Search results for: trauma network
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5339

Search results for: trauma network

2789 Pattern of ICU Admission due to Drug Problems

Authors: Kamel Abd Elaziz Mohamed

Abstract:

Introduction: Drug related problems (DRPs) are of major concern, affecting patients of both sex. They impose considerable economic burden on the society and the health-care systems. Aim of the work: The aim of this work was to identify and categorize drug-related problems in adult intensive care unit. Patients and methods: The study was a prospective, observational study as eighty six patients were included. They were consecutively admitted to ICU through the emergency room or transferred from the general ward due to DRPs. Parameters included in the study as length of stay in ICU, need for cardiovascular support or mechanical ventilation, dialysis, as well as APACHE II score were recorded. Results: Drug related problems represent 3.6% of the total ICU admission. The median (range) of APACHE II score for 86 patients included in the study was 17 (10-23), and length of ICU stay was 2.4 (1.5-4.2) days. In 45 patients (52%), DRP was drug over dose (group 1), while other DRP was present in the other 41 patients (48%, group 11). Patients in group 1 were older (39 years versus 32 years in group 11), with significant impaired renal function. The need of inotropic drugs and mechanical ventilation as well as the length of stay (LOS) in ICU was significantly higher in group 1. There were no significant difference in GCS between both groups, however APACHE II score was significantly higher in group 1. Only four patients (4.6%) were admitted by suicidal attempt as well as three patients (3.4%) due to trauma drug-related admissions, all were in (group 1). Nineteen percent of the patients had drug related problem due to hypoglycaemic medication followed by tranquilizer (15%). Adverse drug effect followed by failure to receive medication were the most causes of drug problem in (group11).The total mortality rate was 4.6%, all of them were eventually non preventable. Conclusion: The critically ill patients admitted due to drug related problems represented a small proportion (3.6%) of admissions to the ICU. Hypoglycaemic medication was one of the most common causes of admission by drug related problems.

Keywords: drug related problems, ICU, cost, safety

Procedia PDF Downloads 335
2788 A Convolutional Neural Network Based Vehicle Theft Detection, Location, and Reporting System

Authors: Michael Moeti, Khuliso Sigama, Thapelo Samuel Matlala

Abstract:

One of the principal challenges that the world is confronted with is insecurity. The crime rate is increasing exponentially, and protecting our physical assets especially in the motorist industry, is becoming impossible when applying our own strength. The need to develop technological solutions that detect and report theft without any human interference is inevitable. This is critical, especially for vehicle owners, to ensure theft detection and speedy identification towards recovery efforts in cases where a vehicle is missing or attempted theft is taking place. The vehicle theft detection system uses Convolutional Neural Network (CNN) to recognize the driver's face captured using an installed mobile phone device. The location identification function uses a Global Positioning System (GPS) to determine the real-time location of the vehicle. Upon identification of the location, Global System for Mobile Communications (GSM) technology is used to report or notify the vehicle owner about the whereabouts of the vehicle. The installed mobile app was implemented by making use of python as it is undoubtedly the best choice in machine learning. It allows easy access to machine learning algorithms through its widely developed library ecosystem. The graphical user interface was developed by making use of JAVA as it is better suited for mobile development. Google's online database (Firebase) was used as a means of storage for the application. The system integration test was performed using a simple percentage analysis. Sixty (60) vehicle owners participated in this study as a sample, and questionnaires were used in order to establish the acceptability of the system developed. The result indicates the efficiency of the proposed system, and consequently, the paper proposes the use of the system can effectively monitor the vehicle at any given place, even if it is driven outside its normal jurisdiction. More so, the system can be used as a database to detect, locate and report missing vehicles to different security agencies.

Keywords: CNN, location identification, tracking, GPS, GSM

Procedia PDF Downloads 178
2787 Analysis and Comparison of Asymmetric H-Bridge Multilevel Inverter Topologies

Authors: Manel Hammami, Gabriele Grandi

Abstract:

In recent years, multilevel inverters have become more attractive for single-phase photovoltaic (PV) systems, due to their known advantages over conventional H-bridge pulse width-modulated (PWM) inverters. They offer improved output waveforms, smaller filter size, lower total harmonic distortion (THD), higher output voltages and others. The most common multilevel converter topologies, presented in literature, are the neutral-point-clamped (NPC), flying capacitor (FC) and Cascaded H-Bridge (CHB) converters. In both NPC and FC configurations, the number of components drastically increases with the number of levels what leads to complexity of the control strategy, high volume, and cost. Whereas, increasing the number of levels in case of the cascaded H-bridge configuration is a flexible solution. However, it needs isolated power sources for each stage, and it can be applied to PV systems only in case of PV sub-fields. In order to improve the ratio between the number of output voltage levels and the number of components, several hybrids and asymmetric topologies of multilevel inverters have been proposed in the literature such as the FC asymmetric H-bridge (FCAH) and the NPC asymmetric H-bridge (NPCAH) topologies. Another asymmetric multilevel inverter configuration that could have interesting applications is the cascaded asymmetric H-bridge (CAH), which is based on a modular half-bridge (two switches and one capacitor, also called level doubling network, LDN) cascaded to a full H-bridge in order to double the output voltage level. This solution has the same number of switches as the above mentioned AH configurations (i.e., six), and just one capacitor (as the FCAH). CAH is becoming popular, due to its simple, modular and reliable structure, and it can be considered as a retrofit which can be added in series to an existing H-Bridge configuration in order to double the output voltage levels. In this paper, an original and effective method for the analysis of the DC-link voltage ripple is given for single-phase asymmetric H-bridge multilevel inverters based on level doubling network (LDN). Different possible configurations of the asymmetric H-Bridge multilevel inverters have been considered and the analysis of input voltage and current are analytically determined and numerically verified by Matlab/Simulink for the case of cascaded asymmetric H-bridge multilevel inverters. A comparison between FCAH and the CAH configurations is done on the basis of the analysis of the DC and voltage ripple for the DC source (i.e., the PV system). The peak-to-peak DC and voltage ripple amplitudes are analytically calculated over the fundamental period as a function of the modulation index. On the basis of the maximum peak-to-peak values of low frequency and switching ripple voltage components, the DC capacitors can be designed. Reference is made to unity output power factor, as in case of most of the grid-connected PV generation systems. Simulation results will be presented in the full paper in order to prove the effectiveness of the proposed developments in all the operating conditions.

