Search results for: virtual simulation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5937

Search results for: virtual simulation

3387 3D Numerical Simulation of Undoweled and Uncracked Joints in Short Paneled Concrete Pavements

Authors: K. Sridhar Reddy, M. Amaranatha Reddy, Nilanjan Mitra

Abstract:

Short paneled concrete pavement (SPCP) with shorter panel size can be an alternative to the conventional jointed plain concrete pavements (JPCP) at the same cost as the asphalt pavements with all the advantages of concrete pavement with reduced thickness, less chance of mid-slab cracking and or dowel bar locking so common in JPCP. Cast-in-situ short concrete panels (short slabs) laid on a strong foundation consisting of a dry lean concrete base (DLC), and cement treated subbase (CTSB) will reduce the thickness of the concrete slab to the order of 180 mm to 220 mm, whereas JPCP was with 280 mm for the same traffic. During the construction of SPCP test sections on two Indian National Highways (NH), it was observed that the joints remain uncracked after a year of traffic. The undoweled and uncracked joints load transfer variability and joint behavior are of interest with anticipation on its long-term performance of the SPCP. To investigate the effects of undoweled and uncracked joints on short slabs, the present study was conducted. A multilayer linear elastic analysis using 3D finite element package for different panel sizes with different thicknesses resting on different types of solid elastic foundation with and without temperature gradient was developed. Surface deflections were obtained from 3D FE model and validated with measured field deflections from falling weight deflectometer (FWD) test. Stress analysis indicates that flexural stresses in short slabs are decreased with a decrease in panel size and increase in thickness. Detailed evaluation of stress analysis with the effects of curling behavior, the stiffness of the base layer and a variable degree of load transfer, is underway.

Keywords: joint behavior, short slabs, uncracked joints, undoweled joints, 3D numerical simulation

Procedia PDF Downloads 172
3386 Wearable Interface for Telepresence in Robotics

Authors: Uriel Martinez-Hernandez, Luke W. Boorman, Hamideh Kerdegari, Tony J. Prescott

Abstract:

In this paper, we present architecture for the study of telepresence, immersion and human-robot interaction. The architecture is built around a wearable interface, developed here, that provides the human with visual, audio and tactile feedback from a remote location. We have chosen to interface the system with the iCub humanoid robot, as it mimics many human sensory modalities, such as vision, with gaze control and tactile feedback. This allows for a straightforward integration of multiple sensory modalities, but also offers a more complete immersion experience for the human. These systems are integrated, controlled and synchronised by an architecture developed for telepresence and human-robot interaction. Our wearable interface allows human participants to observe and explore a remote location, while also being able to communicate verbally with humans located in the remote environment. Our approach has been tested from local, domestic and business venues, using wired, wireless and Internet based connections. This has involved the implementation of data compression to maintain data quality to improve the immersion experience. Initial testing has shown the wearable interface to be robust. The system will endow humans with the ability to explore and interact with other humans at remote locations using multiple sensing modalities.

Keywords: telepresence, telerobotics, human-robot interaction, virtual reality

Procedia PDF Downloads 277
3385 A Novel Computer-Generated Hologram (CGH) Achieved Scheme Generated from Point Cloud by Using a Lens Array

Authors: Wei-Na Li, Mei-Lan Piao, Nam Kim

Abstract:

We proposed a novel computer-generated hologram (CGH) achieved scheme, wherein the CGH is generated from a point cloud which is transformed by a mapping relationship of a series of elemental images captured from a real three-dimensional (3D) object by using a lens array. This scheme is composed of three procedures: mapping from elemental images to point cloud, hologram generation, and hologram display. A mapping method is figured out to achieve a virtual volume date (point cloud) from a series of elemental images. This mapping method consists of two steps. Firstly, the coordinate (x, y) pairs and its appearing number are calculated from the series of sub-images, which are generated from the elemental images. Secondly, a series of corresponding coordinates (x, y, z) are calculated from the elemental images. Then a hologram is generated from the volume data that is calculated by the previous two steps. Eventually, a spatial light modulator (SLM) and a green laser beam are utilized to display this hologram and reconstruct the original 3D object. In this paper, in order to show a more auto stereoscopic display of a real 3D object, we successfully obtained the actual depth data of every discrete point of the real 3D object, and overcame the inherent drawbacks of the depth camera by obtaining point cloud from the elemental images.

Keywords: elemental image, point cloud, computer-generated hologram (CGH), autostereoscopic display

Procedia PDF Downloads 573
3384 Addressing Scheme for IOT Network Using IPV6

Authors: H. Zormati, J. Chebil, J. Bel Hadj Taher

Abstract:

The goal of this paper is to present an addressing scheme that allows for assigning a unique IPv6 address to each node in the Internet of Things (IoT) network. This scheme guarantees uniqueness by extracting the clock skew of each communication device and converting it into an IPv6 address. Simulation analysis confirms that the presented scheme provides reductions in terms of energy consumption, communication overhead and response time as compared to four studied addressing schemes Strong DAD, LEADS, SIPA and CLOSA.

Keywords: addressing, IoT, IPv6, network, nodes

Procedia PDF Downloads 280
3383 Precise Determination of the Residual Stress Gradient in Composite Laminates Using a Configurable Numerical-Experimental Coupling Based on the Incremental Hole Drilling Method

Authors: A. S. Ibrahim Mamane, S. Giljean, M.-J. Pac, G. L’Hostis

Abstract:

