Search results for: adsorption isotherm models
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7370

Search results for: adsorption isotherm models

4790 An Informative Marketing Platform: Methodology and Architecture

Authors: Martina Marinelli, Samanta Vellante, Francesco Pilotti, Daniele Di Valerio, Gaetanino Paolone

Abstract:

Any development in web marketing technology requires changes in information engineering to identify instruments and techniques suitable for the production of software applications for informative marketing. Moreover, for large web solutions, designing an interface that enables human interactions is a complex process that must bridge between informative marketing requirements and the developed solution. A user-friendly interface in web marketing applications is crucial for a successful business. The paper introduces mkInfo - a software platform that implements informative marketing. Informative marketing is a new interpretation of marketing which places the information at the center of every marketing action. The creative team includes software engineering researchers who have recently authored an article on automatic code generation. The authors have created the mkInfo software platform to generate informative marketing web applications. For each web application, it is possible to automatically implement an opt in page, a landing page, a sales page, and a thank you page: one only needs to insert the content. mkInfo implements an autoresponder to send mail according to a predetermined schedule. The mkInfo platform also includes e-commerce for a product or service. The stakeholder can access any opt-in page and get basic information about a product or service. If he wants to know more, he will need to provide an e-mail address to access a landing page that will generate an e-mail sequence. It will provide him with complete information about the product or the service. From this point on, the stakeholder becomes a user and is now able to purchase the product or related services through the mkInfo platform. This paper suggests a possible definition for Informative Marketing, illustrates its basic principles, and finally details the mkInfo platform that implements it. This paper also offers some Informative Marketing models, which are implemented in the mkInfo platform. Informative marketing can be applied to products or services. It is necessary to realize a web application for each product or service. The mkInfo platform enables the product or the service producer to send information concerning a specific product or service to all stakeholders. In conclusion, the technical contributions of this paper are: a different interpretation of marketing based on information; a modular architecture for web applications, particularly for one with standard features such as information storage, exchange, and delivery; multiple models to implement informative marketing; a software platform enabling the implementation of such models in a web application. Future research aims to enable stakeholders to provide information about a product or a service so that the information gathered about a product or a service includes both the producer’s and the stakeholders' point of view. The purpose is to create an all-inclusive management system of the knowledge regarding a specific product or service: a system that includes everything about the product or service and is able to address even unexpected questions.

Keywords: informative marketing, opt in page, software platform, web application

Procedia PDF Downloads 114
4789 Health Care using Queuing Theory

Authors: S. Vadivukkarasi, K. Karthi, M. Karthick, C. Dinesh, S. Santhosh, A. Yogaraj

Abstract:

The appointment system was designed to minimize patient’s idle time overlooking patients waiting time in hospitals. This is no longer valid in today’s consumer oriented society. Long waiting times for treatment in the outpatient department followed by short consultations has long been a complaint. Nowadays, customers use waiting time as a decisive factor in choosing a service provider. Queuing theory constitutes a very powerful tool because queuing models require relatively little data and are simple and fast to use. Because of this simplicity and speed, modelers can be used to quickly evaluate and compare various alternatives for providing service. The application of queuing models in the analysis of health care systems is increasingly accepted by health care decision makers. Timely access to care is a key component of high-quality health care. However, patient delays are prevalent throughout health care systems, resulting in dissatisfaction and adverse clinical consequences for patients as well as potentially higher costs and wasted capacity for providers. Arguably, the most critical delays for health care are the ones associated with health care emergencies. The allocation of resources can be divided into three general areas: bed management, staff management, and room facility management. Effective and efficient patient flow is indicated by high patient throughput, low patient waiting times, a short length of stay at the hospital and overtime, while simultaneously maintaining adequate staff utilization rates and low patient’s idle times.

Keywords: appointment system, patient scheduling, bed management, queueing calculation, system analysis

Procedia PDF Downloads 284
4788 Integrating Radar Sensors with an Autonomous Vehicle Simulator for an Enhanced Smart Parking Management System

Authors: Mohamed Gazzeh, Bradley Null, Fethi Tlili, Hichem Besbes

Abstract:

The burgeoning global ownership of personal vehicles has posed a significant strain on urban infrastructure, notably parking facilities, leading to traffic congestion and environmental concerns. Effective parking management systems (PMS) are indispensable for optimizing urban traffic flow and reducing emissions. The most commonly deployed systems nowadays rely on computer vision technology. This paper explores the integration of radar sensors and simulation in the context of smart parking management. We concentrate on radar sensors due to their versatility and utility in automotive applications, which extends to PMS. Additionally, radar sensors play a crucial role in driver assistance systems and autonomous vehicle development. However, the resource-intensive nature of radar data collection for algorithm development and testing necessitates innovative solutions. Simulation, particularly the monoDrive simulator, an internal development tool used by NI the Test and Measurement division of Emerson, offers a practical means to overcome this challenge. The primary objectives of this study encompass simulating radar sensors to generate a substantial dataset for algorithm development, testing, and, critically, assessing the transferability of models between simulated and real radar data. We focus on occupancy detection in parking as a practical use case, categorizing each parking space as vacant or occupied. The simulation approach using monoDrive enables algorithm validation and reliability assessment for virtual radar sensors. It meticulously designed various parking scenarios, involving manual measurements of parking spot coordinates, orientations, and the utilization of TI AWR1843 radar. To create a diverse dataset, we generated 4950 scenarios, comprising a total of 455,400 parking spots. This extensive dataset encompasses radar configuration details, ground truth occupancy information, radar detections, and associated object attributes such as range, azimuth, elevation, radar cross-section, and velocity data. The paper also addresses the intricacies and challenges of real-world radar data collection, highlighting the advantages of simulation in producing radar data for parking lot applications. We developed classification models based on Support Vector Machines (SVM) and Density-Based Spatial Clustering of Applications with Noise (DBSCAN), exclusively trained and evaluated on simulated data. Subsequently, we applied these models to real-world data, comparing their performance against the monoDrive dataset. The study demonstrates the feasibility of transferring models from a simulated environment to real-world applications, achieving an impressive accuracy score of 92% using only one radar sensor. This finding underscores the potential of radar sensors and simulation in the development of smart parking management systems, offering significant benefits for improving urban mobility and reducing environmental impact. The integration of radar sensors and simulation represents a promising avenue for enhancing smart parking management systems, addressing the challenges posed by the exponential growth in personal vehicle ownership. This research contributes valuable insights into the practicality of using simulated radar data in real-world applications and underscores the role of radar technology in advancing urban sustainability.

