Search results for: multi-criteria decision aiding
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4098

Search results for: multi-criteria decision aiding

1518 Storage Method for Parts from End of Life Vehicles' Dismantling Process According to Sustainable Development Requirements: Polish Case Study

Authors: M. Kosacka, I. Kudelska

Abstract:

Vehicle is one of the most influential and complex product worldwide, which affects people’s life, state of the environment and condition of the economy (all aspects of sustainable development concept) during each stage of lifecycle. With the increase of vehicles’ number, there is growing potential for management of End of Life Vehicle (ELV), which is hazardous waste. From one point of view, the ELV should be managed to ensure risk elimination, but from another point, it should be treated as a source of valuable materials and spare parts. In order to obtain materials and spare parts, there are established recycling networks, which are an example of sustainable policy realization at the national level. The basic object in the polish recycling network is dismantling facility. The output material streams in dismantling stations include waste, which very often generate costs and spare parts, that have the biggest potential for revenues creation. Both outputs are stored into warehouses, according to the law. In accordance to the revenue creation and sustainability potential, it has been placed a strong emphasis on storage process. We present the concept of storage method, which takes into account the specific of the dismantling facility in order to support decision-making process with regard to the principles of sustainable development. The method was developed on the basis of case study of one of the greatest dismantling facility in Poland.

Keywords: dismantling, end of life vehicles, sustainability, storage

Procedia PDF Downloads 270
1517 Off-Policy Q-learning Technique for Intrusion Response in Network Security

Authors: Zheni S. Stefanova, Kandethody M. Ramachandran

Abstract:

With the increasing dependency on our computer devices, we face the necessity of adequate, efficient and effective mechanisms, for protecting our network. There are two main problems that Intrusion Detection Systems (IDS) attempt to solve. 1) To detect the attack, by analyzing the incoming traffic and inspect the network (intrusion detection). 2) To produce a prompt response when the attack occurs (intrusion prevention). It is critical creating an Intrusion detection model that will detect a breach in the system on time and also challenging making it provide an automatic and with an acceptable delay response at every single stage of the monitoring process. We cannot afford to adopt security measures with a high exploiting computational power, and we are not able to accept a mechanism that will react with a delay. In this paper, we will propose an intrusion response mechanism that is based on artificial intelligence, and more precisely, reinforcement learning techniques (RLT). The RLT will help us to create a decision agent, who will control the process of interacting with the undetermined environment. The goal is to find an optimal policy, which will represent the intrusion response, therefore, to solve the Reinforcement learning problem, using a Q-learning approach. Our agent will produce an optimal immediate response, in the process of evaluating the network traffic.This Q-learning approach will establish the balance between exploration and exploitation and provide a unique, self-learning and strategic artificial intelligence response mechanism for IDS.

Keywords: cyber security, intrusion prevention, optimal policy, Q-learning

Procedia PDF Downloads 234
1516 Determining Importance Level of Factors Affecting Selection of Online Shopping Website with AHP: A Research on Young Consumers

Authors: Nurullah Ekmekci, Omer Akkaya, Vural Cagliyan

Abstract:

Increased use of the Internet has resulted in the emergence of a new retail types called online shopping or electronic retail (e-retail). The rapid growth of the Internet has enabled customers to search information about the product and buy these products or services from e-retailers. Although this new form of shopping has grown in a remarkable way because of offering easiness to people, it is not an easy task to capture the success by distinguishing from competitors in this environment which millions of players takes place. For the success, e-retailers should determine the factors which the customers take notice while they are buying from e-retailers. This paper aims to identify the factors that provide preferability for the online shopping websites and the importance levels of these factors. These main criteria which have taken notice are Customer Service Performance (CSP), Website Performance (WSP), Criteria Related to Product (CRP), Ease of Payment (EP), Security/Privacy (SP), Ease of Return (ER), Delivery Service Performance (DSP) and Order Fulfillment Performance (OFP). It has benefited from Analytic Hierarchy Process to determine the priority of the criteria. Based on analysis, Security/Privacy (SP) criteria seems to be most important criterion with 22 % weight. Companies should attach importance to the security and privacy for making their online website more preferable among the online shoppers.

Keywords: AHP (analytical hierarchy process), multi-criteria decision making, online shopping, shopping

Procedia PDF Downloads 239
1515 Prescribed Organization of Nursing Work and Psychosocial Risks: A Cross-Sectional Study

Authors: Katerine Moraes dos Satons, Gisele Massante Peixoto Tracera, Regina Célia Gollner Zeitoune

Abstract:

To analyze the psychosocial risks related to the organization of nursing work in outpatient clinics of university hospitals. Cross-sectional epidemiological study developed in 11 outpatient units linked to the three public universities of the city of Rio de Janeiro, Brazil. Participants were 388 nursing professionals who worked in patient care at the time of the research. Data were collected from July to December 2018, using a self-applicable instrument. A questionnaire was used for sociodemographic, occupational and health characterization, and the Work Organization Scale. The bivariate analyses were performed using the odds ratio (OR), with a confidence interval of 95%, significance level of 5%. The organization of nursing work received an assessment of medium psychosocial risk by the professionals participating in the research, demanding interventions in the short and medium term. There was no association between sociodemographic, occupational and health characteristics and the organization of outpatient work. Interventional measures should be performed in the psychosocial risk factors presented in this research, with a view to improving the work environment, so that the importance of maintaining satisfactory material conditions is considered, as well as the adequate quantity of human resources. In addition, it aims to expand the spaces of nursing participation in decision- making, strengthening its autonomy as a profession.