Fiber reinforced composite laminates are particularly subject to residual stresses due to their heterogeneity and the complex chemical, mechanical and thermal mechanisms that occur during their processing. Residual stresses are now well known to cause damage accumulation, shape instability, and behavior disturbance in composite parts. Many works exist in the literature on techniques for minimizing residual stresses in thermosetting and thermoplastic composites mainly. To study in-depth the influence of processing mechanisms on the formation of residual stresses and to minimize them by establishing a reliable correlation, it is essential to be able to measure very precisely the profile of residual stresses in the composite. Residual stresses are important data to consider when sizing composite parts and predicting their behavior. The incremental hole drilling is very effective in measuring the gradient of residual stresses in composite laminates. This method is semi-destructive and consists of drilling incrementally a hole through the thickness of the material and measuring relaxation strains around the hole for each increment using three strain gauges. These strains are then converted into residual stresses using a matrix of coefficients. These coefficients, called calibration coefficients, depending on the diameter of the hole and the dimensions of the gauges used. The reliability of the incremental hole drilling depends on the accuracy with which the calibration coefficients are determined. These coefficients are calculated using a finite element model. The samples’ features and the experimental conditions must be considered in the simulation. Any mismatch can lead to inadequate calibration coefficients, thus introducing errors on residual stresses. Several calibration coefficient correction methods exist for isotropic material, but there is a lack of information on this subject concerning composite laminates. In this work, a Python program was developed to automatically generate the adequate finite element model. This model allowed us to perform a parametric study to assess the influence of experimental errors on the calibration coefficients. The results highlighted the sensitivity of the calibration coefficients to the considered errors and gave an order of magnitude of the precisions required on the experimental device to have reliable measurements. On the basis of these results, improvements were proposed on the experimental device. Furthermore, a numerical method was proposed to correct the calibration coefficients for different types of materials, including thick composite parts for which the analytical approach is too complex. This method consists of taking into account the experimental errors in the simulation. Accurate measurement of the experimental errors (such as eccentricity of the hole, angular deviation of the gauges from their theoretical position, or errors on increment depth) is therefore necessary. The aim is to determine more precisely the residual stresses and to expand the validity domain of the incremental hole drilling technique.

Keywords: fiber reinforced composites, finite element simulation, incremental hole drilling method, numerical correction of the calibration coefficients, residual stresses

Procedia PDF Downloads 124
3382 Applicability of Linearized Model of Synchronous Generator for Power System Stability Analysis

Authors: J. Ritonja, B. Grcar

Abstract:

For the synchronous generator simulation and analysis and for the power system stabilizer design and synthesis a mathematical model of synchronous generator is needed. The model has to accurately describe dynamics of oscillations, while at the same time has to be transparent enough for an analysis and sufficiently simplified for design of control system. To study the oscillations of the synchronous generator against to the rest of the power system, the model of the synchronous machine connected to an infinite bus through a transmission line having resistance and inductance is needed. In this paper, the linearized reduced order dynamic model of the synchronous generator connected to the infinite bus is presented and analysed in details. This model accurately describes dynamics of the synchronous generator only in a small vicinity of an equilibrium state. With the digression from the selected equilibrium point the accuracy of this model is decreasing considerably. In this paper, the equations’ descriptions and the parameters’ determinations for the linearized reduced order mathematical model of the synchronous generator are explained and summarized and represent the useful origin for works in the areas of synchronous generators’ dynamic behaviour analysis and synchronous generator’s control systems design and synthesis. The main contribution of this paper represents the detailed analysis of the accuracy of the linearized reduced order dynamic model in the entire synchronous generator’s operating range. Borders of the areas where the linearized reduced order mathematical model represents accurate description of the synchronous generator’s dynamics are determined with the systemic numerical analysis. The thorough eigenvalue analysis of the linearized models in the entire operating range is performed. In the paper, the parameters of the linearized reduced order dynamic model of the laboratory salient poles synchronous generator were determined and used for the analysis. The theoretical conclusions were confirmed with the agreement of experimental and simulation results.

Keywords: eigenvalue analysis, mathematical model, power system stability, synchronous generator

Procedia PDF Downloads 234
3381 Procedure to Optimize the Performance of Chemical Laser Using the Genetic Algorithm Optimizations

Authors: Mohammedi Ferhate

Abstract:

This work presents details of the study of the entire flow inside the facility where the exothermic chemical reaction process in the chemical laser cavity is analyzed. In our paper we will describe the principles of chemical lasers where flow reversal is produced by chemical reactions. We explain the device for converting chemical potential energy laser energy. We see that the phenomenon thus has an explosive trend. Finally, the feasibility and effectiveness of the proposed method is demonstrated by computer simulation

Keywords: genetic, lasers, nozzle, programming

Procedia PDF Downloads 83
3380 Simulation, Design, and 3D Print of Novel Highly Integrated TEG Device with Improved Thermal Energy Harvest Efficiency

Authors: Jaden Lu, Olivia Lu

Abstract:

Despite the remarkable advancement of solar cell technology, the challenge of optimizing total solar energy harvest efficiency persists, primarily due to significant heat loss. This excess heat not only diminishes solar panel output efficiency but also curtails its operational lifespan. A promising approach to address this issue is the conversion of surplus heat into electricity. In recent years, there is growing interest in the use of thermoelectric generators (TEG) as a potential solution. The integration of efficient TEG devices holds the promise of augmenting overall energy harvest efficiency while prolonging the longevity of solar panels. While certain research groups have proposed the integration of solar cells and TEG devices, a substantial gap between conceptualization and practical implementation remains, largely attributed to low thermal energy conversion efficiency of TEG devices. To bridge this gap and meet the requisites of practical application, a feasible strategy involves the incorporation of a substantial number of p-n junctions within a confined unit volume. However, the manufacturing of high-density TEG p-n junctions presents a formidable challenge. The prevalent solution often leads to large device sizes to accommodate enough p-n junctions, consequently complicating integration with solar cells. Recently, the adoption of 3D printing technology has emerged as a promising solution to address this challenge by fabricating high-density p-n arrays. Despite this, further developmental efforts are necessary. Presently, the primary focus is on the 3D printing of vertically layered TEG devices, wherein p-n junction density remains constrained by spatial limitations and the constraints of 3D printing techniques. This study proposes a novel device configuration featuring horizontally arrayed p-n junctions of Bi2Te3. The structural design of the device is subjected to simulation through the Finite Element Method (FEM) within COMSOL Multiphysics software. Various device configurations are simulated to identify optimal device structure. Based on the simulation results, a new TEG device is fabricated utilizing 3D Selective laser melting (SLM) printing technology. Fusion 360 facilitates the translation of the COMSOL device structure into a 3D print file. The horizontal design offers a unique advantage, enabling the fabrication of densely packed, three-dimensional p-n junction arrays. The fabrication process entails printing a singular row of horizontal p-n junctions using the 3D SLM printing technique in a single layer. Subsequently, successive rows of p-n junction arrays are printed within the same layer, interconnected by thermally conductive copper. This sequence is replicated across multiple layers, separated by thermal insulating glass. This integration created in a highly compact three-dimensional TEG device with high density p-n junctions. The fabricated TEG device is then attached to the bottom of the solar cell using thermal glue. The whole device is characterized, with output data closely matching with COMSOL simulation results. Future research endeavors will encompass the refinement of thermoelectric materials. This includes the advancement of high-resolution 3D printing techniques tailored to diverse thermoelectric materials, along with the optimization of material microstructures such as porosity and doping. The objective is to achieve an optimal and highly integrated PV-TEG device that can substantially increase the solar energy harvest efficiency.