Keywords: autonomous vehicle simulator, FMCW radar sensors, occupancy detection, smart parking management, transferability of models

Procedia PDF Downloads 65
4787 Empowering Transformers for Evidence-Based Medicine

Authors: Jinan Fiaidhi, Hashmath Shaik

Abstract:

Breaking the barrier for practicing evidence-based medicine relies on effective methods for rapidly identifying relevant evidence from the body of biomedical literature. An important challenge confronted by medical practitioners is the long time needed to browse, filter, summarize and compile information from different medical resources. Deep learning can help in solving this based on automatic question answering (Q&A) and transformers. However, Q&A and transformer technologies are not trained to answer clinical queries that can be used for evidence-based practice, nor can they respond to structured clinical questioning protocols like PICO (Patient/Problem, Intervention, Comparison and Outcome). This article describes the use of deep learning techniques for Q&A that are based on transformer models like BERT and GPT to answer PICO clinical questions that can be used for evidence-based practice extracted from sound medical research resources like PubMed. We are reporting acceptable clinical answers that are supported by findings from PubMed. Our transformer methods are reaching an acceptable state-of-the-art performance based on two staged bootstrapping processes involving filtering relevant articles followed by identifying articles that support the requested outcome expressed by the PICO question. Moreover, we are also reporting experimentations to empower our bootstrapping techniques with patch attention to the most important keywords in the clinical case and the PICO questions. Our bootstrapped patched with attention is showing relevancy of the evidence collected based on entropy metrics.

Keywords: automatic question answering, PICO questions, evidence-based medicine, generative models, LLM transformers

Procedia PDF Downloads 22
4786 Modeling and Numerical Simulation of Heat Transfer and Internal Loads at Insulating Glass Units

Authors: Nina Penkova, Kalin Krumov, Liliana Zashcova, Ivan Kassabov

Abstract:

The insulating glass units (IGU) are widely used in the advanced and renovated buildings in order to reduce the energy for heating and cooling. Rules for the choice of IGU to ensure energy efficiency and thermal comfort in the indoor space are well known. The existing of internal loads - gage or vacuum pressure in the hermetized gas space, requires additional attention at the design of the facades. The internal loads appear at variations of the altitude, meteorological pressure and gas temperature according to the same at the process of sealing. The gas temperature depends on the presence of coatings, coating position in the transparent multi-layer system, IGU geometry and space orientation, its fixing on the facades and varies with the climate conditions. An algorithm for modeling and numerical simulation of thermal fields and internal pressure in the gas cavity at insulating glass units as function of the meteorological conditions is developed. It includes models of the radiation heat transfer in solar and infrared wave length, indoor and outdoor convection heat transfer and free convection in the hermetized gas space, assuming the gas as compressible. The algorithm allows prediction of temperature and pressure stratification in the gas domain of the IGU at different fixing system. The models are validated by comparison of the numerical results with experimental data obtained by Hot-box testing. Numerical calculations and estimation of 3D temperature, fluid flow fields, thermal performances and internal loads at IGU in window system are implemented.

Keywords: insulating glass units, thermal loads, internal pressure, CFD analysis

Procedia PDF Downloads 259
4785 Internet of Things as a Source of Opportunities for Entrepreneurs

Authors: Svetlana Gudkova

Abstract:

The Internet of Things experiences a rapid growth bringing inevitable changes into many spheres of human activities. As the Internet has changed the social and business landscape, IoT as its extension, can bring much more profound changes in economic value creation and competitiveness of the economies. It has been already recognized as the next industrial revolution. However, the development of IoT is in a great extent stimulated by the entrepreneurial activity. To expand and reach its full potential it requires proactive entrepreneurs, who explore the potential and create innovative ideas pushing the boundaries of IoT technologies' application further. The goal of the research is to analyze, how entrepreneurs utilize the opportunities created by IoT and how do they stimulate the development of IoT through discovering of new ways of generating economic value and creating opportunities, which attract other entrepreneurs. The qualitative research methods have been applied to prepare the case studies. Entrepreneurs are recognized as an engine of economic growth. They introduce innovative products and services into the market through the creation of a new combination of the existing resources and utilizing new knowledge. Entrepreneurs not only create economic value but what is more important, they challenge the existing business models and invent new ways of value creation. Through identification and exploitation of entrepreneurial opportunities, they create new opportunities for other entrepreneurs. It makes the industry more attractive to other profit/innovation-driven start-ups. IoT creates numerous opportunities for entrepreneurs in the different industries. Smart cities, healthcare, manufacturing, retail, agriculture, smart vehicles and smart buildings benefit a lot from IoT-based breakthrough innovations introduced by entrepreneurs. They reinvented successfully the business models and created new entrepreneurial opportunities for other start-ups to introduce next innovations.

Keywords: entrepreneurship, internet of things, breakthrough innovations, start-ups

Procedia PDF Downloads 184
4784 Managing Data from One Hundred Thousand Internet of Things Devices Globally for Mining Insights

Authors: Julian Wise

Abstract:

Newcrest Mining is one of the world’s top five gold and rare earth mining organizations by production, reserves and market capitalization in the world. This paper elaborates on the data acquisition processes employed by Newcrest in collaboration with Fortune 500 listed organization, Insight Enterprises, to standardize machine learning solutions which process data from over a hundred thousand distributed Internet of Things (IoT) devices located at mine sites globally. Through the utilization of software architecture cloud technologies and edge computing, the technological developments enable for standardized processes of machine learning applications to influence the strategic optimization of mineral processing. Target objectives of the machine learning optimizations include time savings on mineral processing, production efficiencies, risk identification, and increased production throughput. The data acquired and utilized for predictive modelling is processed through edge computing by resources collectively stored within a data lake. Being involved in the digital transformation has necessitated the standardization software architecture to manage the machine learning models submitted by vendors, to ensure effective automation and continuous improvements to the mineral process models. Operating at scale, the system processes hundreds of gigabytes of data per day from distributed mine sites across the globe, for the purposes of increased improved worker safety, and production efficiency through big data applications.

Keywords: mineral technology, big data, machine learning operations, data lake

Procedia PDF Downloads 97
4783 Aggregating Buyers and Sellers for E-Commerce: How Demand and Supply Meet in Fairs

Authors: Pierluigi Gallo, Francesco Randazzo, Ignazio Gallo

Abstract:

In recent years, many new and interesting models of successful online business have been developed. Many of these are based on the competition between users, such as online auctions, where the product price is not fixed and tends to rise. Other models, including group-buying, are based on cooperation between users, characterized by a dynamic price of the product that tends to go down. There is not yet a business model in which both sellers and buyers are grouped in order to negotiate on a specific product or service. The present study investigates a new extension of the group-buying model, called fair, which allows aggregation of demand and supply for price optimization, in a cooperative manner. Additionally, our system also aggregates products and destinations for shipping optimization. We introduced the following new relevant input parameters in order to implement a double-side aggregation: (a) price-quantity curves provided by the seller; (b) waiting time, that is, the longer buyers wait, the greater discount they get; (c) payment time, which determines if the buyer pays before, during or after receiving the product; (d) the distance between the place where products are available and the place of shipment, provided in advance by the buyer or dynamically suggested by the system. To analyze the proposed model we implemented a system prototype and a simulator that allows studying effects of changing some input parameters. We analyzed the dynamic price model in fairs having one single seller and a combination of selected sellers. The results are very encouraging and motivate further investigation on this topic.