Keywords: asymmetric inverters, dc-link voltage, level doubling network, single-phase multilevel inverter

Procedia PDF Downloads 209
2786 Effect of Wettability Alteration on Production Performance in Unconventional Tight Oil Reservoirs

Authors: Rashid S. Mohammad, Shicheng Zhang, Xinzhe Zhao

Abstract:

In tight oil reservoirs, wettability alteration has generally been considered as an effective way to remove fracturing fluid retention on the surface of the fracture and consequently improved oil production. However, there is a lack of a reliable productivity prediction model to show the relationship between the wettability and oil production in tight oil well. In this paper, a new oil productivity prediction model of immiscible oil-water flow and miscible CO₂-oil flow accounting for wettability is developed. This mathematical model is established by considering two different length scales: nonporous network and propped fractures. CO₂ flow diffuses in the nonporous network and high velocity non-Darcy flow in propped fractures are considered by taking into account the effect of wettability alteration on capillary pressure and relative permeability. A laboratory experiment is also conducted here to validate this model. Laboratory experiments have been designed to compare the water saturation profiles for different contact angle, revealing the fluid retention in rock pores that affects capillary force and relative permeability. Four kinds of brines with different concentrations are selected here to create different contact angles. In water-wet porous media, as the system becomes more oil-wet, water saturation decreases. As a result, oil relative permeability increases. On the other hand, capillary pressure which is the resistance for the oil flow increases as well. The oil production change due to wettability alteration is the result of the comprehensive changes of oil relative permeability and capillary pressure. The results indicate that wettability is a key factor for fracturing fluid retention removal and oil enhancement in tight reservoirs. By incorporating laboratory test into a mathematical model, this work shows the relationship between wettability and oil production is not a simple linear pattern but a parabolic one. Additionally, it can be used for a better understanding of optimization design of fracturing fluids.

Keywords: wettability, relative permeability, fluid retention, oil production, unconventional and tight reservoirs

Procedia PDF Downloads 236
2785 A Comparison of Convolutional Neural Network Architectures for the Classification of Alzheimer’s Disease Patients Using MRI Scans

Authors: Tomas Premoli, Sareh Rowlands

Abstract:

In this study, we investigate the impact of various convolutional neural network (CNN) architectures on the accuracy of diagnosing Alzheimer’s disease (AD) using patient MRI scans. Alzheimer’s disease is a debilitating neurodegenerative disorder that affects millions worldwide. Early, accurate, and non-invasive diagnostic methods are required for providing optimal care and symptom management. Deep learning techniques, particularly CNNs, have shown great promise in enhancing this diagnostic process. We aim to contribute to the ongoing research in this field by comparing the effectiveness of different CNN architectures and providing insights for future studies. Our methodology involved preprocessing MRI data, implementing multiple CNN architectures, and evaluating the performance of each model. We employed intensity normalization, linear registration, and skull stripping for our preprocessing. The selected architectures included VGG, ResNet, and DenseNet models, all implemented using the Keras library. We employed transfer learning and trained models from scratch to compare their effectiveness. Our findings demonstrated significant differences in performance among the tested architectures, with DenseNet201 achieving the highest accuracy of 86.4%. Transfer learning proved to be helpful in improving model performance. We also identified potential areas for future research, such as experimenting with other architectures, optimizing hyperparameters, and employing fine-tuning strategies. By providing a comprehensive analysis of the selected CNN architectures, we offer a solid foundation for future research in Alzheimer’s disease diagnosis using deep learning techniques. Our study highlights the potential of CNNs as a valuable diagnostic tool and emphasizes the importance of ongoing research to develop more accurate and effective models.

Keywords: Alzheimer’s disease, convolutional neural networks, deep learning, medical imaging, MRI

Procedia PDF Downloads 81
2784 Anal Repair and Diamond Flap in Moderate Anal Stenosis Patient After an Open Hemorrhoidectomy Surgery: A Case Report

Authors: Andriana Purnama, Reno Rudiman, Kezia Christy

Abstract:

Anal stenosis which develops due to anoderm scarring usually caused by secondary to surgical trauma, has become common, causing significant decrease patient’s quality of life. Even though mild anal stenosis was treated with non-surgical treatment, but surgical reconstruction in unavoidable for moderate to severe anal stenosis that cause distressing, severe anal pain and inability to defecate. In our study, we intend to share our result with the use of diamond flap in treatment of anal stenosis. This case report illustrates a 57-year-old male patient who presented with difficulty and discomfort in defecation caused by anal stenosis after 2 years of open hemorrhoidectomy surgery. At physical examination, there was requirement of forceful dilatation when the index finger was inserted or precisely 6mm as measured by hegar dilator (moderate anal stenosis). Blood test result was within normal limits. The patient underwent anal repair and diamond flap where the scar tissue at 6 and 9 o’clock directions was excised and diamond graft was incised carefully while paying attention to the vascular supply. Finally, the graft was fixated without any tension to the anal canal, resulting in diameter of 2 cm after operation. After 2 days post operation, the patient was in stable condition, without any complication, and discharged. There was no abnormality concerning the stool. Ten days after the operation, diamond flap was in normal condition and without any complication. He was scheduled for futher follow up at the Digestive Surgery Department. Anal stenosis due to overzealous hemorrhoidectomy is a complication that is preventable when performed in experienced hands. Diamond flap was one of the options for the anal stenosis treatment with less complication.

Keywords: anal stenosis, diamond flap, post hemorrhoidectomy, anal repair

Procedia PDF Downloads 97
2783 Application of Combined Cluster and Discriminant Analysis to Make the Operation of Monitoring Networks More Economical

Authors: Norbert Magyar, Jozsef Kovacs, Peter Tanos, Balazs Trasy, Tamas Garamhegyi, Istvan Gabor Hatvani

Abstract:

Water is one of the most important common resources, and as a result of urbanization, agriculture, and industry it is becoming more and more exposed to potential pollutants. The prevention of the deterioration of water quality is a crucial role for environmental scientist. To achieve this aim, the operation of monitoring networks is necessary. In general, these networks have to meet many important requirements, such as representativeness and cost efficiency. However, existing monitoring networks often include sampling sites which are unnecessary. With the elimination of these sites the monitoring network can be optimized, and it can operate more economically. The aim of this study is to illustrate the applicability of the CCDA (Combined Cluster and Discriminant Analysis) to the field of water quality monitoring and optimize the monitoring networks of a river (the Danube), a wetland-lake system (Kis-Balaton & Lake Balaton), and two surface-subsurface water systems on the watershed of Lake Neusiedl/Lake Fertő and on the Szigetköz area over a period of approximately two decades. CCDA combines two multivariate data analysis methods: hierarchical cluster analysis and linear discriminant analysis. Its goal is to determine homogeneous groups of observations, in our case sampling sites, by comparing the goodness of preconceived classifications obtained from hierarchical cluster analysis with random classifications. The main idea behind CCDA is that if the ratio of correctly classified cases for a grouping is higher than at least 95% of the ratios for the random classifications, then at the level of significance (α=0.05) the given sampling sites don’t form a homogeneous group. Due to the fact that the sampling on the Lake Neusiedl/Lake Fertő was conducted at the same time at all sampling sites, it was possible to visualize the differences between the sampling sites belonging to the same or different groups on scatterplots. Based on the results, the monitoring network of the Danube yields redundant information over certain sections, so that of 12 sampling sites, 3 could be eliminated without loss of information. In the case of the wetland (Kis-Balaton) one pair of sampling sites out of 12, and in the case of Lake Balaton, 5 out of 10 could be discarded. For the groundwater system of the catchment area of Lake Neusiedl/Lake Fertő all 50 monitoring wells are necessary, there is no redundant information in the system. The number of the sampling sites on the Lake Neusiedl/Lake Fertő can decrease to approximately the half of the original number of the sites. Furthermore, neighbouring sampling sites were compared pairwise using CCDA and the results were plotted on diagrams or isoline maps showing the location of the greatest differences. These results can help researchers decide where to place new sampling sites. The application of CCDA proved to be a useful tool in the optimization of the monitoring networks regarding different types of water bodies. Based on the results obtained, the monitoring networks can be operated more economically.

Keywords: combined cluster and discriminant analysis, cost efficiency, monitoring network optimization, water quality

Procedia PDF Downloads 353
2782 Design and Simulation of All Optical Fiber to the Home Network

Authors: Rahul Malhotra

Abstract:

Fiber based access networks can deliver performance that can support the increasing demands for high speed connections. One of the new technologies that have emerged in recent years is Passive Optical Networks. This paper is targeted to show the simultaneous delivery of triple play service (data, voice and video). The comparative investigation and suitability of various data rates is presented. It is demonstrated that as we increase the data rate, number of users to be accommodated decreases due to increase in bit error rate.

Keywords: BER, PON, TDMPON, GPON, CWDM, OLT, ONT

Procedia PDF Downloads 561
2781 U Slot Loaded Wearable Textile Antenna

Authors: Varsha Kheradiya, Ganga Prasad Pandey

Abstract:

The use of wearable antennas is rising because wireless devices become small. The wearable antenna is part of clothes used in communication applications, including energy harvesting, medical application, navigation, and tracking. In current years, Antennas embroidered on clothes, conducting antennas based on fabric, polymer embedded antennas, and inkjet-printed antennas are all attractive ways. Also shows the analysis required for wearable antennas, such as wearable antennae interacting with the human body. The primary requirements for the antenna are small size, low profile minimizing radiation absorption by the human body, high efficiency, structural integrity to survive worst situations, and good gain. Therefore, research in energy harvesting, biomedicine, and military application design is increasingly favoring flexible wearable antennas. Textile materials that are effectively used for designing and developing wearable antennas for body area networks. The wireless body area network is primarily concerned with creating effective antenna systems. The antenna should reduce their size, be lightweight, and be adaptable when integrated into clothes. When antennas integrate into clothes, it provides a convenient alternative to those fabricated using rigid substrates. This paper presents a study of U slot loaded wearable textile antenna. U slot patch antenna design is illustrated for wideband from 1GHz to 6 GHz using textile material jeans as substrate and pure copper polyester taffeta fabric as conducting material. This antenna design exhibits dual band results for WLAN at 2.4 GHz and 3.6 GHz frequencies. Also, study U slot position horizontal and vertical shifting. Shifting the horizontal positive X-axis position of the U slot produces the third band at 5.8 GHz.

Keywords: microstrip patch antenna, textile material, U slot wearable antenna, wireless body area network

Procedia PDF Downloads 97
2780 The Invisible Labour of Informal Care: Parentified Caregiving in David Chariandy's Soucouyant

Authors: Walter Rafael Ramos Villanueva

Abstract:

The overwhelming majority of scholarship on David Chariandy’s novel Soucouyant focuses on how Adele’s dementia represents the preservation of “cultural memory” and the perniciousness of “historical trauma.” However, by metaphorizing Adele’s mental condition, these critics risk treating her dementia as mostly figurative, and they thus elide a more detailed discussion of the literal ramifications of her dementia diagnosis. To move beyond these readings, then, my paper will approach Adele’s disorder as a literal medical condition and explore how her caregiving needs affect not only her but also those around her. Soucouyant subverts traditional caregiving narratives by depicting the difficult and typically invisible labour of informal caregiving that is undertaken by the families and friends of those who are ill or otherwise disabled. Because Adele’s family is unable to access proper public healthcare resources within the community, the burden of care falls upon the protagonist and his brother, who become “parentified children.” Parentified children, according to Nancy D. Chase, are “parents to their parents, and fulfill this role at the expense of their own developmentally appropriate needs and pursuits.” The novel provides a depiction of informal caregiving that is multi-faceted and asks us to question why is it exactly that we place the burden of care on those who are not equipped to handle such pressures instead of putting the onus on the government and the public healthcare system to take care of its most vulnerable members. Ageing Studies scholar Larry Polvika notes that although policymakers often offer “pious expressions of appreciation” and acknowledge that informal caregiving is “the backbone of our long-term care system,” governmental support for these caregivers remains inadequate. It is my belief that, by showcasing the struggles of informal caregivers, Chariandy’s text combats this dangerous and empty political rhetoric.