Keywords: thermoelectric, finite element method, 3d print, energy conversion

Procedia PDF Downloads 54
3379 Optimization of Traffic Agent Allocation for Minimizing Bus Rapid Transit Cost on Simplified Jakarta Network

Authors: Gloria Patricia Manurung

Abstract:

Jakarta Bus Rapid Transit (BRT) system which was established in 2009 to reduce private vehicle usage and ease the rush hour gridlock throughout the Jakarta Greater area, has failed to achieve its purpose. With gradually increasing the number of private vehicles ownership and reduced road space by the BRT lane construction, private vehicle users intuitively invade the exclusive lane of BRT, creating local traffic along the BRT network. Invaded BRT lanes costs become the same with the road network, making BRT which is supposed to be the main public transportation in the city becoming unreliable. Efforts to guard critical lanes with preventing the invasion by allocating traffic agents at several intersections have been expended, lead to the improving congestion level along the lane. Given a set of number of traffic agents, this study uses an analytical approach to finding the best deployment strategy of traffic agent on a simplified Jakarta road network in minimizing the BRT link cost which is expected to lead to the improvement of BRT system time reliability. User-equilibrium model of traffic assignment is used to reproduce the origin-destination demand flow on the network and the optimum solution conventionally can be obtained with brute force algorithm. This method’s main constraint is that traffic assignment simulation time escalates exponentially with the increase of set of agent’s number and network size. Our proposed metaheuristic and heuristic algorithms perform linear simulation time increase and result in minimized BRT cost approaching to brute force algorithm optimization. Further analysis of the overall network link cost should be performed to see the impact of traffic agent deployment to the network system.

Keywords: traffic assignment, user equilibrium, greedy algorithm, optimization

Procedia PDF Downloads 221
3378 Applying Simulation-Based Digital Teaching Plans and Designs in Operating Medical Equipment

Authors: Kuo-Kai Lin, Po-Lun Chang

Abstract:

Background: The Emergency Care Research Institute released a list for the top 10 medical technology hazards in 2017, with the following hazard topping the list: ‘infusion errors can be deadly if simple safety steps are overlooked.’ In addition, hospitals use various assessment items to evaluate the safety of their medical equipment, confirming the importance of medical equipment safety. In recent years, the topic of patient safety has garnered increasing attention. Accordingly, various agencies have established patient safety-related committees to coordinate, collect, and analyze information regarding abnormal events associated with medical practice. Activities to promote and improve employee training have been introduced to diminish the recurrence of medical malpractice. Objective: To allow nursing personnel to acquire the skills needed to operate common medical equipment and update and review such skills whenever necessary to elevate medical care quality and reduce patient injuries caused by medical equipment operation errors. Method: In this study, a quasi-experimental design was adopted and nurses from a regional teaching hospital were selected as the study sample. Online videos instructing the operation method of common medical equipment were made and quick response codes were designed for the nursing personnel to quickly access the videos when necessary. Senior nursing supervisors and equipment experts were invited to formulate a ‘Scale-based Questionnaire for Assessing Nursing Personnel’s Operational Knowledge of Common Medical Equipment’ to evaluate the nursing personnel’s literacy regarding the operation of the medical equipment. From March to October 2017, an employee training on medical equipment operation and a practice course (simulation course) were implemented, after which the effectiveness of the training and practice course were assessed. Results: Prior to and after the training and practice course, the 66 participating nurses scored 58 and 87 on ‘operational knowledge of common medical equipment,’ respectively (showing a significant statistical difference; t = -9.407, p < .001); 53.5 and 86.3 on ‘operational knowledge of 12-lead electrocardiography’ (z = -2.087, p < .01), respectively; 40 and 79.5 on ‘operational knowledge of cardiac defibrillators’ (z = -3.849, p < .001), respectively; 90 and 98 on ‘operational knowledge of Abbott pumps’ (z = -1.841, p = 0.066), respectively; and 8.7 and 13.7 on ‘perceived competence’ (showing a significant statistical difference; t = -2.77, p < .05). In the participating hospital, medical equipment operation errors were observed in both 2016 and 2017. However, since the implementation of the intervention, medical equipment operation errors have not yet been observed up to October 2017, which can be regarded as the secondary outcome of this study. Conclusion: In this study, innovative teaching strategies were adopted to effectively enhance the professional literacy and skills of nursing personnel in operating medical equipment. The training and practice course also elevated the nursing personnel’s related literacy and perceived competence of operating medical equipment. The nursing personnel was thus able to accurately operate the medical equipment and avoid operational errors that might jeopardize patient safety.

Keywords: medical equipment, digital teaching plan, simulation-based teaching plan, operational knowledge, patient safety

Procedia PDF Downloads 131
3377 CFD Modeling of Boiling in a Microchannel Based On Phase-Field Method

Authors: Rahim Jafari, Tuba Okutucu-Özyurt

Abstract:

The hydrodynamics and heat transfer characteristics of a vaporized elongated bubble in a rectangular microchannel have been simulated based on Cahn-Hilliard phase-field method. In the simulations, the initially nucleated bubble starts growing as it comes in contact with superheated water. The growing shape of the bubble compared with the available experimental data in the literature.

Keywords: microchannel, boiling, Cahn-Hilliard method, simulation

Procedia PDF Downloads 415
3376 A Proposed Model of E-Marketing Service-Oriented Architecture (E-MSOA)

Authors: Hussein Moselhy, Islam Salam

Abstract:

There have been some challenges and problems which hinder the implementation of the e-marketing systems such as the high cost of information systems infrastructure and maintenance as well as their unavailability within the institution. Also, there is no system which supports all programming languages and different platforms. Another problem is the lack of integration between these systems on one hand and the operating systems and different web browsers on the other hand. No system for customer relationship management is established which recognizes their desires and puts them in consideration while performing e-marketing functions is available. Therefore, the service-oriented architecture emerged as one of the most important techniques and methodologies to build systems that integrate with various operating systems and different platforms and other technologies. This technology allows realizing the data exchange among different applications. The service-oriented architecture represents distributed computing concepts to demonstrate its success in achieving the requirements of systems through web services. It also reflects the appropriate design for the services to use different web services in supporting the requirements of business processes and software users. In a service-oriented environment, web services are deployed on the web in the form of independent services to be accessed without knowledge of the nature of the programs and systems with in. This Paper presents a proposal for a new model which contributes to the application of methods and means of e-marketing with the integration of marketing mix elements to improve marketing efficiency (E-MSOA). And apply it in the educational city of one of the Egyptian sector.