Keywords: auction, aggregation, fair, group buying, social buying

Procedia PDF Downloads 282
4782 Evaluation of Heat Transfer and Entropy Generation by Al2O3-Water Nanofluid

Authors: Houda Jalali, Hassan Abbassi

Abstract:

In this numerical work, natural convection and entropy generation of Al2O3–water nanofluid in square cavity have been studied. A two-dimensional steady laminar natural convection in a differentially heated square cavity of length L, filled with a nanofluid is investigated numerically. The horizontal walls are considered adiabatic. Vertical walls corresponding to x=0 and x=L are respectively maintained at hot temperature, Th and cold temperature, Tc. The resolution is performed by the CFD code "FLUENT" in combination with GAMBIT as mesh generator. These simulations are performed by maintaining the Rayleigh numbers varied as 103 ≤ Ra ≤ 106, while the solid volume fraction varied from 1% to 5%, the particle size is fixed at dp=33 nm and a range of the temperature from 20 to 70 °C. We used models of thermophysical nanofluids properties based on experimental measurements for studying the effect of adding solid particle into water in natural convection heat transfer and entropy generation of nanofluid. Such as models of thermal conductivity and dynamic viscosity which are dependent on solid volume fraction, particle size and temperature. The average Nusselt number is calculated at the hot wall of the cavity in a different solid volume fraction. The most important results is that at low temperatures (less than 40 °C), the addition of nanosolids Al2O3 into water leads to a decrease in heat transfer and entropy generation instead of the expected increase, whereas at high temperature, heat transfer and entropy generation increase with the addition of nanosolids. This behavior is due to the contradictory effects of viscosity and thermal conductivity of the nanofluid. These effects are discussed in this work.

Keywords: entropy generation, heat transfer, nanofluid, natural convection

Procedia PDF Downloads 257
4781 Dehydration of Glycerol to Acrolein with Solid Acid Catalysts

Authors: Lin Huang, Bo Wang, Armando Borgna

Abstract:

Dehydration of glycerol to acrolein was conducted with solid acid catalysts in liquid phase in a batch reactor and in gas phase in a fix-bed reactor, respectively. In the liquid-phase reaction, ZSM-5, H3PO4-modified ZSM-5 and heteropolyacids including H3PW12O40•xH2O (HPW) and Cs2.5H0.5PW12O40 (CsPW) were studied as catalysts. High temperatures and high boiling point solvents such as sulfolane improved the selectivity to acrolein through suppressing the formation of polyglycerols and coke. Catalytic results and temperature-programmed desorption of ammonia showed that the yield of acrolein increased with increasing catalyst acidity within the range of weak acid strength. Weak acid sites favored the selectivity to acrolein whereas strong acid sites promoted the formation of coke. ZSM-5 possessing only acid sites led to a high acrolein yield, while heteropolyacid catalysts with strong acid sites produced a low acrolein yield. In the gas-phase reaction, HPW and CsPW supported on metal oxides such as SiO2, γ-Al2O3, SiO2-Al2O3, ZrO2 and silicate TUD-1 were studied as catalysts. HPW/TUD-1 was most active for the production of acrolein, followed by HPW/SiO2. An acrolein yield of 61 % was obtained over HPW/TUD-1. X-ray diffraction study suggested that HPW and CsPW were stable and more dispersed on SiO2, silicate TUD-1 and SiO2-Al2O3. It was found that the structures of HPW and CsPW were destroyed by interaction with γ-Al2O3 and ZrO2. Compared to CsPW/TUD-1, the higher acrolein yield with HPW/TUD-1 may be attributed to more Brønsted acid sites on HPW/TUD-1, based on preliminary pyridine adsorption IR study.

Keywords: dehydration, glycerol, acrolein, solid acid catalysts, gas-phase, liquid-phase

Procedia PDF Downloads 252
4780 Research the Causes of Defects and Injuries of Reinforced Concrete and Stone Construction

Authors: Akaki Qatamidze

Abstract:

Implementation of the project will be a step forward in terms of reliability in Georgia and the improvement of the construction and the development of construction. Completion of the project is expected to result in a complete knowledge, which is expressed in concrete and stone structures of assessing the technical condition of the processing. This method is based on a detailed examination of the structure, in order to establish the injuries and the elimination of the possibility of changing the structural scheme of the new requirements and architectural preservationists. Reinforced concrete and stone structures research project carried out in a systematic analysis of the important approach is to optimize the process of research and development of new knowledge in the neighboring areas. In addition, the problem of physical and mathematical models of rational consent, the main pillar of the physical (in-situ) data and mathematical calculation models and physical experiments are used only for the calculation model specification and verification. Reinforced concrete and stone construction defects and failures the causes of the proposed research to enhance the effectiveness of their maximum automation capabilities and expenditure of resources to reduce the recommended system analysis of the methodological concept-based approach, as modern science and technology major particularity of one, it will allow all family structures to be identified for the same work stages and procedures, which makes it possible to exclude subjectivity and addresses the problem of the optimal direction. It discussed the methodology of the project and to establish a major step forward in the construction trades and practical assistance to engineers, supervisors, and technical experts in the construction of the settlement of the problem.

Keywords: building, reinforced concrete, expertise, stone structures

Procedia PDF Downloads 320
4779 Numerical Simulation of Waves Interaction with a Free Floating Body by MPS Method

Authors: Guoyu Wang, Meilian Zhang, Chunhui LI, Bing Ren

Abstract:

In recent decades, a variety of floating structures have played a crucial role in ocean and marine engineering, such as ships, offshore platforms, floating breakwaters, fish farms, floating airports, etc. It is common for floating structures to suffer from loadings under waves, and the responses of the structures mounted in marine environments have a significant relation to the wave impacts. The interaction between surface waves and floating structures is one of the important issues in ship or marine structure design to increase performance and efficiency. With the progress of computational fluid dynamics, a number of numerical models based on the NS equations in the time domain have been developed to explore the above problem, such as the finite difference method or the finite volume method. Those traditional numerical simulation techniques for moving bodies are grid-based, which may encounter some difficulties when treating a large free surface deformation and a moving boundary. In these models, the moving structures in a Lagrangian formulation need to be appropriately described in grids, and the special treatment of the moving boundary is inevitable. Nevertheless, in the mesh-based models, the movement of the grid near the structure or the communication between the moving Lagrangian structure and Eulerian meshes will increase the algorithm complexity. Fortunately, these challenges can be avoided by the meshless particle methods. In the present study, a moving particle semi-implicit model is explored for the numerical simulation of fluid–structure interaction with surface flows, especially for coupling of fluid and moving rigid body. The equivalent momentum transfer method is proposed and derived for the coupling of fluid and rigid moving body. The structure is discretized into a group of solid particles, which are assumed as fluid particles involved in solving the NS equation altogether with the surrounding fluid particles. The momentum conservation is ensured by the transfer from those fluid particles to the corresponding solid particles. Then, the position of the solid particles is updated to keep the initial shape of the structure. Using the proposed method, the motions of a free-floating body in regular waves are numerically studied. The wave surface evaluation and the dynamic response of the floating body are presented. There is good agreement when the numerical results, such as the sway, heave, and roll of the floating body, are compared with the experimental and other numerical data. It is demonstrated that the presented MPS model is effective for the numerical simulation of fluid-structure interaction.