Keywords: caregiving, dementia, literature, parentified children

Procedia PDF Downloads 182
2779 A Hybrid Model of Structural Equation Modelling-Artificial Neural Networks: Prediction of Influential Factors on Eating Behaviors

Authors: Maryam Kheirollahpour, Mahmoud Danaee, Amir Faisal Merican, Asma Ahmad Shariff

Abstract:

Background: The presence of nonlinearity among the risk factors of eating behavior causes a bias in the prediction models. The accuracy of estimation of eating behaviors risk factors in the primary prevention of obesity has been established. Objective: The aim of this study was to explore the potential of a hybrid model of structural equation modeling (SEM) and Artificial Neural Networks (ANN) to predict eating behaviors. Methods: The Partial Least Square-SEM (PLS-SEM) and a hybrid model (SEM-Artificial Neural Networks (SEM-ANN)) were applied to evaluate the factors affecting eating behavior patterns among university students. 340 university students participated in this study. The PLS-SEM analysis was used to check the effect of emotional eating scale (EES), body shape concern (BSC), and body appreciation scale (BAS) on different categories of eating behavior patterns (EBP). Then, the hybrid model was conducted using multilayer perceptron (MLP) with feedforward network topology. Moreover, Levenberg-Marquardt, which is a supervised learning model, was applied as a learning method for MLP training. The Tangent/sigmoid function was used for the input layer while the linear function applied for the output layer. The coefficient of determination (R²) and mean square error (MSE) was calculated. Results: It was proved that the hybrid model was superior to PLS-SEM methods. Using hybrid model, the optimal network happened at MPLP 3-17-8, while the R² of the model was increased by 27%, while, the MSE was decreased by 9.6%. Moreover, it was found that which one of these factors have significantly affected on healthy and unhealthy eating behavior patterns. The p-value was reported to be less than 0.01 for most of the paths. Conclusion/Importance: Thus, a hybrid approach could be suggested as a significant methodological contribution from a statistical standpoint, and it can be implemented as software to be able to predict models with the highest accuracy.

Keywords: hybrid model, structural equation modeling, artificial neural networks, eating behavior patterns

Procedia PDF Downloads 161
2778 Hormone Replacement Therapy (HRT) and Its Impact on the All-Cause Mortality of UK Women: A Matched Cohort Study 1984-2017

Authors: Nurunnahar Akter, Elena Kulinskaya, Nicholas Steel, Ilyas Bakbergenuly

Abstract:

Although Hormone Replacement Therapy (HRT) is an effective treatment in ameliorating menopausal symptoms, it has mixed effects on different health outcomes, increasing, for instance, the risk of breast cancer. Because of this, many symptomatic women are left untreated. Untreated menopausal symptoms may result in other health issues, which eventually put an extra burden and costs to the health care system. All-cause mortality analysis may explain the net benefits and risks of the HRT therapy. However, it received far less attention in HRT studies. This study investigated the impact of HRT on all-cause mortality using electronically recorded primary care data from The Health Improvement Network (THIN) that broadly represents the female population in the United Kingdom (UK). The study entry date for this study was the record of the first HRT prescription from 1984, and patients were followed up until death or transfer to another GP practice or study end date, which was January 2017. 112,354 HRT users (cases) were matched with 245,320 non-users by age at HRT initiation and general practice (GP). The hazards of all-cause mortality associated with HRT were estimated by a parametric Weibull-Cox model adjusting for a wide range of important medical, lifestyle, and socio-demographic factors. The multilevel multiple imputation techniques were used to deal with missing data. This study found that during 32 years of follow-up, combined HRT reduced the hazard ratio (HR) of all-cause mortality by 9% (HR: 0.91; 95% Confidence Interval, 0.88-0.94) in women of age between 46 to 65 at first treatment compared to the non-users of the same age. Age-specific mortality analyses found that combined HRT decreased mortality by 13% (HR: 0.87; 95% CI, 0.82-0.92), 12% (HR: 0.88; 95% CI, 0.82-0.93), and 8% (HR: 0.92; 95% CI, 0.85-0.98), in 51 to 55, 56 to 60, and 61 to 65 age group at first treatment, respectively. There was no association between estrogen-only HRT and women’s all-cause mortality. The findings from this study may help to inform the choices of women at menopause and to further educate the clinicians and resource planners.

Keywords: hormone replacement therapy, multiple imputations, primary care data, the health improvement network (THIN)

Procedia PDF Downloads 175
2777 Impact of Agricultural Infrastructure on Diffusion of Technology of the Sample Farmers in North 24 Parganas District, West Bengal

Authors: Saikat Majumdar, D. C. Kalita

Abstract:

The Agriculture sector plays an important role in the rural economy of India. It is the backbone of our Indian economy and is the dominant sector in terms of employment and livelihood. Agriculture still contributes significantly to export earnings and is an important source of raw materials as well as of demand for many industrial products particularly fertilizers, pesticides, agricultural implements and a variety of consumer goods, etc. The performance of the agricultural sector influences the growth of Indian economy. According to the 2011 Agricultural Census of India, an estimated 61.5 percentage of rural populations are dependent on agriculture. Proper Agricultural infrastructure has the potential to transform the existing traditional agriculture into a most modern, commercial and dynamic farming system in India through its diffusion of technology. The rate of adoption of modern technology reflects the progress of development in agricultural sector. The adoption of any improved agricultural technology is also dependent on the development of road infrastructure or road network. The present study was consisting of 300 sample farmers out which 150 samples was taken from the developed area and rest 150 samples was taken from underdeveloped area. The samples farmers under develop and underdeveloped areas were collected by using Multistage Random Sampling procedure. In the first stage, North 24 Parganas District have been selected purposively. Then from the district, one developed and one underdeveloped block was selected randomly. In the third phase, 10 villages have been selected randomly from each block. Finally, from each village 15 sample farmers was selected randomly. The extents of adoption of technology in different areas were calculated through various parameters. These are percentage area under High Yielding Variety Cereals, percentage area under High Yielding Variety pulses, area under hybrids vegetables, irrigated area, mechanically operated area, amount spent on fertilizer and pesticides, etc. in both developed and underdeveloped areas of North 24 Parganas District, West Bengal. The percentage area under High Yielding Variety Cereals in the developed and underdeveloped areas was 34.86 and 22.59. 42.07 percentages and 31.46 percentages for High Yielding Variety pulses respectively. In the case the area under irrigation it was 57.66 and 35.71 percent while for the mechanically operated area it was 10.60 and 3.13 percent respectively in developed and underdeveloped areas of North 24 Parganas district, West Bengal. It clearly showed that the extent of adoption of technology was significantly higher in the developed area over underdeveloped area. Better road network system helps the farmers in increasing his farm income, farm assets, cropping intensity, marketed surplus and the rate of adoption of new technology. With this background, an attempt is made in this paper to study the impact of Agricultural Infrastructure on the adoption of modern technology in agriculture in North 24 Parganas District, West Bengal.