Keywords: occupational risks, nursing, nursing team, worker’s health, psychosocial risks

Procedia PDF Downloads 96
1514 The Use of Geographic Information System and Spatial Statistic for Analyzing Leukemia in Kuwait for the Period of 2006-2012

Authors: Muhammad G. Almatar, Mohammad A. Alnasrallah

Abstract:

This research focuses on the study of three main issues: 1) The temporal analysis of leukemia for a period of six years (2006-2012), 2) spatial analysis by investigating this phenomenon in the Kuwaiti society spatially in the residential areas within the six governorates, 3) the use of Geographic Information System technology in investigating the hypothesis of the research and its variables using the linear regression, to show the pattern of linear relationship. The study depends on utilizing the map to understand the distribution of blood cancer in Kuwait. Several geodatabases were created for the number of patients and air pollution. Spatial interpolation models were used to generate layers of air pollution in the study area. These geodatabases were tested over the past six years to reach the conclusion: Is there a relationship with significant significance between the two main variables of the study: blood cancer and air pollution? This study is the first to our best knowledge. As far as the researchers know, the distribution of this disease has not been studied geographically at the level of regions in Kuwait within six years and in specific areas as described above. This study investigates the concentration of this type of disease. The study found that there is no relationship of significant value between the two variables studied, and this may be due to the nature of the disease, which are often hereditary. On the other hand, this study has reached a number of suggestions and recommendations that may be useful to decision-makers and interested in the study of leukemia in Kuwait by focusing on the study of genetic diseases, which may be a cause of leukemia rather than air pollution.

Keywords: Kuwait, GIS, cancer, geography

Procedia PDF Downloads 113
1513 Resilience Assessment for Power Distribution Systems

Authors: Berna Eren Tokgoz, Mahdi Safa, Seokyon Hwang

Abstract:

Power distribution systems are essential and crucial infrastructures for the development and maintenance of a sustainable society. These systems are extremely vulnerable to various types of natural and man-made disasters. The assessment of resilience focuses on preparedness and mitigation actions under pre-disaster conditions. It also concentrates on response and recovery actions under post-disaster situations. The aim of this study is to present a methodology to assess the resilience of electric power distribution poles against wind-related events. The proposed methodology can improve the accuracy and rapidity of the evaluation of the conditions and the assessment of the resilience of poles. The methodology provides a metric for the evaluation of the resilience of poles under pre-disaster and post-disaster conditions. The metric was developed using mathematical expressions for physical forces that involve various variables, such as physical dimensions of the pole, the inclination of the pole, and wind speed. A three-dimensional imaging technology (photogrammetry) was used to determine the inclination of poles. Based on expert opinion, the proposed metric was used to define zones to visualize resilience. Visual representation of resilience is helpful for decision makers to prioritize their resources before and after experiencing a wind-related disaster. Multiple electric poles in the City of Beaumont, TX were used in a case study to evaluate the proposed methodology.  

Keywords: photogrammetry, power distribution systems, resilience metric, system resilience, wind-related disasters

Procedia PDF Downloads 220
1512 Destination Port Detection For Vessels: An Analytic Tool For Optimizing Port Authorities Resources

Authors: Lubna Eljabu, Mohammad Etemad, Stan Matwin

Abstract:

Port authorities have many challenges in congested ports to allocate their resources to provide a safe and secure loading/ unloading procedure for cargo vessels. Selecting a destination port is the decision of a vessel master based on many factors such as weather, wavelength and changes of priorities. Having access to a tool which leverages AIS messages to monitor vessel’s movements and accurately predict their next destination port promotes an effective resource allocation process for port authorities. In this research, we propose a method, namely, Reference Route of Trajectory (RRoT) to assist port authorities in predicting inflow and outflow traffic in their local environment by monitoring Automatic Identification System (AIS) messages. Our RRoT method creates a reference route based on historical AIS messages. It utilizes some of the best trajectory similarity measure to identify the destination of a vessel using their recent movement. We evaluated five different similarity measures such as Discrete Fr´echet Distance (DFD), Dynamic Time Warping (DTW), Partial Curve Mapping (PCM), Area between two curves (Area) and Curve length (CL). Our experiments show that our method identifies the destination port with an accuracy of 98.97% and an fmeasure of 99.08% using Dynamic Time Warping (DTW) similarity measure.

Keywords: spatial temporal data mining, trajectory mining, trajectory similarity, resource optimization

Procedia PDF Downloads 120
1511 A Multi-Objective Programming Model to Supplier Selection and Order Allocation Problem in Stochastic Environment

Authors: Rouhallah Bagheri, Morteza Mahmoudi, Hadi Moheb-Alizadeh

Abstract:

This paper aims at developing a multi-objective model for supplier selection and order allocation problem in stochastic environment, where purchasing cost, percentage of delivered items with delay and percentage of rejected items provided by each supplier are supposed to be stochastic parameters following any arbitrary probability distribution. In this regard, dependent chance programming is used which maximizes probability of the event that total purchasing cost, total delivered items with delay and total rejected items are less than or equal to pre-determined values given by decision maker. The abovementioned stochastic multi-objective programming problem is then transformed into a stochastic single objective programming problem using minimum deviation method. In the next step, the further problem is solved applying a genetic algorithm, which performs a simulation process in order to calculate the stochastic objective function as its fitness function. Finally, the impact of stochastic parameters on the given solution is examined via a sensitivity analysis exploiting coefficient of variation. The results show that whatever stochastic parameters have greater coefficients of variation, the value of the objective function in the stochastic single objective programming problem is deteriorated.