Keywords: floating body, fluid structure interaction, MPS, particle method, waves

Procedia PDF Downloads 57
4778 Chronic Hypertension, Aquaporin and Hydraulic Conductivity: A Perspective on Pathological Connections

Authors: Chirag Raval, Jimmy Toussaint, Tieuvi Nguyen, Hadi Fadaifard, George Wolberg, Steven Quarfordt, Kung-ming Jan, David S. Rumschitzki

Abstract:

Numerous studies examine aquaporins’ role in osmotic water transport in various systems but virtually none focus on aquaporins’ role in hydrostatically-driven water transport involving mammalian cells save for our laboratory’s recent study of aortic endothelial cells. Here we investigate aquaporin-1 expression and function in the aortic endothelium in two high-renin rat models of hypertension, the spontaneously hypertensive genomically altered Wystar-Kyoto rat variant and Sprague-Dawley rats made hypertensive by two kidney, one clip Goldblatt surgery. We measured aquaporin-1 expression in aortic endothelial cells from whole rat aortas by quantitative immunohistochemistry, and function by measuring the pressure driven hydraulic conductivities of excised rat aortas with both intact and denuded endothelia on the same vessel. We use them to calculate the effective intimal hydraulic conductivity, which is a combination of endothelial and subendothelial components. We observed well-correlated enhancements in aquaporin-1 expression and function in both hypertensive rat models as well as in aortas from normotensive rats whose expression was upregulated by 2h forskolin treatment. Upregulated aquaporin-1 expression and function may be a response to hypertension that critically determines conduit artery vessel wall viability and long-term susceptibility to atherosclerosis. Numerous studies examine aquaporins’ role in osmotic water transport in various systems but virtually none focus on aquaporins’ role in hydrostatically-driven water transport involving mammalian cells save for our laboratory’s recent study of aortic endothelial cells. Here we investigate aquaporin-1 expression and function in the aortic endothelium in two high-renin rat models of hypertension, the spontaneously hypertensive genomically altered Wystar-Kyoto rat variant and Sprague-Dawley rats made hypertensive by two kidney, one clip Goldblatt surgery. We measured aquaporin-1 expression in aortic endothelial cells from whole rat aortas by quantitative immunohistochemistry, and function by measuring the pressure driven hydraulic conductivities of excised rat aortas with both intact and denuded endothelia on the same vessel. We use them to calculate the effective intimal hydraulic conductivity, which is a combination of endothelial and subendothelial components. We observed well-correlated enhancements in aquaporin-1 expression and function in both hypertensive rat models as well as in aortas from normotensive rats whose expression was upregulated by 2h forskolin treatment. Upregulated aquaporin-1 expression and function may be a response to hypertension that critically determines conduit artery vessel wall viability and long-term susceptibility to atherosclerosis.

Keywords: acute hypertension, aquaporin-1, hydraulic conductivity, hydrostatic pressure, aortic endothelial cells, transcellular flow

Procedia PDF Downloads 214
4777 Modeling Standpipe Pressure Using Multivariable Regression Analysis by Combining Drilling Parameters and a Herschel-Bulkley Model

Authors: Seydou Sinde

Abstract:

The aims of this paper are to formulate mathematical expressions that can be used to estimate the standpipe pressure (SPP). The developed formulas take into account the main factors that, directly or indirectly, affect the behavior of SPP values. Fluid rheology and well hydraulics are some of these essential factors. Mud Plastic viscosity, yield point, flow power, consistency index, flow rate, drillstring, and annular geometries are represented by the frictional pressure (Pf), which is one of the input independent parameters and is calculated, in this paper, using Herschel-Bulkley rheological model. Other input independent parameters include the rate of penetration (ROP), applied load or weight on the bit (WOB), bit revolutions per minute (RPM), bit torque (TRQ), and hole inclination and direction coupled in the hole curvature or dogleg (DL). The technique of repeating parameters and Buckingham PI theorem are used to reduce the number of the input independent parameters into the dimensionless revolutions per minute (RPMd), the dimensionless torque (TRQd), and the dogleg, which is already in the dimensionless form of radians. Multivariable linear and polynomial regression technique using PTC Mathcad Prime 4.0 is used to analyze and determine the exact relationships between the dependent parameter, which is SPP, and the remaining three dimensionless groups. Three models proved sufficiently satisfactory to estimate the standpipe pressure: multivariable linear regression model 1 containing three regression coefficients for vertical wells; multivariable linear regression model 2 containing four regression coefficients for deviated wells; and multivariable polynomial quadratic regression model containing six regression coefficients for both vertical and deviated wells. Although that the linear regression model 2 (with four coefficients) is relatively more complex and contains an additional term over the linear regression model 1 (with three coefficients), the former did not really add significant improvements to the later except for some minor values. Thus, the effect of the hole curvature or dogleg is insignificant and can be omitted from the input independent parameters without significant losses of accuracy. The polynomial quadratic regression model is considered the most accurate model due to its relatively higher accuracy for most of the cases. Data of nine wells from the Middle East were used to run the developed models with satisfactory results provided by all of them, even if the multivariable polynomial quadratic regression model gave the best and most accurate results. Development of these models is useful not only to monitor and predict, with accuracy, the values of SPP but also to early control and check for the integrity of the well hydraulics as well as to take the corrective actions should any unexpected problems appear, such as pipe washouts, jet plugging, excessive mud losses, fluid gains, kicks, etc.

Keywords: standpipe, pressure, hydraulics, nondimensionalization, parameters, regression

Procedia PDF Downloads 69
4776 In-Silico Fusion of Bacillus Licheniformis Chitin Deacetylase with Chitin Binding Domains from Chitinases

Authors: Keyur Raval, Steffen Krohn, Bruno Moerschbacher

Abstract:

Chitin, the biopolymer of the N-acetylglucosamine, is the most abundant biopolymer on the planet after cellulose. Industrially, chitin is isolated and purified from the shell residues of shrimps. A deacetylated derivative of chitin i.e. chitosan has more market value and applications owing to it solubility and overall cationic charge compared to the parent polymer. This deacetylation on an industrial scale is performed chemically using alkalis like sodium hydroxide. This reaction not only is hazardous to the environment owing to negative impact on the marine ecosystem. A greener option to this process is the enzymatic process. In nature, the naïve chitin is converted to chitosan by chitin deacetylase (CDA). This enzymatic conversion on the industrial scale is however hampered by the crystallinity of chitin. Thus, this enzymatic action requires the substrate i.e. chitin to be soluble which is technically difficult and an energy consuming process. We in this project wanted to address this shortcoming of CDA. In lieu of this, we have modeled a fusion protein with CDA and an auxiliary protein. The main interest being to increase the accessibility of the enzyme towards crystalline chitin. A similar fusion work with chitinases had improved the catalytic ability towards insoluble chitin. In the first step, suitable partners were searched through the protein data bank (PDB) wherein the domain architecture were sought. The next step was to create the models of the fused product using various in silico techniques. The models were created by MODELLER and evaluated for properties such as the energy or the impairment of the binding sites. A fusion PCR has been designed based on the linker sequences generated by MODELLER and would be tested for its activity towards insoluble chitin.