Keywords: agricultural infrastructure, adoption of technology, farm income, road network

Procedia PDF Downloads 105
2776 Bilateral Simultaneous Acute Primary Angle Closure Glaucoma: A Remarkable Case

Authors: Nita Nurlaila Kadarwaty

Abstract:

Purpose: This study presents a rare case of bilateral Acute Primary Angle Closure Glaucoma (PACG). Method: A case report of a 64-year-old woman with a good outcome Acute PACG in both eyes who underwent phacotrabeculectomy surgery. Result: A 64-year-old woman complained of acute pain in both eyes, accompanied by decreased vision, photophobia, and seeing halos for three weeks. There was no history of trauma, steroid or other systemic drugs used, or intraocular surgery before. Ophthalmologic examination revealed a right eye (RE) visual acuity of 0.1, left eye (LE) 0.2. RE intraocular pressure (IOP) was 12 mmhg and LE: 36.4 mmHg in medication of timolol maleat ED and acetazolamide oral. Both eyes' anterior segments revealed mixed injection, corneal edema, shallow anterior chamber, posterior synechiae, mid-dilatation pupil with negative pupillary reflection, and cloudy lens without intumescent. There was a glaucomatous optic and closed iridocorneal angle on the gonioscopy. Initial treatments included oral acetazolamide and potassium aspartate 250 mg three times a day, timolol maleate ED 0.5% twice a day, and prednisolone acetate ED 1% four times a day. This patient underwent trabeculectomy, phacoemulsification, and implantation of IOL in both eyes. One week after the surgeries, both eyes showed decreased IOP and good visual improvement. Conclusion: Bilateral simultaneous Acute PACG is generally severe and results in a poor outcome. It causes rapidly progressive visual loss and is often irreversible. Phacotrabeculectomy has more benefits compared to only phacoemulsification for the intervention regarding the reduced IOP post-surgical.

Keywords: acute primary angle closure glaucoma, intraocular pressure, phacotrabeculectomy, glaucoma

Procedia PDF Downloads 78
2775 Multiscale Process Modeling Analysis for the Prediction of Composite Strength Allowables

Authors: Marianna Maiaru, Gregory M. Odegard

Abstract:

During the processing of high-performance thermoset polymer matrix composites, chemical reactions occur during elevated pressure and temperature cycles, causing the constituent monomers to crosslink and form a molecular network that gradually can sustain stress. As the crosslinking process progresses, the material naturally experiences a gradual shrinkage due to the increase in covalent bonds in the network. Once the cured composite completes the cure cycle and is brought to room temperature, the thermal expansion mismatch of the fibers and matrix cause additional residual stresses to form. These compounded residual stresses can compromise the reliability of the composite material and affect the composite strength. Composite process modeling is greatly complicated by the multiscale nature of the composite architecture. At the molecular level, the degree of cure controls the local shrinkage and thermal-mechanical properties of the thermoset. At the microscopic level, the local fiber architecture and packing affect the magnitudes and locations of residual stress concentrations. At the macroscopic level, the layup sequence controls the nature of crack initiation and propagation due to residual stresses. The goal of this research is use molecular dynamics (MD) and finite element analysis (FEA) to predict the residual stresses in composite laminates and the corresponding effect on composite failure. MD is used to predict the polymer shrinkage and thermomechanical properties as a function of degree of cure. This information is used as input into FEA to predict the residual stresses on the microscopic level resulting from the complete cure process. Virtual testing is subsequently conducted to predict strength allowables. Experimental characterization is used to validate the modeling.

Keywords: molecular dynamics, finite element analysis, processing modeling, multiscale modeling

Procedia PDF Downloads 96
2774 Classification System for Soft Tissue Injuries of Face: Bringing Objectiveness to Injury Severity

Authors: Garg Ramneesh, Uppal Sanjeev, Mittal Rajinder, Shah Sheerin, Jain Vikas, Singla Bhupinder

Abstract:

Introduction: Despite advances in trauma care, a classification system for soft tissue injuries of the face still needs to be objectively defined. Aim: To develop a classification system for soft tissue injuries of the face; that is objective, easy to remember, reproducible, universally applicable, aids in surgical management and helps to develop a structured data that can be used for future use. Material and Methods: This classification system includes those patients that need surgical management of facial injuries. Associated underlying bony fractures have been intentionally excluded. Depending upon the severity of soft tissue injury, these can be graded from 0 to IV (O-Abrasions, I-lacerations, II-Avulsion injuries with no skin loss, III-Avulsion injuries with skin loss that would need graft or flap cover, and IV-complex injuries). Anatomically, the face has been divided into three zones (Zone 1/2/3), as per aesthetic subunits. Zone 1e stands for injury of eyebrows; Zones 2 a/b/c stand for nose, upper eyelid and lower eyelid respectively; Zones 3 a/b/c stand for upper lip, lower lip and cheek respectively. Suffices R and L stand for right or left involved side, B for presence of foreign body like glass or pellets, C for extensive contamination and D for depth which can be graded as D 1/2/3 if depth is still fat, muscle or bone respectively. I is for damage to facial nerve or parotid duct. Results and conclusions: This classification system is easy to remember, clinically applicable and would help in standardization of surgical management of soft tissue injuries of face. Certain inherent limitations of this classification system are inability to classify sutured wounds, hematomas and injuries along or against Langer’s lines.

Keywords: soft tissue injuries, face, avulsion, classification

Procedia PDF Downloads 385
2773 Optimization of Manufacturing Process Parameters: An Empirical Study from Taiwan's Tech Companies

Authors: Chao-Ton Su, Li-Fei Chen

Abstract:

The parameter design is crucial to improving the uniformity of a product or process. In the product design stage, parameter design aims to determine the optimal settings for the parameters of each element in the system, thereby minimizing the functional deviations of the product. In the process design stage, parameter design aims to determine the operating settings of the manufacturing processes so that non-uniformity in manufacturing processes can be minimized. The parameter design, trying to minimize the influence of noise on the manufacturing system, plays an important role in the high-tech companies. Taiwan has many well-known high-tech companies, which show key roles in the global economy. Quality remains the most important factor that enables these companies to sustain their competitive advantage. In Taiwan however, many high-tech companies face various quality problems. A common challenge is related to root causes and defect patterns. In the R&D stage, root causes are often unknown, and defect patterns are difficult to classify. Additionally, data collection is not easy. Even when high-volume data can be collected, data interpretation is difficult. To overcome these challenges, high-tech companies in Taiwan use more advanced quality improvement tools. In addition to traditional statistical methods and quality tools, the new trend is the application of powerful tools, such as neural network, fuzzy theory, data mining, industrial engineering, operations research, and innovation skills. In this study, several examples of optimizing the parameter settings for the manufacturing process in Taiwan’s tech companies will be presented to illustrate proposed approach’s effectiveness. Finally, a discussion of using traditional experimental design versus the proposed approach for process optimization will be made.