Keywords: supplier selection, order allocation, dependent chance programming, genetic algorithm

Procedia PDF Downloads 311
1510 USA Commercial Pilots’ Views of Crew Resource Management, Social Desirability, and Safety Locus of Control

Authors: Stephen Vera, Tabitha Black, Charalambos Cleanthous, Ryan Sain

Abstract:

A gender comparison of USA commercial pilots’ demographics and views of CRM, social desirability and locus of control were surveyed. The Aviation safety locus of control (ASLOC) was used to measure external (ASLOC-E) or internal (ASLOC-I) aviation safety locus of control. The gender differences were explored using the ASLOC scores as a categorical variable. A differential comparison of crew resource management (CRM), based on the Federal Aviation Administration’s (FAA) guidelines was conducted. The results indicated that the proportion of female to male respondents matches the current ratio of USA commercial pilots. Moreover, there were no significant differences regarding overall education and the total number of communication classes one took. Regarding CRM issues, there were no significant differences on their views regarding the roles of the PIC, stress, time management, and managing a flight team. The females scored significantly lower on aeronautical decision making (ADM) and communications. There were no significant differences on either the Balanced Inventory of Desirable Responding (BIDR) impression management (IM) or self-deceptive enhancement (SDE). Although there were no overall significant differences on the ASLOC, the females did score higher on the internal subscale than did the males. An additional comparison of socially desirable responding indicates that all scores may be invalid, especially from the female respondents.

Keywords: social desirability, safety locus of control, crew resource management, commercial pilots

Procedia PDF Downloads 254
1509 Corporate Social Responsibility and Competitiveness: An Empirical Research Applied to Food and Beverage Industry in Croatia

Authors: Mirjana Dragas, Marli Gonan Bozac, Morena Paulisic

Abstract:

Corporate social responsibility (CSR) is a balance between strategic and financial goals of companies, as well as social needs. The integration of competitive strategy and CSR in food and beverage industry has allowed companies to find new sources of competitive advantage. The paper discusses the fact that socially responsible companies encourage co-operation with socially responsible suppliers in order to strengthen market competitiveness. In addition to the descriptive interpretation of the results obtained by a questionnaire, factor analysis was used, while principal components analysis was applied as a factor extraction method. The research results based on two multiple regression analyses show that: (1) selecting the CSR supplier explains a statistically significant part of the variance of the results on the scale of financial aspects of competitiveness (as much as 44.7% of the explained variance); and (2) selecting the CSR supplier is a significant predictor of non-financial aspects of competitiveness (explains 43.9% of the variance of the results on the scale of non-financial aspects of competitiveness). A successful competitive strategy must ultimately support the growth strategy. This implies an analytical approach to finding factors that influence competitiveness through socially sustainable solutions and satisfactory top management decisions.

Keywords: competitiveness, corporate social responsibility, food and beverage industry, supply chain decision making

Procedia PDF Downloads 360
1508 Risk Assessment of Heavy Rainfall and Development of Damage Prediction Function for Gyeonggi-Do Province

Authors: Jongsung Kim, Daegun Han, Myungjin Lee, Soojun Kim, Hung Soo Kim

Abstract:

Recently, the frequency and magnitude of natural disasters are gradually increasing due to climate change. Especially in Korea, large-scale damage caused by heavy rainfall frequently occurs due to rapid urbanization. Therefore, this study proposed a Heavy rain Damage Risk Index (HDRI) using PSR (Pressure – State - Response) structure for heavy rain risk assessment. We constructed pressure index, state index, and response index for the risk assessment of each local government in Gyeonggi-do province, and the evaluation indices were determined by principal component analysis. The indices were standardized using the Z-score method then HDRIs were obtained for 31 local governments in the province. The HDRI is categorized into three classes, say, the safest class is 1st class. As the results, the local governments of the 1st class were 15, 2nd class 7, and 3rd class 9. From the study, we were able to identify the risk class due to the heavy rainfall for each local government. It will be useful to develop the heavy rainfall prediction function by risk class, and this was performed in this issue. Also, this risk class could be used for the decision making for efficient disaster management. Acknowledgements: This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT & Future Planning (2017R1A2B3005695).

Keywords: natural disaster, heavy rain risk assessment, HDRI, PSR

Procedia PDF Downloads 198
1507 A Combined Approach Based on Artificial Intelligence and Computer Vision for Qualitative Grading of Rice Grains

Authors: Hemad Zareiforoush, Saeed Minaei, Ahmad Banakar, Mohammad Reza Alizadeh

Abstract:

The quality inspection of rice (Oryza sativa L.) during its various processing stages is very important. In this research, an artificial intelligence-based model coupled with computer vision techniques was developed as a decision support system for qualitative grading of rice grains. For conducting the experiments, first, 25 samples of rice grains with different levels of percentage of broken kernels (PBK) and degree of milling (DOM) were prepared and their qualitative grade was assessed by experienced experts. Then, the quality parameters of the same samples examined by experts were determined using a machine vision system. A grading model was developed based on fuzzy logic theory in MATLAB software for making a relationship between the qualitative characteristics of the product and its quality. Totally, 25 rules were used for qualitative grading based on AND operator and Mamdani inference system. The fuzzy inference system was consisted of two input linguistic variables namely, DOM and PBK, which were obtained by the machine vision system, and one output variable (quality of the product). The model output was finally defuzzified using Center of Maximum (COM) method. In order to evaluate the developed model, the output of the fuzzy system was compared with experts’ assessments. It was revealed that the developed model can estimate the qualitative grade of the product with an accuracy of 95.74%.