Keywords: chitin deacetylase, modeling, chitin binding domain, chitinases

Procedia PDF Downloads 233
4775 Full-Face Hyaluronic Acid Implants Assisted by Artificial Intelligence-Generated Post-treatment 3D Models

Authors: Ciro Cursio, Pio Luigi Cursio, Giulia Cursio, Isabella Chiardi, Luigi Cursio

Abstract:

Introduction: Full-face aesthetic treatments often present a difficult task: since different patients possess different anatomical and tissue characteristics, there is no guarantee that the same treatment will have the same effect on multiple patients; additionally, full-face rejuvenation and beautification treatments require not only a high degree of technical skill but also the ability to choose the right product for each area and a keen artistic eye. Method: We present an artificial intelligence-based algorithm that can generate realistic post-treatment 3D models based on the patient’s requests together with the doctor’s input. These 3-dimensional predictions can be used by the practitioner for two purposes: firstly, they help ensure that the patient and the doctor are completely aligned on the expectations of the treatment; secondly, the doctor can use them as a visual guide, obtaining a natural result that would normally stem from the practitioner's artistic skills. To this end, the algorithm is able to predict injection zones, the type and quantity of hyaluronic acid, the injection depth, and the technique to use. Results: Our innovation consists in providing an objective visual representation of the patient that is helpful in the patient-doctor dialogue. The patient, based on this information, can express her desire to undergo a specific treatment or make changes to the therapeutic plan. In short, the patient becomes an active agent in the choices made before the treatment. Conclusion: We believe that this algorithm will reveal itself as a useful tool in the pre-treatment decision-making process to prevent both the patient and the doctor from making a leap into the dark.

Keywords: hyaluronic acid, fillers, full face, artificial intelligence, 3D

Procedia PDF Downloads 65
4774 Effect of Thermal Energy on Inorganic Coagulation for the Treatment of Industrial Wastewater

Authors: Abhishek Singh, Rajlakshmi Barman, Tanmay Shah

Abstract:

Coagulation is considered to be one of the predominant water treatment processes which improve the cost effectiveness of wastewater. The sole purpose of this experiment on thermal coagulation is to increase the efficiency and the rate of reaction. The process uses renewable sources of energy which comprises of improved and minimized time method in order to eradicate the water scarcity of the regions which are on the brink of depletion. This paper includes the various effects of temperature on the standard coagulation treatment of wastewater and their effect on water quality. In addition, the coagulation is done with the mix of bottom/fly-ash that will act as an adsorbent and removes most of the minor and macro particles by means of adsorption which not only helps to reduce the environmental burden of fly ash but also enhance economic benefit. Also, the method of sand filtration is amalgamated in the process. The sand filter is an environmentally-friendly wastewater treatment method, which is relatively simple and inexpensive. The existing parameters were satisfied with the experimental results obtained in this study and were found satisfactory. The initial turbidity of the wastewater is 162 NTU. The initial temperature of the wastewater is 27 C. The temperature variation of the entire process is 50 C-80 C. The concentration of alum in wastewater is 60mg/L-320mg/L. The turbidity range is 8.31-28.1 NTU after treatment. pH variation is 7.73-8.29. The effective time taken is 10 minutes for thermal mixing and sedimentation. The results indicate that the presence of thermal energy affects the coagulation treatment process. The influence of thermal energy on turbidity is assessed along with renewable energy sources and increase of the rate of reaction of the treatment process.

Keywords: adsorbent, sand filter, temperature, thermal coagulation

Procedia PDF Downloads 308
4773 Sheathed Cotton Fibers: Material for Oil-Spill Cleanup

Authors: Benjamin M Dauda, Esther Ibrahim, Sylvester Gadimoh, Asabe Mustapha, Jiyah Mohammed

Abstract:

Despite diverse optimization techniques on natural hydrophilic fibers, hydrophobic synthetic fibers are still the best oil sorption materials. However, these hydrophobic fibers are not biodegradable, making their disposal problematic. To this end, this work sets out to develop Nonwoven sorbents from epoxy-coated Cotton fibers. As a way of improving the compatibility of the crude oil and reduction of moisture absorption, cotton fibers were coated with epoxy resin by immersion in acetone-thinned epoxy solution. A needle-punching machine was used to convert the fibers into coherent nonwoven sheets. An oil sorption experiment was then carried out. The result indicates that the developed epoxy-modified sorbent has a higher crude oil-sorption capacity compared with those of untreated cotton and commercial polypropylene sorbents. Absorption Curves show that the coated fiber and polypropylene sorbent saturated faster than the uncoated cotton fiber pad. The result also shows that the coated cotton sorbent adsorbed crude faster than the polypropylene sorbent, and the equilibrium exhaustion was also higher. After a simple mechanical squeezing process, the Nonwoven pads could be restored to their original form and repeatedly recycled for oil/water separation. The results indicate that the cotton-coated non-woven pads hold promise for the cleanup of oil spills. Our data suggests that the sorption behaviors of the epoxy-coated Nonwoven pads and their crude oil sorption capacity are relatively stable under various environmental conditions compared to the commercial sheet.

Keywords: oil spill, adsorption, cotton, epoxy, nonwoven

Procedia PDF Downloads 34
4772 Online Information Seeking: A Review of the Literature in the Health Domain

Authors: Sharifah Sumayyah Engku Alwi, Masrah Azrifah Azmi Murad

Abstract:

The development of the information technology and Internet has been transforming the healthcare industry. The internet is continuously accessed to seek for health information and there are variety of sources, including search engines, health websites, and social networking sites. Providing more and better information on health may empower individuals, however, ensuring a high quality and trusted health information could pose a challenge. Moreover, there is an ever-increasing amount of information available, but they are not necessarily accurate and up to date. Thus, this paper aims to provide an insight of the models and frameworks related to online health information seeking of consumers. It begins by exploring the definition of information behavior and information seeking to provide a better understanding of the concept of information seeking. In this study, critical factors such as performance expectancy, effort expectancy, and social influence will be studied in relation to the value of seeking health information. It also aims to analyze the effect of age, gender, and health status as the moderator on the factors that influence online health information seeking, i.e. trust and information quality. A preliminary survey will be carried out among the health professionals to clarify the research problems which exist in the real world, at the same time producing a conceptual framework. A final survey will be distributed to five states of Malaysia, to solicit the feedback on the framework. Data will be analyzed using SPSS and SmartPLS 3.0 analysis tools. It is hoped that at the end of this study, a novel framework that can improve online health information seeking is developed. Finally, this paper concludes with some suggestions on the models and frameworks that could improve online health information seeking.