Keywords: quality engineering, parameter design, neural network, genetic algorithm, experimental design

Procedia PDF Downloads 147
2772 Trial of Resorbable versus Non-Resorbable Sutures for Traumatic Lacerations of the Face: A Demonstration of Maxillo-Facial Trainee Led Research

Authors: R. Botrugno, S Basyuni, G. Nugent, I. Jenkyn, A. Ferro, H. Bennett, C. Hjalmarsson, J. Chu, V. Santhanam

Abstract:

This trainee led randomised controlled trial (RCT) aims to assess various outcomes for resorbable versus non-resorbable sutures for traumatic lacerations to the face. Within this trial of resorbable versus non-resorbable sutures for traumatic lacerations of the face (TORNFace), patient recruitment was facilitated by trainees who were employed at an NHS University Teaching Hospital in the United Kingdom. The trainees received appropriate training prior to recruiting patients for the trial. This included the completion of a national research e-learning module and face-to-face training that was provided locally. The locally delivered training provided an understanding of the eligibility criteria for the trial and the consent process. Existing trainee skills were utilised involving clinical photography to record baseline data and delivering the intervention based on the treatment arm selected. Eligible patients who required primary closure of traumatic lacerations of the face were randomised into one of two treatment arms. These comprised of resorbable (vicryl rapide) or non-resorbable sutures (ethilon). Primarily the cosmetic outcome was assessed. Secondary outcomes included: complications rates, health care economics, and patient-reported outcomes. Remote follow-up of recruited patients utilised photographs of the facial laceration which had received the intervention. These took place at 1 week, 3 months and 6 months post-intervention. This study aims to demonstrate an example of trainee-led research within the specialty of oral and maxillofacial surgery. The available data for the randomised controlled trial will also be presented.

Keywords: laceration, suture, trauma, trial

Procedia PDF Downloads 139
2771 Angiogenesis and Blood Flow: The Role of Blood Flow in Proliferation and Migration of Endothelial Cells

Authors: Hossein Bazmara, Kaamran Raahemifar, Mostafa Sefidgar, Madjid Soltani

Abstract:

Angiogenesis is formation of new blood vessels from existing vessels. Due to flow of blood in vessels, during angiogenesis, blood flow plays an important role in regulating the angiogenesis process. Multiple mathematical models of angiogenesis have been proposed to simulate the formation of the complicated network of capillaries around a tumor. In this work, a multi-scale model of angiogenesis is developed to show the effect of blood flow on capillaries and network formation. This model spans multiple temporal and spatial scales, i.e. intracellular (molecular), cellular, and extracellular (tissue) scales. In intracellular or molecular scale, the signaling cascade of endothelial cells is obtained. Two main stages in development of a vessel are considered. In the first stage, single sprouts are extended toward the tumor. In this stage, the main regulator of endothelial cells behavior is the signals from extracellular matrix. After anastomosis and formation of closed loops, blood flow starts in the capillaries. In this stage, blood flow induced signals regulate endothelial cells behaviors. In cellular scale, growth and migration of endothelial cells is modeled with a discrete lattice Monte Carlo method called cellular Pott's model (CPM). In extracellular (tissue) scale, diffusion of tumor angiogenic factors in the extracellular matrix, formation of closed loops (anastomosis), and shear stress induced by blood flow is considered. The model is able to simulate the formation of a closed loop and its extension. The results are validated against experimental data. The results show that, without blood flow, the capillaries are not able to maintain their integrity.

Keywords: angiogenesis, endothelial cells, multi-scale model, cellular Pott's model, signaling cascade

Procedia PDF Downloads 428
2770 An Investigation Enhancing E-Voting Application Performance

Authors: Aditya Verma

Abstract:

E-voting using blockchain provides us with a distributed system where data is present on each node present in the network and is reliable and secure too due to its immutability property. This work compares various blockchain consensus algorithms used for e-voting applications in the past, based on performance and node scalability, and chooses the optimal one and improves on one such previous implementation by proposing solutions for the loopholes of the optimally working blockchain consensus algorithm, in our chosen application, e-voting.

Keywords: blockchain, parallel bft, consensus algorithms, performance

Procedia PDF Downloads 171
2769 AI-Based Techniques for Online Social Media Network Sentiment Analysis: A Methodical Review

Authors: A. M. John-Otumu, M. M. Rahman, O. C. Nwokonkwo, M. C. Onuoha

Abstract:

Online social media networks have long served as a primary arena for group conversations, gossip, text-based information sharing and distribution. The use of natural language processing techniques for text classification and unbiased decision-making has not been far-fetched. Proper classification of this textual information in a given context has also been very difficult. As a result, we decided to conduct a systematic review of previous literature on sentiment classification and AI-based techniques that have been used in order to gain a better understanding of the process of designing and developing a robust and more accurate sentiment classifier that can correctly classify social media textual information of a given context between hate speech and inverted compliments with a high level of accuracy by assessing different artificial intelligence techniques. We evaluated over 250 articles from digital sources like ScienceDirect, ACM, Google Scholar, and IEEE Xplore and whittled down the number of research to 31. Findings revealed that Deep learning approaches such as CNN, RNN, BERT, and LSTM outperformed various machine learning techniques in terms of performance accuracy. A large dataset is also necessary for developing a robust sentiment classifier and can be obtained from places like Twitter, movie reviews, Kaggle, SST, and SemEval Task4. Hybrid Deep Learning techniques like CNN+LSTM, CNN+GRU, CNN+BERT outperformed single Deep Learning techniques and machine learning techniques. Python programming language outperformed Java programming language in terms of sentiment analyzer development due to its simplicity and AI-based library functionalities. Based on some of the important findings from this study, we made a recommendation for future research.