Keywords: service-oriented architecture, electronic commerce, virtual retailing, unified modeling language

Procedia PDF Downloads 419
3375 Adolescent Gamers: The Relationship between Berzonsky’s Style of Identity and Immersion: Pilot Study

Authors: Monika Paleczna, Barbara Szmigielska

Abstract:

Adolescence is a developmental period, covering the period from 10 to 20 years of age, in which young people face many challenges. One of the most important tasks of the adolescence period is getting a structured identity. The development of identity is possible by undertaking various activities. Nowadays, virtual activities are very common among young people. One of the main adolescents’ activities in the online environment is playing computer games. The main aim of this work is to answer the question about the relationship between the identity style of adolescents and immersion, -a phenomenon often observed while playing computer games. The concept of identity created by Berzonsky is considered as one of the best-defined concepts of identity. He defines identity as both a structure and a process and distinguishes three styles of identity: informational, normative, and diffuse/avoidant. Immersion is a concept that can be applied in a broad context, but in the game environment, it is a specific psychological experience of being involved in a computer game. It refers to the relocation of the attention resources to the game world, with a limited or impossible perception of stimuli from reality. Considering how much time adolescents spend playing computer games, the question about the relationship between their identity and the immersion in the game seems to be extremely interesting. Fifty adolescents aged 15-17 participated in the study. They played a computer game and completed the Identity Style Inventory and the Immersion Questionaire.

Keywords: identity, immersion, computer games, adolescence

Procedia PDF Downloads 263
3374 Multidisciplinary Approach for a Tsunami Reconstruction Plan in Coquimbo, Chile

Authors: Ileen Van den Berg, Reinier J. Daals, Chris E. M. Heuberger, Sven P. Hildering, Bob E. Van Maris, Carla M. Smulders, Rafael Aránguiz

Abstract:

Chile is located along the subduction zone of the Nazca plate beneath the South American plate, where large earthquakes and tsunamis have taken place throughout history. The last significant earthquake (Mw 8.2) occurred in September 2015 and generated a destructive tsunami, which mainly affected the city of Coquimbo (71.33°W, 29.96°S). The inundation area consisted of a beach, damaged seawall, damaged railway, wetland and old neighborhood; therefore, local authorities started a reconstruction process immediately after the event. Moreover, a seismic gap has been identified in the same area, and another large event could take place in the near future. The present work proposed an integrated tsunami reconstruction plan for the city of Coquimbo that considered several variables such as safety, nature & recreation, neighborhood welfare, visual obstruction, infrastructure, construction process, and durability & maintenance. Possible future tsunami scenarios are simulated by means of the Non-hydrostatic Evolution of Ocean WAVEs (NEOWAVE) model with 5 nested grids and a higher grid resolution of ~10 m. Based on the score from a multi-criteria analysis, the costs of the alternatives and a preference for a multifunctional solution, the alternative that includes an elevated coastal road with floodgates to reduce tsunami overtopping and control the return flow of a tsunami was selected as the best solution. It was also observed that the wetlands are significantly restored to their former configuration; moreover, the dynamic behavior of the wetlands is stimulated. The numerical simulation showed that the new coastal protection decreases damage and the probability of loss of life by delaying tsunami arrival time. In addition, new evacuation routes and a smaller inundation zone in the city increase safety for the area.

Keywords: tsunami, Coquimbo, Chile, reconstruction, numerical simulation

Procedia PDF Downloads 232
3373 Finite Element Method (FEM) Simulation, design and 3D Print of Novel Highly Integrated PV-TEG Device with Improved Solar Energy Harvest Efficiency

Authors: Jaden Lu, Olivia Lu

Abstract:

Despite the remarkable advancement of solar cell technology, the challenge of optimizing total solar energy harvest efficiency persists, primarily due to significant heat loss. This excess heat not only diminishes solar panel output efficiency but also curtails its operational lifespan. A promising approach to address this issue is the conversion of surplus heat into electricity. In recent years, there is growing interest in the use of thermoelectric generators (TEG) as a potential solution. The integration of efficient TEG devices holds the promise of augmenting overall energy harvest efficiency while prolonging the longevity of solar panels. While certain research groups have proposed the integration of solar cells and TEG devices, a substantial gap between conceptualization and practical implementation remains, largely attributed to low thermal energy conversion efficiency of TEG devices. To bridge this gap and meet the requisites of practical application, a feasible strategy involves the incorporation of a substantial number of p-n junctions within a confined unit volume. However, the manufacturing of high-density TEG p-n junctions presents a formidable challenge. The prevalent solution often leads to large device sizes to accommodate enough p-n junctions, consequently complicating integration with solar cells. Recently, the adoption of 3D printing technology has emerged as a promising solution to address this challenge by fabricating high-density p-n arrays. Despite this, further developmental efforts are necessary. Presently, the primary focus is on the 3D printing of vertically layered TEG devices, wherein p-n junction density remains constrained by spatial limitations and the constraints of 3D printing techniques. This study proposes a novel device configuration featuring horizontally arrayed p-n junctions of Bi2Te3. The structural design of the device is subjected to simulation through the Finite Element Method (FEM) within COMSOL Multiphysics software. Various device configurations are simulated to identify optimal device structure. Based on the simulation results, a new TEG device is fabricated utilizing 3D Selective laser melting (SLM) printing technology. Fusion 360 facilitates the translation of the COMSOL device structure into a 3D print file. The horizontal design offers a unique advantage, enabling the fabrication of densely packed, three-dimensional p-n junction arrays. The fabrication process entails printing a singular row of horizontal p-n junctions using the 3D SLM printing technique in a single layer. Subsequently, successive rows of p-n junction arrays are printed within the same layer, interconnected by thermally conductive copper. This sequence is replicated across multiple layers, separated by thermal insulating glass. This integration created in a highly compact three-dimensional TEG device with high density p-n junctions. The fabricated TEG device is then attached to the bottom of the solar cell using thermal glue. The whole device is characterized, with output data closely matching with COMSOL simulation results. Future research endeavors will encompass the refinement of thermoelectric materials. This includes the advancement of high-resolution 3D printing techniques tailored to diverse thermoelectric materials, along with the optimization of material microstructures such as porosity and doping. The objective is to achieve an optimal and highly integrated PV-TEG device that can substantially increase the solar energy harvest efficiency.