Keywords: machine vision, fuzzy logic, rice, quality

Procedia PDF Downloads 418
1506 Experimental Investigation, Analysis and Optimization of Performance and Emission Characteristics of Composite Oil Methyl Esters at 160 bar, 180 bar and 200 bar Injection Pressures by Multifunctional Criteria Technique

Authors: Yogish Huchaiah, Chandrashekara Krishnappa

Abstract:

This study considers the optimization and validation of experimental results using Multi-Functional Criteria Technique (MFCT). MFCT is concerned with structuring and solving decision and planning problems involving multiple variables. Production of biodiesel from Composite Oil Methyl Esters (COME) of Jatropha and Pongamia oils, mixed in various proportions and Biodiesel thus obtained from two step transesterification process were tested for various Physico-Chemical properties and it has been ascertained that they were within limits proposed by ASTME. They were blended with Petrodiesel in various proportions. These Methyl Esters were blended with Petrodiesel in various proportions and coded. These blends were used as fuels in a computerized CI DI engine to investigate Performance and Emission characteristics. From the analysis of results, it was found that 180MEM4B20 blend had the maximum Performance and minimum Emissions. To validate the experimental results, MFCT was used. Characteristics such as Fuel Consumption (FC), Brake Power (BP), Brake Specific Fuel Consumption (BSFC), Brake Thermal Efficiency (BTE), Carbon dioxide (CO2), Carbon Monoxide (CO), Hydro Carbon (HC) and Nitrogen oxide (NOx) were considered as dependent variables. It was found from the application of this method that the optimized combination of Injection Pressure (IP), Mix and Blend is 178MEM4.2B24. Overall corresponding variation between optimization and experimental results was found to be 7.45%.

Keywords: COME, IP, MFCT, optimization, PI, PN, PV

Procedia PDF Downloads 210
1505 Classification Framework of Production Planning and Scheduling Solutions from Supply Chain Management Perspective

Authors: Kwan Hee Han

Abstract:

In today’s business environments, frequent change of customer requirements is a tough challenge to manufacturing company. To cope with these challenges, a production planning and scheduling (PP&S) function might be established to provide accountability for both customer service and operational efficiency. Nowadays, many manufacturing firms have utilized PP&S software solutions to generate a realistic production plan and schedule to adapt to external changes efficiently. However, companies which consider the introduction of PP&S software solution, still have difficulties for selecting adequate solution to meet their specific needs. Since the task of PP&S is the one of major building blocks of SCM (Supply Chain Management) architecture, which deals with short term decision making in the production process of SCM, it is needed that the functionalities of PP&S should be analysed within the whole SCM process. The aim of this paper is to analyse the PP&S functionalities and its system architecture from the SCM perspective by using the criteria of level of planning hierarchy, major 4 SCM processes and problem-solving approaches, and finally propose a classification framework of PP&S solutions to facilitate the comparison among various commercial software solutions. By using proposed framework, several major PP&S solutions are classified and positioned according to their functional characteristics in this paper. By using this framework, practitioners who consider the introduction of computerized PP&S solutions in manufacturing firms can prepare evaluation and benchmarking sheets for selecting the most suitable solution with ease and in less time.

Keywords: production planning, production scheduling, supply chain management, the advanced planning system

Procedia PDF Downloads 196
1504 Smart Web Services in the Web of Things

Authors: Sekkal Nawel

Abstract:

The Web of Things (WoT), integration of smart technologies from the Internet or network to Web architecture or application, is becoming more complex, larger, and dynamic. The WoT is associated with various elements such as sensors, devices, networks, protocols, data, functionalities, and architectures to perform services for stakeholders. These services operate in the context of the interaction of stakeholders and the WoT elements. Such context is becoming a key information source from which data are of various nature and uncertain, thus leading to complex situations. In this paper, we take interest in the development of intelligent Web services. The key ingredients of this “intelligent” notion are the context diversity, the necessity of a semantic representation to manage complex situations and the capacity to reason with uncertain data. In this perspective, we introduce a multi-layered architecture based on a generic intelligent Web service model dealing with various contexts, which proactively predict future situations and reactively respond to real-time situations in order to support decision-making. For semantic context data representation, we use PR-OWL, which is a probabilistic ontology based on Multi-Entity Bayesian Networks (MEBN). PR-OWL is flexible enough to represent complex, dynamic, and uncertain contexts, the key requirements of the development for the intelligent Web services. A case study was carried out using the proposed architecture for intelligent plant watering to show the role of proactive and reactive contextual reasoning in terms of WoT.