Keywords: information behavior, information seeking, online health information, technology acceptance model, the theory of planned behavior, UTAUT

Procedia PDF Downloads 256
4771 The Driving Force for Taiwan Social Innovation Business Model Transformation: A Case Study of Social Innovation Internet Celebrity Training Project

Authors: Shih-Jie Ma, Jui-Hsu Hsiao, Ming-Ying Hsieh, Shin-Yan Yang, Chun-Han Yeh, Kuo-Chun Su

Abstract:

In Taiwan, social enterprises and non-profit organizations (NPOs) are not familiar with innovative business models, such as live streaming. In 2019, a brand new course called internet celebrity training project is introduced to them by the Social Innovation Lab. The Goal of this paper is to evaluate the effect of this project, to explore the role of new technology (internet live stream) in business process management (BPM), and to analyze how live stream programs can assist social enterprises in creating new business models. Social Innovation, with the purpose to solve social issues in innovative ways, is one of the most popular topics in the world. Social Innovation Lab was established in 2017 by Executive Yuan in Taiwan. The vision of Social Innovation Lab is to exploit technology, innovation and experimental methods to solve social issues, and to maximize the benefits from government investment. Social Innovation Lab aims at creating a platform for both supply and demand sides of social issues, to make social enterprises and start-ups communicate with each other, and to build an eco-system in which stakeholders can make a social impact. Social Innovation Lab keeps helping social enterprises and NPOs to gain better publicity and to enhance competitiveness by facilitating digital transformation. In this project, Social Innovation Lab exerted the influence of social media such as YouTube and Facebook, to make social enterprises and start-ups adjust their business models by using the live stream of social media, which becomes one of the tools to expand their market and diversify their sales channels. Internet live stream training courses were delivered in different regions of Taiwan in 2019, including Taitung, Taichung, Kaohsiung and Hualien. Through these courses, potential groups and enterprises were cultivated to become so-called internet celebrities. With their concern about social issues in mind, these internet celebrities know how to manipulate social media to make a social impact in different fields, such as aboriginal people, food and agriculture, LOHAS (Lifestyles of Health and Sustainability), environmental protection and senior citizens. Participants of live stream training courses in Taiwan are selected to take in-depth interviews and questionnaire surveys. Results indicate that the digital transformation process of social enterprises and NPOs can be successful by implementing business process reengineering, a significant change made by social innovation internet celebrities. Therefore, this project can be the new driving force to facilitate the business model transformation in Taiwan.

Keywords: business process management, digital transformation, live stream, social innovation

Procedia PDF Downloads 134
4770 Fine-Scale Modeling the Influencing Factors of Multi-Time Dimensions of Transit Ridership at Station Level: The Study of Guangzhou City

Authors: Dijiang Lyu, Shaoying Li, Zhangzhi Tan, Zhifeng Wu, Feng Gao

Abstract:

Nowadays, China is experiencing rapidly urban rail transit expansions in the world. The purpose of this study is to finely model factors influencing transit ridership at multi-time dimensions within transit stations’ pedestrian catchment area (PCA) in Guangzhou, China. This study was based on multi-sources spatial data, including smart card data, high spatial resolution images, points of interest (POIs), real-estate online data and building height data. Eight multiple linear regression models using backward stepwise method and Geographic Information System (GIS) were created at station-level. According to Chinese code for classification of urban land use and planning standards of development land, residential land-use were divided into three categories: first-level (e.g. villa), second-level (e.g. community) and third-level (e.g. urban villages). Finally, it concluded that: (1) four factors (CBD dummy, number of feeder bus route, number of entrance or exit and the years of station operation) were proved to be positively correlated with transit ridership, but the area of green land-use and water land-use negative correlated instead. (2) The area of education land-use, the second-level and third-level residential land-use were found to be highly connected to the average value of morning peak boarding and evening peak alighting ridership. But the area of commercial land-use and the average height of buildings, were significantly positive associated with the average value of morning peak alighting and evening peak boarding ridership. (3) The area of the second-level residential land-use was rarely correlated with ridership in other regression models. Because private car ownership is still large in Guangzhou now, and some residents living in the community around the stations go to work by transit at peak time, but others are much more willing to drive their own car at non-peak time. The area of the third-level residential land-use, like urban villages, was highly positive correlated with ridership in all models, indicating that residents who live in the third-level residential land-use are the main passenger source of the Guangzhou Metro. (4) The diversity of land-use was found to have a significant impact on the passenger flow on the weekend, but was non-related to weekday. The findings can be useful for station planning, management and policymaking.

Keywords: fine-scale modeling, Guangzhou city, multi-time dimensions, multi-sources spatial data, transit ridership

Procedia PDF Downloads 131
4769 Developing an Exhaustive and Objective Definition of Social Enterprise through Computer Aided Text Analysis

Authors: Deepika Verma, Runa Sarkar

Abstract:

One of the prominent debates in the social entrepreneurship literature has been to establish whether entrepreneurial work for social well-being by for-profit organizations can be classified as social entrepreneurship or not. Of late, the scholarship has reached a consensus. It concludes that there seems little sense in confining social entrepreneurship to just non-profit organizations. Boosted by this research, increasingly a lot of businesses engaged in filling the social infrastructure gaps in developing countries are calling themselves social enterprise. These organizations are diverse in their ownership, size, objectives, operations and business models. The lack of a comprehensive definition of social enterprise leads to three issues. Firstly, researchers may face difficulty in creating a database for social enterprises because the choice of an entity as a social enterprise becomes subjective or based on some pre-defined parameters by the researcher which is not replicable. Secondly, practitioners who use ‘social enterprise’ in their vision/mission statement(s) may find it difficult to adjust their business models accordingly especially during the times when they face the dilemma of choosing social well-being over business viability. Thirdly, social enterprise and social entrepreneurship attract a lot of donor funding and venture capital. In the paucity of a comprehensive definitional guide, the donors or investors may find assigning grants and investments difficult. It becomes necessary to develop an exhaustive and objective definition of social enterprise and examine whether the understanding of the academicians and practitioners about social enterprise match. This paper develops a dictionary of words often associated with social enterprise or (and) social entrepreneurship. It further compares two lexicographic definitions of social enterprise imputed from the abstracts of academic journal papers and trade publications extracted from the EBSCO database using the ‘tm’ package in R software.

Keywords: EBSCO database, lexicographic definition, social enterprise, text mining

Procedia PDF Downloads 374
4768 National Digital Soil Mapping Initiatives in Europe: A Review and Some Examples

Authors: Dominique Arrouays, Songchao Chen, Anne C. Richer-De-Forges

Abstract:

Soils are at the crossing of many issues such as food and water security, sustainable energy, climate change mitigation and adaptation, biodiversity protection, human health and well-being. They deliver many ecosystem services that are essential to life on Earth. Therefore, there is a growing demand for soil information on a national and global scale. Unfortunately, many countries do not have detailed soil maps, and, when existing, these maps are generally based on more or less complex and often non-harmonized soil classifications. An estimate of their uncertainty is also often missing. Thus, there are not easy to understand and often not properly used by end-users. Therefore, there is an urgent need to provide end-users with spatially exhaustive grids of essential soil properties, together with an estimate of their uncertainty. One way to achieve this is digital soil mapping (DSM). The concept of DSM relies on the hypothesis that soils and their properties are not randomly distributed, but that they depend on the main soil-forming factors that are climate, organisms, relief, parent material, time (age), and position in space. All these forming factors can be approximated using several exhaustive spatial products such as climatic grids, remote sensing products or vegetation maps, digital elevation models, geological or lithological maps, spatial coordinates of soil information, etc. Thus, DSM generally relies on models calibrated with existing observed soil data (point observations or maps) and so-called “ancillary co-variates” that come from other available spatial products. Then the model is generalized on grids where soil parameters are unknown in order to predict them, and the prediction performances are validated using various methods. With the growing demand for soil information at a national and global scale and the increase of available spatial co-variates national and continental DSM initiatives are continuously increasing. This short review illustrates the main national and continental advances in Europe, the diversity of the approaches and the databases that are used, the validation techniques and the main scientific and other issues. Examples from several countries illustrate the variety of products that were delivered during the last ten years. The scientific production on this topic is continuously increasing and new models and approaches are developed at an incredible speed. Most of the digital soil mapping (DSM) products rely mainly on machine learning (ML) prediction models and/or the use or pedotransfer functions (PTF) in which calibration data come from soil analyses performed in labs or for existing conventional maps. However, some scientific issues remain to be solved and also political and legal ones related, for instance, to data sharing and to different laws in different countries. Other issues related to communication to end-users and education, especially on the use of uncertainty. Overall, the progress is very important and the willingness of institutes and countries to join their efforts is increasing. Harmonization issues are still remaining, mainly due to differences in classifications or in laboratory standards between countries. However numerous initiatives are ongoing at the EU level and also at the global level. All these progress are scientifically stimulating and also promissing to provide tools to improve and monitor soil quality in countries, EU and at the global level.

