Search results for: reduce order aeroelastic model (ROAM)
28512 Evaluation of Solid-Gas Separation Efficiency in Natural Gas Cyclones
Authors: W. I. Mazyan, A. Ahmadi, M. Hoorfar
Abstract:
Objectives/Scope: This paper proposes a mathematical model for calculating the solid-gas separation efficiency in cyclones. This model provides better agreement with experimental results compared to existing mathematical models. Methods: The separation ratio efficiency, ϵsp, is evaluated by calculating the outlet to inlet count ratio. Similar to mathematical derivations in the literature, the inlet and outlet particle count were evaluated based on Eulerian approach. The model also includes the external forces acting on the particle (i.e., centrifugal and drag forces). In addition, the proposed model evaluates the exact length that the particle travels inside the cyclone for the evaluation of number of turns inside the cyclone. The separation efficiency model derivation using Stoke’s law considers the effect of the inlet tangential velocity on the separation performance. In cyclones, the inlet velocity is a very important factor in determining the performance of the cyclone separation. Therefore, the proposed model provides accurate estimation of actual cyclone separation efficiency. Results/Observations/Conclusion: The separation ratio efficiency, ϵsp, is studied to evaluate the performance of the cyclone for particles ranging from 1 microns to 10 microns. The proposed model is compared with the results in the literature. It is shown that the proposed mathematical model indicates an error of 7% between its efficiency and the efficiency obtained from the experimental results for 1 micron particles. At the same time, the proposed model gives the user the flexibility to analyze the separation efficiency at different inlet velocities. Additive Information: The proposed model determines the separation efficiency accurately and could also be used to optimize the separation efficiency of cyclones at low cost through trial and error testing, through dimensional changes to enhance separation and through increasing the particle centrifugal forces. Ultimately, the proposed model provides a powerful tool to optimize and enhance existing cyclones at low cost.Keywords: cyclone efficiency, solid-gas separation, mathematical model, models error comparison
Procedia PDF Downloads 39628511 Development of an Instructional Model for Health Education Based On Social Cognitive Theory and Strategic Life Planning to Enhance Self-Regulation and Learning Achievement of Lower Secondary School Students
Authors: Adisorn Bansong, Walai Isarankura Na Ayudhaya, Aumporn Makanong
Abstract:
A Development of an Instructional Model for Health Education was the aim to develop and study the effectiveness of an instructional model for health education to enhance self-regulation and learning achievement of lower secondary school students. It was the Quasi-Experimental Designs, used a Single-group Interrupted Time-series Designs, conducted by 2 phases: 1. To develop an instructional model based on Social Cognitive Theory and Strategic Life Planning. 2. To trial and evaluate effectiveness of an instructional model. The results as the following: i. An Instructional Model for Health Education consists of five main components: a) Attention b) Forethought c) Tactic Planning d) Execution and e) Reflection. ii. After an Instructional Model for Health Education has used for a semester trial, found the 4.07 percent of sample’s Self-Regulation higher and learning achievement on post-test were significantly higher than pre-test at .05 levels (p = .033, .000).Keywords: social cognitive theory, strategic life planning, self-regulation, learning achievement
Procedia PDF Downloads 46828510 An Improved Robust Algorithm Based on Cubature Kalman Filter for Single-Frequency Global Navigation Satellite System/Inertial Navigation Tightly Coupled System
Authors: Hao Wang, Shuguo Pan
Abstract:
The Global Navigation Satellite System (GNSS) signal received by the dynamic vehicle in the harsh environment will be frequently interfered with and blocked, which generates gross error affecting the positioning accuracy of the GNSS/Inertial Navigation System (INS) integrated navigation. Therefore, this paper put forward an improved robust Cubature Kalman filter (CKF) algorithm for single-frequency GNSS/INS tightly coupled system ambiguity resolution. Firstly, the dynamic model and measurement model of a single-frequency GNSS/INS tightly coupled system was established, and the method for GNSS integer ambiguity resolution with INS aided is studied. Then, we analyzed the influence of pseudo-range observation with gross error on GNSS/INS integrated positioning accuracy. To reduce the influence of outliers, this paper improved the CKF algorithm and realized an intelligent selection of robust strategies by judging the ill-conditioned matrix. Finally, a field navigation test was performed to demonstrate the effectiveness of the proposed algorithm based on the double-differenced solution mode. The experiment has proved the improved robust algorithm can greatly weaken the influence of separate, continuous, and hybrid observation anomalies for enhancing the reliability and accuracy of GNSS/INS tightly coupled navigation solutions.Keywords: GNSS/INS integrated navigation, ambiguity resolution, Cubature Kalman filter, Robust algorithm