Keywords: thermoelectric, finite element method, 3d print, energy conversion

Procedia PDF Downloads 61
3372 To Design a Full Stack Online Educational Website Using HTML, CSS and Java Script

Authors: Yash Goyal, Manish Korde, Juned Siddiqui

Abstract:

Today online education has gained more popularity so that people can easily complete their curriculum on their own time. Virtual learning has been widely used by many educators, especially in higher education institutions due to its benefits to students and faculty. A good knowledge of teaching theory and instructional design systems is required to experience meaningful learning. However, most educational websites are not designed to adapt to all screen sizes. Making the website accessible on all screen sizes is our main objective, so we have created a website that is readily accessible across all screen sizes and accepts all types of payment methods. And we see generally educational websites interface is simple and unexciting. So, we have made a user interface attractive and user friendly. It is not enough for a website to be user-friendly, but also to be familiar to admins and to reduce the workload of the admin as well. We visited so many popular websites under development that they all had issues like responsiveness, simple interface, security measures, payment methods, etc. To overcome this limitation, we have created a website which has taken care of security issues that is why we have created only one admin id and it can be control from that only. And if the user has successfully done the payment, then the admin can send him a username and password through mail individually so there will no fraud in the payment of the course.

Keywords: responsive, accessible, attractive, interface, objective, security.

Procedia PDF Downloads 92
3371 The Asymptotic Hole Shape in Long Pulse Laser Drilling: The Influence of Multiple Reflections

Authors: Torsten Hermanns, You Wang, Stefan Janssen, Markus Niessen, Christoph Schoeler, Ulrich Thombansen, Wolfgang Schulz

Abstract:

In long pulse laser drilling of metals, it can be demonstrated that the ablation shape approaches a so-called asymptotic shape such that it changes only slightly or not at all with further irradiation. These findings are already known from ultra short pulse (USP) ablation of dielectric and semiconducting materials. The explanation for the occurrence of an asymptotic shape in long pulse drilling of metals is identified, a model for the description of the asymptotic hole shape numerically implemented, tested and clearly confirmed by comparison with experimental data. The model assumes a robust process in that way that the characteristics of the melt flow inside the arising melt film does not change qualitatively by changing the laser or processing parameters. Only robust processes are technically controllable and thus of industrial interest. The condition for a robust process is identified by a threshold for the mass flow density of the assist gas at the hole entrance which has to be exceeded. Within a robust process regime the melt flow characteristics can be captured by only one model parameter, namely the intensity threshold. In analogy to USP ablation (where it is already known for a long time that the resulting hole shape results from a threshold for the absorbed laser fluency) it is demonstrated that in the case of robust long pulse ablation the asymptotic shape forms in that way that along the whole contour the absorbed heat flux density is equal to the intensity threshold. The intensity threshold depends on the special material and radiation properties and has to be calibrated be one reference experiment. The model is implemented in a numerical simulation which is called AsymptoticDrill and requires such a few amount of resources that it can run on common desktop PCs, laptops or even smart devices. Resulting hole shapes can be calculated within seconds what depicts a clear advantage over other simulations presented in literature in the context of industrial every day usage. Against this background the software additionally is equipped with a user-friendly GUI which allows an intuitive usage. Individual parameters can be adjusted using sliders while the simulation result appears immediately in an adjacent window. A platform independent development allow a flexible usage: the operator can use the tool to adjust the process in a very convenient manner on a tablet during the developer can execute the tool in his office in order to design new processes. Furthermore, at the best knowledge of the authors AsymptoticDrill is the first simulation which allows the import of measured real beam distributions and thus calculates the asymptotic hole shape on the basis of the real state of the specific manufacturing system. In this paper the emphasis is placed on the investigation of the effect of multiple reflections on the asymptotic hole shape which gain in importance when drilling holes with large aspect ratios.

Keywords: asymptotic hole shape, intensity threshold, long pulse laser drilling, robust process

Procedia PDF Downloads 203
3370 A Study of Social Media Users’ Switching Behavior

Authors: Chiao-Chen Chang, Yang-Chieh Chin

Abstract:

Social media has created a change in the way the network community is clustered, especially from the location of the community, from the original virtual space to the intertwined network, and thus the communication between people will change from face to face communication to social media-based communication model. However, social media users who have had a fixed engagement may have an intention to switch to another service provider because of the emergence of new forms of social media. For example, some of Facebook or Twitter users switched to Instagram in 2014 because of social media messages or image overloads, and users may seek simpler and instant social media to become their main social networking tool. This study explores the impact of system features overload, information overload, social monitoring concerns, problematic use and privacy concerns as the antecedents on social media fatigue, dissatisfaction, and alternative attractiveness; further influence social media switching. This study also uses the online questionnaire survey method to recover the sample data, and then confirm the factor analysis, path analysis, model fit analysis and mediating analysis with the structural equation model (SEM). Research findings demonstrated that there were significant effects on multiple paths. Based on the research findings, this study puts forward the implications of theory and practice.

Keywords: social media, switching, social media fatigue, alternative attractiveness

Procedia PDF Downloads 129
3369 Streamlining Coastal Defense: Investigating the Impact of Seawall Geometry on Wave Loads

Authors: Ahmadreza Ebadati, Asaad Y. Shamseldin, Amin Ghadirian

Abstract:

Seawall geometry plays a crucial role in mitigating wave impacts, though detailed exploration of its manipulation is limited. This study delves into the effects of varying cross-shore seawall geometry on the dynamics of wave impacts, with a particular focus on vertical seawalls. Inspired by foundational insights linking seawall shape to hydraulic efficiency, this investigation centres on how alterations in seawall geometry can influence wave energy dissipation and subsequent wave impacts. The study investigates the 2D interaction of regular waves with a period of 2.1s with a vertical seawall and berm featuring small-scale cross-shore protrusions and recesses. Utilising OpenFOAM® simulations and a k-ω SST turbulence model, this investigation compares results to a base case simulation, which is partially calibrated with experimental data from a flume study. The analysis evaluates various geometric modifications, specifically interchanged protrusions and recesses at different heights and orientations along the seawall. Findings suggest that specific configurations, such as interchanged protrusions and recesses, can mitigate initial impact forces, while certain arrangements may intensify subsequent impacts. Key insights include the identification of geometry configurations that can effectively reduce the force impulse of slamming waves on coastal structures and potentially decrease the frequency and cost of seawall maintenance. This research contributes to the field by advancing the understanding of how seawall geometry influences wave forces and by providing actionable insights for the design of more resilient seawall structures. Further exploration of seawall geometry variation is recommended, advocating additional case studies to optimise designs tailored to specific coastal environments.