Keywords: digital soil mapping, global soil mapping, national and European initiatives, global soil mapping products, mini-review

Procedia PDF Downloads 171
4767 Astragaioside IV Inhibits Type2 Allergic Contact Dermatitis in Mice and the Mechanism Through TLRs-NF-kB Pathway

Authors: Xiao Wei, Dandan Sheng, Xiaoyan Jiang, Lili Gui, Huizhu Wang, Xi Yu, Hailiang Liu, Min Hong

Abstract:

Objective: Mice Type2 allergic contact dermatitis was utilized in this study to explore the effect of AS-IV on Type 2 allergic inflammatory. Methods: The mice were topically sensitized on the shaved abdomens with 1.5% FITC solution on abdominal skin in the day 1 and day 2 and elicited on the right ear with 0.5% FITC solution at day 6. Mice were treated with either AS-IV or normal saline from day 1 to day 5 (induction phase). Auricle swelling was measured 24 h after the elicitation. Ear pathohistological examination was carried out by HE staining. IL-4\IL-13, and IL-9 levels of ear tissue were detected by ELISA. Mice were treated with AS-IV at the initial stage of induction phase, ear tissue was taked at day 3.TSLP level of ear tissue was detected by ELISA and TSLPmRNA\NF-kBmRNA\TLRs(TLR2\TLR3\TLR8\TLR9)mRNA were detected by PCR. Results: AS-IV induction phase evidently inhibited the auricle inflam-mation of the models; pathohistological results indicated that AS-IV induction phase alleviated local edema and angiectasis of mice models and reduced lymphocytic infiltration. AS-IV induction phase markedly decreased IL-4\IL-13, and IL-9 levels in ear tissue. Moreover, at the initial stage of induction pha-se, AS-IV significantly reduced TSLP\TSLPmRNA\NF-kBmRNA\TLR2mRNA\TLR8 mRNA levels in ear tissue. Conclusion: Administration with AS-IV in induction phase could inhibit Type 2 allergic contact dermatitis in mice significantly, and the mechanism may be related with regulating TSLP through TLRs-NF-kB pathway.

Keywords: Astragaioside IV, allergic contact dermatitis, TSLP, interleukin-4, interleukin-13, interleukin-9

Procedia PDF Downloads 418
4766 Rigorous Photogrammetric Push-Broom Sensor Modeling for Lunar and Planetary Image Processing

Authors: Ahmed Elaksher, Islam Omar

Abstract:

Accurate geometric relation algorithms are imperative in Earth and planetary satellite and aerial image processing, particularly for high-resolution images that are used for topographic mapping. Most of these satellites carry push-broom sensors. These sensors are optical scanners equipped with linear arrays of CCDs. These sensors have been deployed on most EOSs. In addition, the LROC is equipped with two push NACs that provide 0.5 meter-scale panchromatic images over a 5 km swath of the Moon. The HiRISE carried by the MRO and the HRSC carried by MEX are examples of push-broom sensor that produces images of the surface of Mars. Sensor models developed in photogrammetry relate image space coordinates in two or more images with the 3D coordinates of ground features. Rigorous sensor models use the actual interior orientation parameters and exterior orientation parameters of the camera, unlike approximate models. In this research, we generate a generic push-broom sensor model to process imageries acquired through linear array cameras and investigate its performance, advantages, and disadvantages in generating topographic models for the Earth, Mars, and the Moon. We also compare and contrast the utilization, effectiveness, and applicability of available photogrammetric techniques and softcopies with the developed model. We start by defining an image reference coordinate system to unify image coordinates from all three arrays. The transformation from an image coordinate system to a reference coordinate system involves a translation and three rotations. For any image point within the linear array, its image reference coordinates, the coordinates of the exposure center of the array in the ground coordinate system at the imaging epoch (t), and the corresponding ground point coordinates are related through the collinearity condition that states that all these three points must be on the same line. The rotation angles for each CCD array at the epoch t are defined and included in the transformation model. The exterior orientation parameters of an image line, i.e., coordinates of exposure station and rotation angles, are computed by a polynomial interpolation function in time (t). The parameter (t) is the time at a certain epoch from a certain orbit position. Depending on the types of observations, coordinates, and parameters may be treated as knowns or unknowns differently in various situations. The unknown coefficients are determined in a bundle adjustment. The orientation process starts by extracting the sensor position and, orientation and raw images from the PDS. The parameters of each image line are then estimated and imported into the push-broom sensor model. We also define tie points between image pairs to aid the bundle adjustment model, determine the refined camera parameters, and generate highly accurate topographic maps. The model was tested on different satellite images such as IKONOS, QuickBird, and WorldView-2, HiRISE. It was found that the accuracy of our model is comparable to those of commercial and open-source software, the computational efficiency of the developed model is high, the model could be used in different environments with various sensors, and the implementation process is much more cost-and effort-consuming.

Keywords: photogrammetry, push-broom sensors, IKONOS, HiRISE, collinearity condition

Procedia PDF Downloads 53
4765 A Sub-Conjunctiva Injection of Rosiglitazone for Anti-Fibrosis Treatment after Glaucoma Filtration Surgery

Authors: Yang Zhao, Feng Zhang, Xuanchu Duan

Abstract:

Trans-differentiation of human Tenon fibroblasts (HTFs) to myo-fibroblasts and fibrosis of episcleral tissue are the most common reasons for the failure of glaucoma filtration surgery, with limited treatment options like antimetabolites which always have side-effects such as leakage of filter bulb, infection, hypotony, and endophthalmitis. Rosiglitazone, a specific thiazolidinedione is a synthetic high-affinity ligand for PPAR-r, which has been used in the treatment of type2 diabetes, and found to have pleiotropic functions against inflammatory response, cell proliferation and tissue fibrosis and to benefit to a variety of diseases in animal myocardium models, steatohepatitis models, etc. Here, in vitro we cultured primary HTFs and stimulated with TGF- β to induced myofibrogenic, then treated cells with Rosiglitazone to assess for fibrogenic response. In vivo, we used rabbit glaucoma model to establish the formation of post- trabeculectomy scarring. Then we administered subconjunctival injection with Rosiglitazone beside the filtering bleb, later protein, mRNA and immunofluorescence of fibrogenic markers are checked, and filtering bleb condition was measured. In vitro, we found Rosiglitazone could suppressed proliferation and migration of fibroblasts through macroautophagy via TGF- β /Smad signaling pathway. In vivo, on postoperative day 28, the mean number of fibroblasts in Rosiglitazone injection group was significantly the lowest and had the least collagen content and connective tissue growth factor. Rosiglitazone effectively controlled human and rabbit fibroblasts in vivo and in vitro. Its subconjunctiiva application may represent an effective, new avenue for the prevention of scarring after glaucoma surgery.