Keywords: artificial intelligence, natural language processing, sentiment analysis, social network, text

Procedia PDF Downloads 119
2768 Value of Unilateral Spinal Anaesthesia For Hip Fracture Surgery In The Elderly (75 Cases)

Authors: Fedili Benamar, Beloulou Mohamed Lamine, Ouahes Hassane, Ghattas Samir

Abstract:

Background and aims: While in Western countries, unilateral spinal anesthesia has been widely practiced for a long time, it remains little known in the local anesthesia community, and has not been the object of many studies. However, it is a simple, practical and effective technique. Our objective was to evaluate this practice in emergency anesthesia management in frail patients and to compare it with conventional spinal anesthesia. Methods: This is a prospective, observational, comparative study between hypobaric unilateral and conventional spinal anaesthesia for hip fracture surgery carried out in the operating room of the university military hospital of Staoueli. The work was spread over of 12-month period from 2019 to 2020. The parameters analyzed were hemodynamic variations, vasopressor use, block efficiency, postoperative adverse events, and postoperative morphine consumption. Results: -75 cases (mean age 72±14 years) -Group1= 41 patients (54.6%) divided into (ASA1=14.6% ASA2=60.98% ASA3=24.39%) single shoot spinal anaesthesia -Group2= 34 patients (45.3%) divided into (ASA1=2.9%, ASA2=26.4% ASA3=61.7%, ASA4=8.8%) unilateral hypobaric spinal anesthesia. -Hemodynamic variations were more severe in group 1 (51% hypotension) compared to 30% in group 2 RR=1.69 and odds ratio=2.4 -these variations were more marked in the ASA3 subgroup (group 1=70% hypotension versus group 2=30%) with an RR=2.33 and an odds ratio=5.44 -39% of group 1 required vasoactive drugs (15mg +/- 11) versus 32% of group 2 (8mg+/- 6.49) - no difference in the use of morphine in post-op. Conclusions: Within the limits of the population studied, this work demonstrates the clinical value of unilateral spinal anesthesia in ortho-trauma surgery in the frail patient.

Keywords: spinal anaesthesia, vasopressor, morphine, hypobaric unilateral spinal anesthesia, ropivacaine, hip surgery, eldery, hemodynamic

Procedia PDF Downloads 79
2767 Emerging Trends of Geographic Information Systems in Built Environment Education: A Bibliometric Review Analysis

Authors: Kiara Lawrence, Robynne Hansmann, Clive Greentsone

Abstract:

Geographic Information Systems (GIS) are used to store, analyze, visualize, capture and monitor geographic data. Built environment professionals as well as urban planners specifically, need to possess GIS skills to effectively and efficiently plan spaces. GIS application extends beyond the production of map artifacts and can be applied to relate to spatially referenced, real time data to support spatial visualization, analysis, community engagement, scenarios, and so forth. Though GIS has been used in the built environment for a few decades, its use in education has not been researched enough to draw conclusions on the trends in the last 20 years. The study looks to discover current and emerging trends of GIS in built environment education. A bibliometric review analysis methodology was carried out through exporting documents from Scopus and Web of Science using keywords around "Geographic information systems" OR "GIS" AND "built environment" OR “geography” OR "architecture" OR "quantity surveying" OR "construction" OR "urban planning" OR "town planning" AND “education” between the years 1994 to 2024. A total of 564 documents were identified and exported. The data was then analyzed using VosViewer software to generate network analysis and visualization maps on the co-occurrence of keywords, co-citation of documents and countries and co-author network analysis. By analyzing each aspect of the data, deeper insight of GIS within education can be understood. Preliminary results from Scopus indicate that GIS research focusing on built environment education seems to have peaked prior to 2014 with much focus on remote sensing, demography, land use, engineering education and so forth. This invaluable data can help in understanding and implementing GIS in built environment education in ways that are foundational and innovative to ensure that students are equipped with sufficient knowledge and skills to carry out tasks in their respective fields.

Keywords: architecture, built environment, construction, education, geography, geographic information systems, quantity surveying, town planning, urban planning

Procedia PDF Downloads 22
2766 A Mathematical Framework for Expanding a Railway’s Theoretical Capacity

Authors: Robert L. Burdett, Bayan Bevrani

Abstract:

Analytical techniques for measuring and planning railway capacity expansion activities have been considered in this article. A preliminary mathematical framework involving track duplication and section sub divisions is proposed for this task. In railways, these features have a great effect on network performance and for this reason they have been considered. Additional motivations have also arisen from the limitations of prior models that have not included them.

Keywords: capacity analysis, capacity expansion, railways, track sub division, track duplication

Procedia PDF Downloads 363
2765 Assessing the Effects of Sub-Concussive Head Impacts on Clinical Measures of Neurologic Function

Authors: Gianluca Del Rossi

Abstract:

Sub-concussive impacts occur frequently in collision sports such as American tackle football. Sub-concussive level impacts are defined as hits to the head that do not result in the clinical manifestation of concussion injury. Presently, there is limited information known about the short-term effects of repeated sub-concussive blows to the head. Therefore, the purpose of this investigation was to determine if standard clinical measures could detect acute impairments in neurologic function resulting from the accumulation of sub-concussive impacts throughout a season of high school American tackle football. Simple reaction time using the ruler-drop test, and oculomotor performance using the King-Devick (KD) test, were assessed in 15 athletes prior to the start of the athletic season, then repeated each week of the season, and once following its completion. The mean reaction times and fastest KD scores that were recorded or calculated from each study participant and from each test session were analyzed to assess for change in reaction time and oculomotor performance over the course of the American tackle football season. Analyses of KD data revealed improvements in oculomotor performance from baseline measurements (i.e., decreased time), with most weekly comparisons to baseline being significantly different. Statistical tests performed on the mean reaction times obtained via the ruler-drop test throughout the season revealed statistically significant declines (i.e., increased time) between baseline and weeks 3, 4, 10, and 12 of the athletic season. The inconsistent and contrasting findings between KD data and reaction time demonstrate the need to identify more robust clinical measures to definitively assess if repeated sub-concussive impacts to the head are acutely detrimental to patients.