Keywords: smart web service, the web of things, context reasoning, proactive, reactive, multi-entity bayesian networks, PR-OWL

Procedia PDF Downloads 70
1503 Logistic Regression Based Model for Predicting Students’ Academic Performance in Higher Institutions

Authors: Emmanuel Osaze Oshoiribhor, Adetokunbo MacGregor John-Otumu

Abstract:

In recent years, there has been a desire to forecast student academic achievement prior to graduation. This is to help them improve their grades, particularly for individuals with poor performance. The goal of this study is to employ supervised learning techniques to construct a predictive model for student academic achievement. Many academics have already constructed models that predict student academic achievement based on factors such as smoking, demography, culture, social media, parent educational background, parent finances, and family background, to name a few. This feature and the model employed may not have correctly classified the students in terms of their academic performance. This model is built using a logistic regression classifier with basic features such as the previous semester's course score, attendance to class, class participation, and the total number of course materials or resources the student is able to cover per semester as a prerequisite to predict if the student will perform well in future on related courses. The model outperformed other classifiers such as Naive bayes, Support vector machine (SVM), Decision Tree, Random forest, and Adaboost, returning a 96.7% accuracy. This model is available as a desktop application, allowing both instructors and students to benefit from user-friendly interfaces for predicting student academic achievement. As a result, it is recommended that both students and professors use this tool to better forecast outcomes.

Keywords: artificial intelligence, ML, logistic regression, performance, prediction

Procedia PDF Downloads 96
1502 Comparative Studies of Distributed and Aggregated Energy Storage Configurations in Direct Current Microgrids

Authors: Frimpong Kyeremeh, Albert Y. Appiah, Ben B. K. Ayawli

Abstract:

Energy storage system (ESS) is an essential part of a microgrid (MG) because of its immense benefits to the economics and the stability of MG. For a direct current (DC) MG (DCMG) in which the generating units are mostly variable renewable energy generators, DC bus voltage fluctuation is inevitable; hence ESS is vital in managing the mismatch between load demand and generation. Besides, to accrue the maximum benefits of ESS in the microgrid, there is the need for proper sizing and location of the ESSs. In this paper, a performance comparison is made between two configurations of ESS; distributed battery energy storage system (D-BESS) and an aggregated (centralized) battery energy storage system (A-BESS), on the basis of stability and operational cost for a DCMG. The configuration consists of four households with rooftop PV panels and a wind turbine. The objective is to evaluate and analyze the technical efficiencies, cost effectiveness as well as controllability of each configuration. The MG is first modelled with MATLAB Simulink then, a mathematical model is used to determine the optimal size of the BESS that minimizes the total operational cost of the MG. The performance of the two configurations would be tested with simulations. The two configurations are expected to reduce DC bus voltage fluctuations, but in the cases of voltage stability and optimal cost, the best configuration performance will be determined at the end of the research. The work is in progress, and the result would help MG designers and operators to make the best decision on the use of BESS for DCMG configurations.

Keywords: aggregated energy storage system, DC bus voltage, DC microgrid, distributed battery energy storage, stability

Procedia PDF Downloads 155
1501 Spatio-Temporal Pest Risk Analysis with ‘BioClass’

Authors: Vladimir A. Todiras

Abstract:

Spatio-temporal models provide new possibilities for real-time action in pest risk analysis. It should be noted that estimation of the possibility and probability of introduction of a pest and of its economic consequences involves many uncertainties. We present a new mapping technique that assesses pest invasion risk using online BioClass software. BioClass is a GIS tool designed to solve multiple-criteria classification and optimization problems based on fuzzy logic and level set methods. This research describes a method for predicting the potential establishment and spread of a plant pest into new areas using a case study: corn rootworm (Diabrotica spp.), tomato leaf miner (Tuta absoluta) and plum fruit moth (Grapholita funebrana). Our study demonstrated that in BioClass we can combine fuzzy logic and geographic information systems with knowledge of pest biology and environmental data to derive new information for decision making. Pests are sensitive to a warming climate, as temperature greatly affects their survival and reproductive rate and capacity. Changes have been observed in the distribution, frequency and severity of outbreaks of Helicoverpa armigera on tomato. BioClass has demonstrated to be a powerful tool for applying dynamic models and map the potential future distribution of a species, enable resource to make decisions about dangerous and invasive species management and control.

Keywords: classification, model, pest, risk

Procedia PDF Downloads 281
1500 A Framework Factors Influencing Accounting Information Systems Adoption Success

Authors: Manirath Wongsim

Abstract:

AIS plays an important role in business management, strategic and can provide assistance in all phases of decision making. Thus, many organisations needs to be seen as well adopting AIS, which is critical to a company in order to organise, manage and operate process in all sections. In order to implement AIS successfully, it is important to understand the underlying factors that influence the AIS adoption. Therefore, this research intends to study this perspective of factors influence and impact on AIS adoption’s success. The model has been designed to illustrate factors influences in AIS adoption. It also attempts to identify the critical success factors that organisations should focus on, to ensure the adoption on accounting process. This framework will be developed from case studies by collecting qualitative and quantitative data. Case study and survey methodology were adopted for this research. Case studies in two Thai- organisations were carried out. The results of the two main case studies suggested 9 factors that may have impact on in AIS adoption. Survey instrument was developed based on the findings from case studies. Two large-scale surveys were sent to selected members of Thailand Accountant, and Thailand Computer Society to further develop and test the research framework. The top three critical factors for ensuring AIS adoption were: top management commitment, steering committees, and Technical capability of AIS personnel. That is, it is now clear which factors impact in AIS adoption, and which of those factors are critical success factors for ensuring AIS adoption successes