Keywords: fibrosis, glaucoma, macroautophagy, rosiglitazone

Procedia PDF Downloads 253
4764 [Keynote Talk]: Mathematical and Numerical Modelling of the Cardiovascular System: Macroscale, Mesoscale and Microscale Applications

Authors: Aymen Laadhari

Abstract:

The cardiovascular system is centered on the heart and is characterized by a very complex structure with different physical scales in space (e.g. micrometers for erythrocytes and centimeters for organs) and time (e.g. milliseconds for human brain activity and several years for development of some pathologies). The development and numerical implementation of mathematical models of the cardiovascular system is a tremendously challenging topic at the theoretical and computational levels, inducing consequently a growing interest over the past decade. The accurate computational investigations in both healthy and pathological cases of processes related to the functioning of the human cardiovascular system can be of great potential in tackling several problems of clinical relevance and in improving the diagnosis of specific diseases. In this talk, we focus on the specific task of simulating three particular phenomena related to the cardiovascular system on the macroscopic, mesoscopic and microscopic scales, respectively. Namely, we develop numerical methodologies tailored for the simulation of (i) the haemodynamics (i.e., fluid mechanics of blood) in the aorta and sinus of Valsalva interacting with highly deformable thin leaflets, (ii) the hyperelastic anisotropic behaviour of cardiomyocytes and the influence of calcium concentrations on the contraction of single cells, and (iii) the dynamics of red blood cells in microvasculature. For each problem, we present an appropriate fully Eulerian finite element methodology. We report several numerical examples to address in detail the relevance of the mathematical models in terms of physiological meaning and to illustrate the accuracy and efficiency of the numerical methods.

Keywords: finite element method, cardiovascular system, Eulerian framework, haemodynamics, heart valve, cardiomyocyte, red blood cell

Procedia PDF Downloads 237
4763 Photocatalysis with Fe/Ti-Pillared Clays for the Oxofunctionalization of Alkylaromatics by O2

Authors: Houria Rezala, Jose Luis Valverde, Amaya Romero, Alessandra Molinari, Andrea Maldotti

Abstract:

A pillared montmorillonite containing iron doped titania (Fe/Ti-PILC) has been prepared from a natural clay. This material has been characterized by X-ray diffraction, nitrogen adsorption, temperature programmed desorption of ammonia, inductively coupled plasma atomic emission spectroscopy, atomic absorption, and diffuse reflectance UV-VIS spectroscopy. The layer structure of Fe/Ti-PILC resulted to be ordered with an insertion of pillars, which caused a slight increase in the basal spacing of the clay. Its specific surface area was about three times larger than that of the parent Na-montmorillonite due principally to the creation of a remarkable microporous network. The doped material was a robust photocatalyst able to oxidize liquid alkyl aromatics to the corresponding carbonylic derivatives, using O2 as the oxidizing species, at mild pressure and temperature conditions. Accumulation of valuable carbonylic derivatives was possible since their over-oxidation to carbon dioxide was negligible. Fe/Ti-PILC was able to discriminate between toluene and cyclohexane in favor of the aromatic compound with an efficiency that is about three times higher than that of titanium pillared clays (Ti-PILC). It is likely that the addition of iron favored the formation of new acid sites able to interact with the aromatic substrate. Iron doping caused a significant TiO2 visible light-induced activity (wavelength > 400 nm) with only minor negative effects on its performance under UV-light irradiation (wavelength > 290 nm).

Keywords: alkyl aromatics oxidation, heterogeneous photocatalysis, iron doping, pillared clays

Procedia PDF Downloads 434
4762 Ecosystem Model for Environmental Applications

Authors: Cristina Schreiner, Romeo Ciobanu, Marius Pislaru

Abstract:

This paper aims to build a system based on fuzzy models that can be implemented in the assessment of ecological systems, to determine appropriate methods of action for reducing adverse effects on environmental and implicit the population. The model proposed provides new perspective for environmental assessment, and it can be used as a practical instrument for decision-making.

Keywords: ecosystem model, environmental security, fuzzy logic, sustainability of habitable regions

Procedia PDF Downloads 403
4761 Mature Field Rejuvenation Using Hydraulic Fracturing: A Case Study of Tight Mature Oilfield with Reveal Simulator

Authors: Amir Gharavi, Mohamed Hassan, Amjad Shah

Abstract:

The main characteristics of unconventional reservoirs include low-to ultra low permeability and low-to-moderate porosity. As a result, hydrocarbon production from these reservoirs requires different extraction technologies than from conventional resources. An unconventional reservoir must be stimulated to produce hydrocarbons at an acceptable flow rate to recover commercial quantities of hydrocarbons. Permeability for unconventional reservoirs is mostly below 0.1 mD, and reservoirs with permeability above 0.1 mD are generally considered to be conventional. The hydrocarbon held in these formations naturally will not move towards producing wells at economic rates without aid from hydraulic fracturing which is the only technique to assess these tight reservoir productions. Horizontal well with multi-stage fracking is the key technique to maximize stimulated reservoir volume and achieve commercial production. The main objective of this research paper is to investigate development options for a tight mature oilfield. This includes multistage hydraulic fracturing and spacing by building of reservoir models in the Reveal simulator to model potential development options based on sidetracking the existing vertical well. To simulate potential options, reservoir models have been built in the Reveal. An existing Petrel geological model was used to build the static parts of these models. A FBHP limit of 40bars was assumed to take into account pump operating limits and to maintain the reservoir pressure above the bubble point. 300m, 600m and 900m lateral length wells were modelled, in conjunction with 4, 6 and 8 stages of fracs. Simulation results indicate that higher initial recoveries and peak oil rates are obtained with longer well lengths and also with more fracs and spacing. For a 25year forecast, the ultimate recovery ranging from 0.4% to 2.56% for 300m and 1000m laterals respectively. The 900m lateral with 8 fracs 100m spacing gave the highest peak rate of 120m3/day, with the 600m and 300m cases giving initial peak rates of 110m3/day. Similarly, recovery factor for the 900m lateral with 8 fracs and 100m spacing was the highest at 2.65% after 25 years. The corresponding values for the 300m and 600m laterals were 2.37% and 2.42%. Therefore, the study suggests that longer laterals with 8 fracs and 100m spacing provided the optimal recovery, and this design is recommended as the basis for further study.

Keywords: unconventional, resource, hydraulic, fracturing

Procedia PDF Downloads 284