Keywords: seawall geometry, wave impact loads, numerical simulation, coastal engineering, wave-structure interaction

Procedia PDF Downloads 31
3368 A Team-Based Learning Game Guided by a Social Robot

Authors: Gila Kurtz, Dan Kohen Vacs

Abstract:

Social robots (SR) is an emerging field striving to deploy computers capable of resembling human shapes and mimicking human movements, gestures, and behaviors. The evolving capability of SR to interact with human offers groundbreaking ways for learning and training opportunities. Studies show that SR can offer instructional experiences for fostering creativity, entertainment, enjoyment, and curiosity. These added values are essential for empowering instructional opportunities as gamified learning experiences. We present our project focused on deploying an activity to be experienced in an escape room aimed at team-based learning scaffolded by an SR, NAO. An escape room is a well-known approach for gamified activities focused on a simulated scenario experienced by team-based participants. Usually, the simulation takes place in a physical environment where participants must complete a series of challenges in a limited amount of time. During this experience, players learn something about the assigned topic of the room. In the current learning simulation, students must "save the nation" by locating sensitive information stolen and stored in a vault of four locks. Team members have to look for hints and solve riddles mediated by NAO. Each solution provides a unique code for opening one of the four locks. NAO is also used to provide ongoing feedback on the team's performance. We captured the proceeding of our activity and used it to conduct an evaluation study among ten experts in related areas. The experts were interviewed on their overall assessment of the learning activity and their perception of the added value related to the robot. The results were very encouraging on the feasibility that NAO can serve as a motivational tutor in adults' collaborative game-based learning. We believe that this study marks the first step toward a template for developing innovative team-based training using escape rooms supported by a humanoid robot.

Keywords: social robot, NAO, learning, team based activity, escape room

Procedia PDF Downloads 62
3367 Electrohydrodynamic Study of Microwave Plasma PECVD Reactor

Authors: Keltoum Bouherine, Olivier Leroy

Abstract:

The present work is dedicated to study a three–dimensional (3D) self-consistent fluid simulation of microwave discharges of argon plasma in PECVD reactor. The model solves the Maxwell’s equations, continuity equations for charged species and the electron energy balance equation, coupled with Poisson’s equation, and Navier-Stokes equations by finite element method, using COMSOL Multiphysics software. In this study, the simulations yield the profiles of plasma components as well as the charge densities and electron temperature, the electric field, the gas velocity, and gas temperature. The results show that the microwave plasma reactor is outside of local thermodynamic equilibrium.The present work is dedicated to study a three–dimensional (3D) self-consistent fluid simulation of microwave discharges of argon plasma in PECVD reactor. The model solves the Maxwell’s equations, continuity equations for charged species and the electron energy balance equation, coupled with Poisson’s equation, and Navier-Stokes equations by finite element method, using COMSOL Multiphysics software. In this study, the simulations yield the profiles of plasma components as well as the charge densities and electron temperature, the electric field, the gas velocity, and gas temperature. The results show that the microwave plasma reactor is outside of local thermodynamic equilibrium.

Keywords: electron density, electric field, microwave plasma reactor, gas velocity, non-equilibrium plasma

Procedia PDF Downloads 318
3366 Impact of PV Distributed Generation on Loop Distribution Network at Saudi Electricity Company Substation in Riyadh City

Authors: Mohammed Alruwaili‬

Abstract:

Nowadays, renewable energy resources are playing an important role in replacing traditional energy resources such as fossil fuels by integrating solar energy with conventional energy. Concerns about the environment led to an intensive search for a renewable energy source. The Rapid growth of distributed energy resources will have prompted increasing interest in the integrated distributing network in the Kingdom of Saudi Arabia next few years, especially after the adoption of new laws and regulations in this regard. Photovoltaic energy is one of the promising renewable energy sources that has grown rapidly worldwide in the past few years and can be used to produce electrical energy through the photovoltaic process. The main objective of the research is to study the impact of PV in distribution networks based on real data and details. In this research, site survey and computer simulation will be dealt with using the well-known computer program software ETAB to simulate the input of electrical distribution lines with other variable inputs such as the levels of solar radiation and the field study that represent the prevailing conditions and conditions in Diriah, Riyadh region, Saudi Arabia. In addition, the impact of adding distributed generation units (DGs) to the distribution network, including solar photovoltaic (PV), will be studied and assessed for the impact of adding different power capacities. The result has been achieved with less power loss in the loop distribution network from the current condition by more than 69% increase in network power loss. However, the studied network contains 78 buses. It is hoped from this research that the efficiency, performance, quality and reliability by having an enhancement in power loss and voltage profile of the distribution networks in Riyadh City. Simulation results prove that the applied method can illustrate the positive impact of PV in loop distribution generation.

Keywords: renewable energy, smart grid, efficiency, distribution network

Procedia PDF Downloads 130
3365 Modeling and System Identification of a Variable Excited Linear Direct Drive

Authors: Heiko Weiß, Andreas Meister, Christoph Ament, Nils Dreifke

Abstract:

Linear actuators are deployed in a wide range of applications. This paper presents the modeling and system identification of a variable excited linear direct drive (LDD). The LDD is designed based on linear hybrid stepper technology exhibiting the characteristic tooth structure of mover and stator. A three-phase topology provides the thrust force caused by alternating strengthening and weakening of the flux of the legs. To achieve best possible synchronous operation, the phases are commutated sinusoidal. Despite the fact that these LDDs provide high dynamics and drive forces, noise emission limits their operation in calm workspaces. To overcome this drawback an additional excitation of the magnetic circuit is introduced to LDD using additional enabling coils instead of permanent magnets. The new degree of freedom can be used to reduce force variations and related noise by varying the excitation flux that is usually generated by permanent magnets. Hence, an identified simulation model is necessary to analyze the effects of this modification. Especially the force variations must be modeled well in order to reduce them sufficiently. The model can be divided into three parts: the current dynamics, the mechanics and the force functions. These subsystems are described with differential equations or nonlinear analytic functions, respectively. Ordinary nonlinear differential equations are derived and transformed into state space representation. Experiments have been carried out on a test rig to identify the system parameters of the complete model. Static and dynamic simulation based optimizations are utilized for identification. The results are verified in time and frequency domain. Finally, the identified model provides a basis for later design of control strategies to reduce existing force variations.