Keywords: head injury, mTBI and sport, subclinical head trauma, sub-concussive impacts

Procedia PDF Downloads 211
2764 Kissing Cervical Spine Schwannomas in a Young Female from a Low Resource Setting: A Case Report

Authors: Joseph Mary Ssembatya, Blessing Michael Taremwa

Abstract:

Background: Multiple schwannomas are typically associated with neurofibromatosis type 1 (NF1), but rare cases occur independently of neurofibromatosis. Schwannomas are benign, slow-growing tumors, primarily affecting the cervical and lumbar spine. When large, they may extend over multiple vertebral levels, posing surgical challenges. Case Presentation: A 13-year-old Ugandan Munyankore female patient, presented with a 6-year history of progressive quadriparesis, particularly in the lower limbs. Clinical examination showed hypertonia and hyperreflexia, with no indicators of neurofibromatosis or prior trauma. MRI revealed two “kissing” schwannomas extending from C2 to T2 in the cervical spine. Decompressive surgery was performed through laminoplasty and partial lesion resection, and histology confirmed schwannoma. Two weeks postoperatively, the patient experienced cerebrospinal fluid (CSF) leakage, neck pain, and headache, which required re-operation and duraplasty. Following these interventions, the patient’s neurological status stabilized, with noted improvement in lower limb strength. Discussion: “Kissing” schwannomas are most frequently documented in the cerebellopontine angle, rarely in the spine, and even more rarely in children. While multiple schwannomas are often associated with NF2, this case had no family history or clinical signs of the disorder. Giant invasive spinal schwannomas (GISS) that span multiple vertebrae demand intricate surgical approaches due to their proximity to neurovascular structures. Conclusion: This is the first reported case of kissing cervical schwannomas in a young patient from a low- to middle-income country. Surgical decompression, though challenging, is critical for neurological recovery in such advanced cases.

Keywords: kissing schwannoma, cervical spine, low resource, young, uganda

Procedia PDF Downloads 24
2763 Disease Trajectories in Relation to Poor Sleep Health in the UK Biobank

Authors: Jiajia Peng, Jianqing Qiu, Jianjun Ren, Yu Zhao

Abstract:

Background: Insufficient sleep has been focused on as a public health epidemic. However, a comprehensive analysis of disease trajectory associated with unhealthy sleep habits is still unclear currently. Objective: This study sought to comprehensively clarify the disease's trajectory in relation to the overall poor sleep pattern and unhealthy sleep behaviors separately. Methods: 410,682 participants with available information on sleep behaviors were collected from the UK Biobank at the baseline visit (2006-2010). These participants were classified as having high- and low risk of each sleep behavior and were followed from 2006 to 2020 to identify the increased risks of diseases. We used Cox regression to estimate the associations of high-risk sleep behaviors with the elevated risks of diseases, and further established diseases trajectory using significant diseases. The low-risk unhealthy sleep behaviors were defined as the reference. Thereafter, we also examined the trajectory of diseases linked with the overall poor sleep pattern by combining all of these unhealthy sleep behaviors. To visualize the disease's trajectory, network analysis was used for presenting these trajectories. Results: During a median follow-up of 12.2 years, we noted 12 medical conditions in relation to unhealthy sleep behaviors and the overall poor sleep pattern among 410,682 participants with a median age of 58.0 years. The majority of participants had unhealthy sleep behaviors; in particular, 75.62% with frequent sleeplessness, and 72.12% had abnormal sleep durations. Besides, a total of 16,032 individuals with an overall poor sleep pattern were identified. In general, three major disease clusters were associated with overall poor sleep status and unhealthy sleep behaviors according to the disease trajectory and network analysis, mainly in the digestive, musculoskeletal and connective tissue, and cardiometabolic systems. Of note, two circularity disease pairs (I25→I20 and I48→I50) showed the highest risks following these unhealthy sleep habits. Additionally, significant differences in disease trajectories were observed in relation to sex and sleep medication among individuals with poor sleep status. Conclusions: We identified the major disease clusters and high-risk diseases following participants with overall poor sleep health and unhealthy sleep behaviors, respectively. It may suggest the need to investigate the potential interventions targeting these key pathways.

Keywords: sleep, poor sleep, unhealthy sleep behaviors, disease trajectory, UK Biobank

Procedia PDF Downloads 103
2762 GRABTAXI: A Taxi Revolution in Thailand

Authors: Danuvasin Charoen

Abstract:

The study investigates the business process and business model of GRABTAXI. The paper also discusses how the company implemented strategies to gain competitive advantages. The data is derived from the analysis of secondary data and the in-depth interviews among staffs, taxi drivers, and key customers. The findings indicated that the company’s competitive advantages come from being the first mover, emphasising on the ease of use and tangible benefits of application, and using network effect strategy.

Keywords: taxi, mobile application, innovative business model, Thailand

Procedia PDF Downloads 301
2761 Intrusion Detection Techniques in NaaS in the Cloud: A Review

Authors: Rashid Mahmood

Abstract:

The network as a service (NaaS) usage has been well-known from the last few years in the many applications, like mission critical applications. In the NaaS, prevention method is not adequate as the security concerned, so the detection method should be added to the security issues in NaaS. The authentication and encryption are considered the first solution of the NaaS problem whereas now these are not sufficient as NaaS use is increasing. In this paper, we are going to present the concept of intrusion detection and then survey some of major intrusion detection techniques in NaaS and aim to compare in some important fields.

Keywords: IDS, cloud, naas, detection

Procedia PDF Downloads 327
2760 Improving Lane Detection for Autonomous Vehicles Using Deep Transfer Learning

Authors: Richard O’Riordan, Saritha Unnikrishnan

Abstract:

Autonomous Vehicles (AVs) are incorporating an increasing number of ADAS features, including automated lane-keeping systems. In recent years, many research papers into lane detection algorithms have been published, varying from computer vision techniques to deep learning methods. The transition from lower levels of autonomy defined in the SAE framework and the progression to higher autonomy levels requires increasingly complex models and algorithms that must be highly reliable in their operation and functionality capacities. Furthermore, these algorithms have no room for error when operating at high levels of autonomy. Although the current research details existing computer vision and deep learning algorithms and their methodologies and individual results, the research also details challenges faced by the algorithms and the resources needed to operate, along with shortcomings experienced during their detection of lanes in certain weather and lighting conditions. This paper will explore these shortcomings and attempt to implement a lane detection algorithm that could be used to achieve improvements in AV lane detection systems. This paper uses a pre-trained LaneNet model to detect lane or non-lane pixels using binary segmentation as the base detection method using an existing dataset BDD100k followed by a custom dataset generated locally. The selected roads will be modern well-laid roads with up-to-date infrastructure and lane markings, while the second road network will be an older road with infrastructure and lane markings reflecting the road network's age. The performance of the proposed method will be evaluated on the custom dataset to compare its performance to the BDD100k dataset. In summary, this paper will use Transfer Learning to provide a fast and robust lane detection algorithm that can handle various road conditions and provide accurate lane detection.

Keywords: ADAS, autonomous vehicles, deep learning, LaneNet, lane detection

Procedia PDF Downloads 109