Keywords: accounting information system, accounting information systems adoption, and inflecting AIS adoption

Procedia PDF Downloads 397
1499 Infodemic Detection on Social Media with a Multi-Dimensional Deep Learning Framework

Authors: Raymond Xu, Cindy Jingru Wang

Abstract:

Social media has become a globally connected and influencing platform. Social media data, such as tweets, can help predict the spread of pandemics and provide individuals and healthcare providers early warnings. Public psychological reactions and opinions can be efficiently monitored by AI models on the progression of dominant topics on Twitter. However, statistics show that as the coronavirus spreads, so does an infodemic of misinformation due to pandemic-related factors such as unemployment and lockdowns. Social media algorithms are often biased toward outrage by promoting content that people have an emotional reaction to and are likely to engage with. This can influence users’ attitudes and cause confusion. Therefore, social media is a double-edged sword. Combating fake news and biased content has become one of the essential tasks. This research analyzes the variety of methods used for fake news detection covering random forest, logistic regression, support vector machines, decision tree, naive Bayes, BoW, TF-IDF, LDA, CNN, RNN, LSTM, DeepFake, and hierarchical attention network. The performance of each method is analyzed. Based on these models’ achievements and limitations, a multi-dimensional AI framework is proposed to achieve higher accuracy in infodemic detection, especially pandemic-related news. The model is trained on contextual content, images, and news metadata.

Keywords: artificial intelligence, fake news detection, infodemic detection, image recognition, sentiment analysis

Procedia PDF Downloads 253
1498 Taking Learning beyond Kirkpatrick’s Levels: Applying Return on Investment Measurement in Training

Authors: Charles L. Sigmund, M. A. Aed, Lissa Graciela Rivera Picado

Abstract:

One critical component of the training development process is the evaluation of the impact and value of the program. Oftentimes, however, learning organizations bypass this phase either because they are unfamiliar with effective methods for measuring the success or effect of the training or because they believe the effort to be too time-consuming or cumbersome. As a result, most organizations that do conduct evaluation limit their scope to Kirkpatrick L1 (reaction) and L2 (learning), or at most carry through to L4 (results). In 2021 Microsoft made a strategic decision to assess the measurable and monetized impact for all training launches and designed a scalable and program-agnostic tool for providing full-scale L5 return on investment (ROI) estimates for each. In producing this measurement tool, the learning and development organization built a framework for making business prioritizations and resource allocations that is based on the projected ROI of a course. The analysis and measurement posed by this process use a combination of training data and operational metrics to calculate the effective net benefit derived from a given training effort. Business experts in the learning field generally consider a 10% ROI to be an outstanding demonstration of the value of a project. Initial findings from this work applied to a critical customer-facing program yielded an estimated ROI of more than 49%. This information directed the organization to make a more concerted and concentrated effort in this specific line of business and resulted in additional investment in the training methods and technologies being used.

Keywords: evaluation, measurement, return on investment, value

Procedia PDF Downloads 184
1497 Efficacy and Safety of Uventa Metallic Stent for Malignant and Benign Ureteral Obstruction

Authors: Deok Hyun Han

Abstract:

Objective: To explore outcomes of UventaTM metallic ureteral stent between malignant and benign ureteral obstruction. Methods: We reviewed the medical records of 90 consecutive patients who underwent Uventa stent placement for benign or malignant ureteral obstruction from December 2009 to June 2013. We evaluated the clinical outcomes, complications, and reasons and results for unexpected stent removals. Results: The median follow-up was 10.7 (0.9 – 41) months. From a total of 125 ureter units, there were 24 units with benign obstructions and 101 units with malignant obstructions. Initial technical successes were achieved in all patients. The overall success rate was 70.8% with benign obstructions and 84.2% with malignant obstructions. The major reasons for treatment failure were stent migration (12.5%) in benign and tumor progression (11.9%) in malignant obstructions. The overall complication rate was similar between benign and malignant obstructions (58.3% and 42.6%), but severe complications, which are Clavien grade 3 or more, occurred in 41.7% of benign and 6.9% of malignant obstructions. The most common complications were stent migration (25.0%) in benign obstructions and persistent pain (14.9%) in malignant obstructions. The stent removal was done in 16 units; nine units that were removed by endoscopy and seven units were by open surgery. Conclusions: In malignant ureteral obstructions, the Uventa stent showed favorable outcomes with high success rate and acceptable complication rate. However, in benign ureteral obstructions, overall success rate and complication rate were less favorable. Malignant ureteral obstruction seems to be appropriate indication of Uventa stent placement. However, in chronic diffuse benign ureteral obstructions the decision of placement of Uventa stent has to be careful.

