procedia PDF Downloads 442