Keywords: force variations, linear direct drive, modeling and system identification, variable excitation flux

Procedia PDF Downloads 362
3364 Experimental Study Analysis of Flow over Pickup Truck’s Cargo Area Using Bed Covers

Authors: Jonathan Rodriguez, Dominga Guerrero, Surupa Shaw

Abstract:

Automobiles are modeled in various forms, and they interact with air when in motion. Aerodynamics is the study of such interactions where solid bodies affect the way air moves around them. The shape of solid bodies can impact the ease at which they move against the flow of air; due to which any additional freightage, or loads, impact its aerodynamics. It is important to transport people and cargo safely. Despite the various safety measures, there are a large number of vehicle-related accidents. This study precisely explores the effects an automobile experiences, with added cargo and covers. The addition of these items changes the original vehicle shape and the approved design for safe driving. This paper showcases the effects of the changed vehicle shape and design via experimental testing conducted on a physical 1:27 scale and CAD model of an F-150 pickup truck, the most common pickup truck in the United States, with differently shaped loads and weight traveling at a constant speed. The additional freightage produces unwanted drag or lift resulting in lower fuel efficiencies and unsafe driving conditions. This study employs an adjustable external shell on the F-150 pickup truck to create a controlled aerodynamic geometry to combat the detrimental effects of additional freightage. The results utilize colored powder [ which acts as a visual medium for the interaction of air with the vehicle], to highlight the impact of the additional freight on the automobile’s external shell. This will be done along with simulation models using Altair CFD software of twelve cases regarding the effects of an added load onto an F-150 pickup truck. This paper is an attempt toward standardizing the geometric design of the external shell, given the uniqueness of every load and its placement on the vehicle; while providing real-time data to be compared to simulation results from the existing literature.

Keywords: aerodynamics, CFD, freightage, pickup cover

Procedia PDF Downloads 151
3363 Thermal Hydraulic Analysis of Sub-Channels of Pressurized Water Reactors with Hexagonal Array: A Numerical Approach

Authors: Md. Asif Ullah, M. A. R. Sarkar

Abstract:

This paper illustrates 2-D and 3-D simulations of sub-channels of a Pressurized Water Reactor (PWR) having hexagonal array of fuel rods. At a steady state, the temperature of outer surface of the cladding of fuel rod is kept about 1200°C. The temperature of this isothermal surface is taken as boundary condition for simulation. Water with temperature of 290°C is given as a coolant inlet to the primary water circuit which is pressurized upto 157 bar. Turbulent flow of pressurized water is used for heat removal. In 2-D model, temperature, velocity, pressure and Nusselt number distributions are simulated in a vertical sectional plane through the sub-channels of a hexagonal fuel rod assembly. Temperature, Nusselt number and Y-component of convective heat flux along a line in this plane near the end of fuel rods are plotted for different Reynold’s number. A comparison between X-component and Y-component of convective heat flux in this vertical plane is analyzed. Hexagonal fuel rod assembly has three types of sub-channels according to geometrical shape whose boundary conditions are different too. In 3-D model, temperature, velocity, pressure, Nusselt number, total heat flux magnitude distributions for all the three sub-channels are studied for a suitable Reynold’s number. A horizontal sectional plane is taken from each of the three sub-channels to study temperature, velocity, pressure, Nusselt number and convective heat flux distribution in it. Greater values of temperature, Nusselt number and Y-component of convective heat flux are found for greater Reynold’s number. X-component of convective heat flux is found to be non-zero near the bottom of fuel rod and zero near the end of fuel rod. This indicates that the convective heat transfer occurs totally along the direction of flow near the outlet. As, length to radius ratio of sub-channels is very high, simulation for a short length of the sub-channels are done for graphical interface advantage. For the simulations, Turbulent Flow (K-Є ) module and Heat Transfer in Fluids (ht) module of COMSOL MULTIPHYSICS 5.0 are used.

Keywords: sub-channels, Reynold’s number, Nusselt number, convective heat transfer

Procedia PDF Downloads 354
3362 Synchronous Versus Asynchronous Telecollaboration in Intercultural Communication

Authors: Vita Kalnberzina, Lauren Miller Anderson

Abstract:

The aim of the paper is to report on the results of the telecollaboration project results carried out between the students of the University of Latvia, National Louis University in the US, and Austral University in Chili during the Intercultural Communication course. The objectives of the study are 1) to compare different forms of student telecollaboration and virtual exchange, 2) to collect and analyse the student feedback on the telecollaboration project, 3) to evaluate the products (films) produced during the telecollaboration project. The methods of research used are as follows: Survey of the student feedback after the project, video text analysis of the films produced by the students, and interview of the students participating in the project. We would like to compare the results of a three-year collaboration project, where we tried out synchronous telecollaboration and asynchronous collaboration. The different variables that were observed were the impact of the different time zones, different language proficiency levels of students, and different curricula developed for collaboration. The main findings suggest that the effort spent by students to organize meetings in different time zones and to get to know each other diminishes the quality of the product developed and thus reduces the students' feeling of accomplishment. Therefore, we would like to propose that asynchronous collaboration where the national teams work on a film project specifically developed by the students of one university for the students of another university ends up with a better quality film, which in its turn appeals more to the students of the other university and creates a deeper intercultural bond between the collaborating students.

Keywords: telecollaboration, intercultural communication, synchronous collaboration, asynchronous collaboration

Procedia PDF Downloads 91
3361 Didactical and Semiotic Affordance of GeoGebra in a Productive Mathematical Discourse

Authors: Isaac Benning

Abstract:

Using technology to expand the learning space is critical for a productive mathematical discourse. This is a case study of two teachers who developed and enacted GeoGebra-based mathematics lessons following their engagement in a two-year professional development. The didactical and semiotic affordance of GeoGebra in widening the learning space for a productive mathematical discourse was explored. The approach of thematic analysis was used for lesson artefact, lesson observation, and interview data. The results indicated that constructing tools in GeoGebra provided a didactical milieu where students used them to explore mathematical concepts with little or no support from their teacher. The prompt feedback from the GeoGebra motivated students to practice mathematical concepts repeatedly in which they privately rethink their solutions before comparing their answers with that of their colleagues. The constructing tools enhanced self-discovery, team spirit, and dialogue among students. With regards to the semiotic construct, the tools widened the physical and psychological atmosphere of the classroom by providing animations that served as virtual concrete to enhance the recording, manipulation, testing of a mathematical idea, construction, and interpretation of geometric objects. These findings advance the discussion of widening the classroom for a productive mathematical discourse within the context of the mathematics curriculum of Ghana and similar Sub-Saharan African countries.