Keywords: cause, complication, ureteral obstruction, metal stent

Procedia PDF Downloads 202
1496 The Issue of Affordability in Housing and Implications for the Regional Planning of Drainage Infrastructure: A Case of Affordability as Part of Inclusive Decision Making

Authors: Kwadwo Afari Gyan

Abstract:

Cities are growing at unprecedented levels. Meanwhile, governments in the Global South are already overwhelmed by this growth and are unable to provide infrastructure proactively as expected. As a result, urban residents resort to providing their own infrastructure, such as drainage systems, as part of self-built housing development. Their small-scale, incremental housing practices, which often represent the formation of dense and diverse housing types, styles, and ages, have been identified to affect the planning of drainage systems at the regional scale. Such developments reflect the varied, affordable responses as part of a collective effort to curb regional problems, specifically flooding in this case. However, while some are included in this collective action, others are excluded as they are unable to afford to be included. This phenomenon, in addition to the formation of new autonomous localities, has led to challenges in mitigating flooding and has affected resilience to climate change. Using a qualitative approach, this paper explores how the mismatch between housing development, which occurs at an individual scale, and drainage infrastructure, which is provided at a regional scale, affects a regional effort to mitigate flooding in Tema, Ghana. It seeks to explore and reveal a relationship between affordability and inclusiveness. It also explores how density and diversity influence public infrastructure provision and their connection with affordability.

Keywords: climate change, affordability, inclusivity, equity, contextualization, regionalism

Procedia PDF Downloads 92
1495 A Dynamic Solution Approach for Heart Disease Prediction

Authors: Walid Moudani

Abstract:

The healthcare environment is generally perceived as being information rich yet knowledge poor. However, there is a lack of effective analysis tools to discover hidden relationships and trends in data. In fact, valuable knowledge can be discovered from application of data mining techniques in healthcare system. In this study, a proficient methodology for the extraction of significant patterns from the coronary heart disease warehouses for heart attack prediction, which unfortunately continues to be a leading cause of mortality in the whole world, has been presented. For this purpose, we propose to enumerate dynamically the optimal subsets of the reduced features of high interest by using rough sets technique associated to dynamic programming. Therefore, we propose to validate the classification using Random Forest (RF) decision tree to identify the risky heart disease cases. This work is based on a large amount of data collected from several clinical institutions based on the medical profile of patient. Moreover, the experts’ knowledge in this field has been taken into consideration in order to define the disease, its risk factors, and to establish significant knowledge relationships among the medical factors. A computer-aided system is developed for this purpose based on a population of 525 adults. The performance of the proposed model is analyzed and evaluated based on set of benchmark techniques applied in this classification problem.

Keywords: multi-classifier decisions tree, features reduction, dynamic programming, rough sets

Procedia PDF Downloads 410
1494 Advanced Combinatorial Method for Solving Complex Fault Trees

Authors: José de Jesús Rivero Oliva, Jesús Salomón Llanes, Manuel Perdomo Ojeda, Antonio Torres Valle

Abstract:

Combinatorial explosion is a common problem to both predominant methods for solving fault trees: Minimal Cut Set (MCS) approach and Binary Decision Diagram (BDD). High memory consumption impedes the complete solution of very complex fault trees. Only approximated non-conservative solutions are possible in these cases using truncation or other simplification techniques. The paper proposes a method (CSolv+) for solving complex fault trees, without any possibility of combinatorial explosion. Each individual MCS is immediately discarded after its contribution to the basic events importance measures and the Top gate Upper Bound Probability (TUBP) has been accounted. An estimation of the Top gate Exact Probability (TEP) is also provided. Therefore, running in a computer cluster, CSolv+ will guarantee the complete solution of complex fault trees. It was successfully applied to 40 fault trees from the Aralia fault trees database, performing the evaluation of the top gate probability, the 1000 Significant MCSs (SMCS), and the Fussell-Vesely, RRW and RAW importance measures for all basic events. The high complexity fault tree nus9601 was solved with truncation probabilities from 10-²¹ to 10-²⁷ just to limit the execution time. The solution corresponding to 10-²⁷ evaluated 3.530.592.796 MCSs in 3 hours and 15 minutes.

Keywords: system reliability analysis, probabilistic risk assessment, fault tree analysis, basic events importance measures

Procedia PDF Downloads 45
1493 Information Management Approach in the Prediction of Acute Appendicitis

Authors: Ahmad Shahin, Walid Moudani, Ali Bekraki

Abstract:

This research aims at presenting a predictive data mining model to handle an accurate diagnosis of acute appendicitis with patients for the purpose of maximizing the health service quality, minimizing morbidity/mortality, and reducing cost. However, acute appendicitis is the most common disease which requires timely accurate diagnosis and needs surgical intervention. Although the treatment of acute appendicitis is simple and straightforward, its diagnosis is still difficult because no single sign, symptom, laboratory or image examination accurately confirms the diagnosis of acute appendicitis in all cases. This contributes in increasing morbidity and negative appendectomy. In this study, the authors propose to generate an accurate model in prediction of patients with acute appendicitis which is based, firstly, on the segmentation technique associated to ABC algorithm to segment the patients; secondly, on applying fuzzy logic to process the massive volume of heterogeneous and noisy data (age, sex, fever, white blood cell, neutrophilia, CRP, urine, ultrasound, CT, appendectomy, etc.) in order to express knowledge and analyze the relationships among data in a comprehensive manner; and thirdly, on applying dynamic programming technique to reduce the number of data attributes. The proposed model is evaluated based on a set of benchmark techniques and even on a set of benchmark classification problems of osteoporosis, diabetes and heart obtained from the UCI data and other data sources.

Keywords: healthcare management, acute appendicitis, data mining, classification, decision tree

Procedia PDF Downloads 349
1492 The Ethics of Organ Donation and Transplantation: Philosophical Perspectives

Authors: Elijah Ojochonu Okpanachi

Abstract:

This paper explores the ethical dimensions of organ donation and transplantation through various philosophical lenses, including utilitarianism, deontology, and virtue ethics. As advancements in medical technology increase the possibilities for life-saving transplants, ethical dilemmas surrounding consent, allocation, and the commodification of human organs have become increasingly pertinent. Utilitarian perspectives emphasize maximizing overall well-being, raising questions about how to equitably allocate limited resources. Deontological approaches focus on the moral obligations of individuals and institutions, particularly regarding informed consent and the sanctity of the human body. Virtue ethics encourages a consideration of the character and intentions of donors and medical professionals, fostering a holistic understanding of the ethical landscape. By analyzing real-world case studies and ethical frameworks, this study highlights the complexities in decision-making processes related to organ donation. It addresses issues such as presumed consent, living donations, and the societal implications of organ markets. Ultimately, this paper aims to contribute to the ongoing discourse on organ donation ethics, advocating for policies that respect individual rights while promoting altruism and social responsibility. Through a philosophical lens, we seek to propose a balanced approach that honors both the dignity of individuals and the urgent need for organ transplants in modern medicine.

Keywords: organ donation, medical technology, virtue ethics, Altruism

Procedia PDF Downloads 27
1491 Organizational Culture and Organizational Performance of Adama Beverages Ltd, Adamawa State, Nigeria

Authors: Stephen Pembi, Samuel K. Msheliza, Helen A. Andow

Abstract:

Organizational culture is very important in the organization because it enhances organizational performance and serves as a sense of making and control mechanism that guides and shapes the attitude and behaviour of employees. However, organizational culture issues are frequently disregarded in lieu of activities that may or may not have a good impact on performance. This study examines the relationship between organizational culture and organizational performance of Adama Beverages Ltd, Adamawa State. The study employed an explanatory survey research design with a questionnaire as a source of data collection. One hundred and thirty-five copies of the questionnaire were administered using the convenience method of sampling, out of which one hundred and twenty were retrieved and well answered. The data collected were subjected to the Pearson product-moment correlation technique to test the hypotheses of the study using SPSS. The overall results signify that organizational culture has a significant positive relationship with organizational performance. The multiple regression results show that mission, adaptability, and involvement have a significant positive influence on organizational performance, while consistency has a significant negative influence on organizational performance. Therefore, this study concluded that organizational culture is a strong determinant of organizational performance in Adama Beverages Ltd, Adamawa State. The study recommends that the level of employee input into decision-making, flexibility in responding to changes in the business environment, consistency with values and traditions, and organizational performance should all be maintained by Adama Beverages Ltd.

Keywords: adaptability, consistency, involvement, mission, organizational performance

Procedia PDF Downloads 93
1490 Data-Driven Performance Evaluation of Surgical Doctors Based on Fuzzy Analytic Hierarchy Processes

Authors: Yuguang Gao, Qiang Yang, Yanpeng Zhang, Mingtao Deng

Abstract:

To enhance the safety, quality and efficiency of healthcare services provided by surgical doctors, we propose a comprehensive approach to the performance evaluation of individual doctors by incorporating insights from performance data as well as views of different stakeholders in the hospital. Exploratory factor analysis was first performed on collective multidimensional performance data of surgical doctors, where key factors were extracted that encompass assessment of professional experience and service performance. A two-level indicator system was then constructed, for which we developed a weighted interval-valued spherical fuzzy analytic hierarchy process to analyze the relative importance of the indicators while handling subjectivity and disparity in the decision-making of multiple parties involved. Our analytical results reveal that, for the key factors identified as instrumental for evaluating surgical doctors’ performance, the overall importance of clinical workload and complexity of service are valued more than capacity of service and professional experience, while the efficiency of resource consumption ranks comparatively the lowest in importance. We also provide a retrospective case study to illustrate the effectiveness and robustness of our quantitative evaluation model by assigning meaningful performance ratings to individual doctors based on the weights developed through our approach.

Keywords: analytic hierarchy processes, factor analysis, fuzzy logic, performance evaluation

Procedia PDF Downloads 56
1489 A Framework for University Social Responsibility and Sustainability: The Case of South Valley University, Egypt

Authors: Alaa Tag-Eldin Mohamed

Abstract:

The environmental, cultural, social, and technological changes have led higher education institutes to question their traditional roles. Many declarations and frameworks highlight the importance of fulfilling social responsibility of higher education institutes. The study aims at developing a framework of university social responsibility and sustainability (USR&S) with focus on South Valley University (SVU) as a case study of Egyptian Universities. The study used meetings with 12 vice deans of community services and environmental affairs on social responsibility and environmental issues. The proposed framework integrates social responsibility with strategic management through the establishment and maintenance of the vision, mission, values, goals and management systems; elaboration of policies; provision of actions; evaluation of services and development of social collaboration with stakeholders to meet current and future needs of the community and environment. The framework links between different stakeholders internally and externally using communication and reporting tools. The results show that SVU integrates social responsibility and sustainability in its strategic plans. It has policies and actions however fragmented and lack of appropriate structure and budgeting. The proposed framework could be valuable for researchers and decision makers of the Egyptian Universities. The study proposed recommendations and highlighted building on the results and conducting future research.

Keywords: corporate social responsibility (CSR), south valley university, sustainable university, university social responsibility and sustainability (USR&S)

Procedia PDF Downloads 346