Keywords: GeoGebra, theory of didactical situation, semiotic mediation, mathematics laboratory, mathematical discussion

Procedia PDF Downloads 113
3360 Optimal Control of Generators and Series Compensators within Multi-Space-Time Frame

Authors: Qian Chen, Lin Xu, Ping Ju, Zhuoran Li, Yiping Yu, Yuqing Jin

Abstract:

The operation of power grid is becoming more and more complex and difficult due to its rapid development towards high voltage, long distance, and large capacity. For instance, many large-scale wind farms have connected to power grid, where their fluctuation and randomness is very likely to affect the stability and safety of the grid. Fortunately, many new-type equipments based on power electronics have been applied to power grid, such as UPFC (Unified Power Flow Controller), TCSC (Thyristor Controlled Series Compensation), STATCOM (Static Synchronous Compensator) and so on, which can help to deal with the problem above. Compared with traditional equipment such as generator, new-type controllable devices, represented by the FACTS (Flexible AC Transmission System), have more accurate control ability and respond faster. But they are too expensive to use widely. Therefore, on the basis of the comparison and analysis of the controlling characteristics between traditional control equipment and new-type controllable equipment in both time and space scale, a coordinated optimizing control method within mutil-time-space frame is proposed in this paper to bring both kinds of advantages into play, which can better both control ability and economical efficiency. Firstly, the coordination of different space sizes of grid is studied focused on the fluctuation caused by large-scale wind farms connected to power grid. With generator, FSC (Fixed Series Compensation) and TCSC, the coordination method on two-layer regional power grid vs. its sub grid is studied in detail. The coordination control model is built, the corresponding scheme is promoted, and the conclusion is verified by simulation. By analysis, interface power flow can be controlled by generator and the specific line power flow between two-layer regions can be adjusted by FSC and TCSC. The smaller the interface power flow adjusted by generator, the bigger the control margin of TCSC, instead, the total consumption of generator is much higher. Secondly, the coordination of different time sizes is studied to further the amount of the total consumption of generator and the control margin of TCSC, where the minimum control cost can be acquired. The coordination method on two-layer ultra short-term correction vs. AGC (Automatic Generation Control) is studied with generator, FSC and TCSC. The optimal control model is founded, genetic algorithm is selected to solve the problem, and the conclusion is verified by simulation. Finally, the aforementioned method within multi-time-space scale is analyzed with practical cases, and simulated on PSASP (Power System Analysis Software Package) platform. The correctness and effectiveness are verified by the simulation result. Moreover, this coordinated optimizing control method can contribute to the decrease of control cost and will provide reference to the following studies in this field.

Keywords: FACTS, multi-space-time frame, optimal control, TCSC

Procedia PDF Downloads 256
3359 Virtual Test Model for Qualification of Knee Prosthesis

Authors: K. Zehouani, I. Oldal

Abstract:

Purpose: In the human knee joint, degenerative joint disease may happen with time. The standard treatment of this disease is the total knee replacement through prosthesis implanting. The reason lies in the fact that this phenomenon causes different material abrasion as compare to pure sliding or rolling alone. This study focuses on developing a knee prosthesis geometry, which fulfills the mechanical and kinematical requirements. Method: The MSC ADAMS program is used to describe the rotation of the human knee joint as a function of flexion, and to investigate how the flexion and rotation movement changes between the condyles of a multi-body model of the knee prosthesis as a function of flexion angle (in the functional arc of the knee (20-120º)). Moreover, the multi-body model with identical boundary conditions is constituted, and the numerical simulations are carried out using the MSC ADAMS program system. Results: It is concluded that the use of the multi-body model reduces time and cost since it does not need to manufacture the tibia and the femur as it requires for the knee prosthesis of the test machine. Moreover, without measuring or by dispensing with a test machine for the knee prosthesis geometry, approximation of the results of our model to a human knee is carried out directly. Conclusion: The pattern obtained by the multi-body model provides an insight for future experimental tests related to the rotation and flexion of the knee joint concerning the actual average and friction load.

Keywords: biomechanics, knee joint, rotation, flexion, kinematics, MSC ADAMS

Procedia PDF Downloads 135
3358 Numerical Modeling and Prediction of Nanoscale Transport Phenomena in Vertically Aligned Carbon Nanotube Catalyst Layers by the Lattice Boltzmann Simulation

Authors: Seungho Shin, Keunwoo Choi, Ali Akbar, Sukkee Um

Abstract:

In this study, the nanoscale transport properties and catalyst utilization of vertically aligned carbon nanotube (VACNT) catalyst layers are computationally predicted by the three-dimensional lattice Boltzmann simulation based on the quasi-random nanostructural model in pursuance of fuel cell catalyst performance improvement. A series of catalyst layers are randomly generated with statistical significance at the 95% confidence level to reflect the heterogeneity of the catalyst layer nanostructures. The nanoscale gas transport phenomena inside the catalyst layers are simulated by the D3Q19 (i.e., three-dimensional, 19 velocities) lattice Boltzmann method, and the corresponding mass transport characteristics are mathematically modeled in terms of structural properties. Considering the nanoscale reactant transport phenomena, a transport-based effective catalyst utilization factor is defined and statistically analyzed to determine the structure-transport influence on catalyst utilization. The tortuosity of the reactant mass transport path of VACNT catalyst layers is directly calculated from the streaklines. Subsequently, the corresponding effective mass diffusion coefficient is statistically predicted by applying the pre-estimated tortuosity factors to the Knudsen diffusion coefficient in the VACNT catalyst layers. The statistical estimation results clearly indicate that the morphological structures of VACNT catalyst layers reduce the tortuosity of reactant mass transport path when compared to conventional catalyst layer and significantly improve consequential effective mass diffusion coefficient of VACNT catalyst layer. Furthermore, catalyst utilization of the VACNT catalyst layer is substantially improved by enhanced mass diffusion and electric current paths despite the relatively poor interconnections of the ion transport paths.

Keywords: Lattice Boltzmann method, nano transport phenomena, polymer electrolyte fuel cells, vertically aligned carbon nanotube

Procedia PDF Downloads 189