Procedia PDF Downloads 10128509 Application of Rapid Prototyping to Create Additive Prototype Using Computer System
Authors: Meftah O. Bashir, Fatma A. Karkory
Abstract:
Rapid prototyping is a new group of manufacturing processes, which allows fabrication of physical of any complexity using a layer by layer deposition technique directly from a computer system. The rapid prototyping process greatly reduces the time and cost necessary to bring a new product to market. The prototypes made by these systems are used in a range of industrial application including design evaluation, verification, testing, and as patterns for casting processes. These processes employ a variety of materials and mechanisms to build up the layers to build the part. The present work was to build a FDM prototyping machine that could control the X-Y motion and material deposition, to generate two-dimensional and three-dimensional complex shapes. This study focused on the deposition of wax material. This work was to find out the properties of the wax materials used in this work in order to enable better control of the FDM process. This study will look at the integration of a computer controlled electro-mechanical system with the traditional FDM additive prototyping process. The characteristics of the wax were also analysed in order to optimize the model production process. These included wax phase change temperature, wax viscosity and wax droplet shape during processing.Keywords: rapid prototyping, wax, manufacturing processes, shape
Procedia PDF Downloads 46628508 Unlocking Green Hydrogen Potential: A Machine Learning-Based Assessment
Authors: Said Alshukri, Mazhar Hussain Malik
Abstract:
Green hydrogen is hydrogen produced using renewable energy sources. In the last few years, Oman aimed to reduce its dependency on fossil fuels. Recently, the hydrogen economy has become a global trend, and many countries have started to investigate the feasibility of implementing this sector. Oman created an alliance to establish the policy and rules for this sector. With motivation coming from both global and local interest in green hydrogen, this paper investigates the potential of producing hydrogen from wind and solar energies in three different locations in Oman, namely Duqm, Salalah, and Sohar. By using machine learning-based software “WEKA” and local metrological data, the project was designed to figure out which location has the highest wind and solar energy potential. First, various supervised models were tested to obtain their prediction accuracy, and it was found that the Random Forest (RF) model has the best prediction performance. The RF model was applied to 2021 metrological data for each location, and the results indicated that Duqm has the highest wind and solar energy potential. The system of one wind turbine in Duqm can produce 8335 MWh/year, which could be utilized in the water electrolysis process to produce 88847 kg of hydrogen mass, while a solar system consisting of 2820 solar cells is estimated to produce 1666.223 MWh/ year which is capable of producing 177591 kg of hydrogen mass.Keywords: green hydrogen, machine learning, wind and solar energies, WEKA, supervised models, random forest
Procedia PDF Downloads 8028507 A Variant of Newton's Method with Free Second-Order Derivative
Authors: Young Hee Geum
Abstract:
In this paper, we present the iterative method and determine the control parameters to converge cubically for solving nonlinear equations. In addition, we derive the asymptotic error constant.Keywords: asymptotic error constant, iterative method, multiple root, root-finding, order of convergent
Procedia PDF Downloads 29528506 LACGC: Business Sustainability Research Model for Generations Consumption, Creation, and Implementation of Knowledge: Academic and Non-Academic
Authors: Satpreet Singh
Abstract:
This paper introduces the new LACGC model to sustain the academic and non-academic business to future educational and organizational generations. The consumption of knowledge and the creation of new knowledge is a strength and focal interest of all academics and Non-academic organizations. Implementing newly created knowledge sustains the businesses to the next generation with growth without detriment. Existing models like the Scholar-practitioner model and Organization knowledge creation models focus specifically on academic or non-academic, not both. LACGC model can be used for both Academic and Non-academic at the domestic or international level. Researchers and scholars play a substantial role in finding literature and practice gaps in academic and non-academic disciplines. LACGC model has unrestricted the number of recurrences because the Consumption, Creation, and implementation of new ideas, disciplines, systems, and knowledge is a never-ending process and must continue from one generation to the next.Keywords: academics, consumption, creation, generations, non-academics, research, sustainability
Procedia PDF Downloads 19828505 Introduction to Various Innovative Techniques Suggested for Seismic Hazard Assessment
Authors: Deepshikha Shukla, C. H. Solanki, Mayank K. Desai
Abstract:
Amongst all the natural hazards, earthquakes have the potential for causing the greatest damages. Since the earthquake forces are random in nature and unpredictable, the quantification of the hazards becomes important in order to assess the hazards. The time and place of a future earthquake are both uncertain. Since earthquakes can neither be prevented nor be predicted, engineers have to design and construct in such a way, that the damage to life and property are minimized. Seismic hazard analysis plays an important role in earthquake design structures by providing a rational value of input parameter. In this paper, both mathematical, as well as computational methods adopted by researchers globally in the past five years, will be discussed. Some mathematical approaches involving the concepts of Poisson’s ratio, Convex Set Theory, Empirical Green’s Function, Bayesian probability estimation applied for seismic hazard and FOSM (first-order second-moment) algorithm methods will be discussed. Computational approaches and numerical model SSIFiBo developed in MATLAB to study dynamic soil-structure interaction problem is discussed in this paper. The GIS-based tool will also be discussed which is predominantly used in the assessment of seismic hazards.Keywords: computational methods, MATLAB, seismic hazard, seismic measurements
Procedia PDF Downloads 34228504 Injection Effect of Botulinum Toxin A on Hallux Valgus Deformity and Pain
Authors: Alireza Moghtaderi, Negin Khakpour
Abstract:
Hallux Valgus is a kind of Toes aberration where the Metatarsophalangeal joint that connects the big toe to the foot, leading to the inner side and a protrusion on the inner surface of toe arise. This study aimed to determine the effect of botulinum toxin A injection to reduce pain and deviation angle of the thumb in Hallux Valgus and to increase outcomes of treatment as an adjuvant therapy. Randomized clinical study was performed on 18 patients at the Clinic of Physical Medicine and Rehabilitation, Isfahan University of Medical Sciences. In this study the Halgvs valgus angle (HVA) between the metatarsals (IMA) and cartilage distal metatarsal angle (DMAA) and pain were assessed before and after injection. Average of Hallux Valgus angle before and after Botox injections were 28/89 ± 10/21 and 21/56 ± 8/22 degrees and the angle deviation in the 6 months after treatment was significantly improved (p <0.001). Injection of botulinum toxin A is a suitable and acceptable method to reform the skeleton deformities and also to reduce the pain in patients with Hallux valgus.Keywords: metatasal, hallux valgus, pain, botulinum toxuin
Procedia PDF Downloads 13028503 Vortices Structure in Internal Laminar and Turbulent Flows
Authors: Farid Gaci, Zoubir Nemouchi
Abstract:
A numerical study of laminar and turbulent fluid flows in 90° bend of square section was carried out. Three-dimensional meshes, based on hexahedral cells, were generated. The QUICK scheme was employed to discretize the convective term in the transport equations. The SIMPLE algorithm was adopted to treat the velocity-pressure coupling. The flow structure obtained showed interesting features such as recirculation zones and counter-rotating pairs of vortices. The performance of three different turbulence models was evaluated: the standard k- ω model, the SST k-ω model and the Reynolds Stress Model (RSM). Overall, it was found that, the multi-equation model performed better than the two equation models. In fact, the existence of four pairs of counter rotating cells, in the straight duct upstream of the bend, were predicted by the RSM closure but not by the standard eddy viscosity model nor the SST k-ω model. The analysis of the results led to a better understanding of the induced three dimensional secondary flows and the behavior of the local pressure coefficient and the friction coefficient.Keywords: curved duct, counter-rotating cells, secondary flow, laminar, turbulent
Procedia PDF Downloads 33728502 Long-Baseline Single-epoch RTK Positioning Method Based on BDS-3 and Galileo Penta-Frequency Ionosphere-Reduced Combinations
Authors: Liwei Liu, Shuguo Pan, Wang Gao
Abstract:
In order to take full advantages of the BDS-3 penta-frequency signals in the long-baseline RTK positioning, a long-baseline RTK positioning method based on the BDS-3 penta-frequency ionospheric-reduced (IR) combinations is proposed. First, the low noise and weak ionospheric delay characteristics of the multi-frequency combined observations of BDS-3is analyzed. Second, the multi-frequency extra-wide-lane (EWL)/ wide-lane (WL) combinations with long-wavelengths are constructed. Third, the fixed IR EWL combinations are used to constrain the IR WL, then constrain narrow-lane (NL)ambiguityies and start multi-epoch filtering. There is no need to consider the influence of ionospheric parameters in the third step. Compared with the estimated ionospheric model, the proposed method reduces the number of parameters by half, so it is suitable for the use of multi-frequency and multi-system real-time RTK. The results using real data show that the stepwise fixed model of the IR EWL/WL/NL combinations can realize long-baseline instantaneous cimeter-level positioning.Keywords: penta-frequency, ionospheric-reduced (IR), RTK positioning, long-baseline
Procedia PDF Downloads 17128501 Optimizing Stormwater Sampling Design for Estimation of Pollutant Loads
Authors: Raja Umer Sajjad, Chang Hee Lee
Abstract:
Stormwater runoff is the leading contributor to pollution of receiving waters. In response, an efficient stormwater monitoring program is required to quantify and eventually reduce stormwater pollution. The overall goals of stormwater monitoring programs primarily include the identification of high-risk dischargers and the development of total maximum daily loads (TMDLs). The challenge in developing better monitoring program is to reduce the variability in flux estimates due to sampling errors; however, the success of monitoring program mainly depends on the accuracy of the estimates. Apart from sampling errors, manpower and budgetary constraints also influence the quality of the estimates. This study attempted to develop optimum stormwater monitoring design considering both cost and the quality of the estimated pollutants flux. Three years stormwater monitoring data (2012 – 2014) from a mix land use located within Geumhak watershed South Korea was evaluated. The regional climate is humid and precipitation is usually well distributed through the year. The investigation of a large number of water quality parameters is time-consuming and resource intensive. In order to identify a suite of easy-to-measure parameters to act as a surrogate, Principal Component Analysis (PCA) was applied. Means, standard deviations, coefficient of variation (CV) and other simple statistics were performed using multivariate statistical analysis software SPSS 22.0. The implication of sampling time on monitoring results, number of samples required during the storm event and impact of seasonal first flush were also identified. Based on the observations derived from the PCA biplot and the correlation matrix, total suspended solids (TSS) was identified as a potential surrogate for turbidity, total phosphorus and for heavy metals like lead, chromium, and copper whereas, Chemical Oxygen Demand (COD) was identified as surrogate for organic matter. The CV among different monitored water quality parameters were found higher (ranged from 3.8 to 15.5). It suggests that use of grab sampling design to estimate the mass emission rates in the study area can lead to errors due to large variability. TSS discharge load calculation error was found only 2 % with two different sample size approaches; i.e. 17 samples per storm event and equally distributed 6 samples per storm event. Both seasonal first flush and event first flush phenomena for most water quality parameters were observed in the study area. Samples taken at the initial stage of storm event generally overestimate the mass emissions; however, it was found that collecting a grab sample after initial hour of storm event more closely approximates the mean concentration of the event. It was concluded that site and regional climate specific interventions can be made to optimize the stormwater monitoring program in order to make it more effective and economical.Keywords: first flush, pollutant load, stormwater monitoring, surrogate parameters
Procedia PDF Downloads 24228500 Urban Security and Social Sustainability in Cities of Developing Countries
Authors: Taimaz Larimian, Negin Sadeghi
Abstract:
Very little is known about the impacts of urban security on the level of social sustainability within the cities of developing countries. Urban security is still struggling to find its position in the social sustainability agenda, despite the significant role of safety and security on different aspects of peoples’ lives. This paper argues that urban safety and security should be better integrated within the social sustainability framework. With this aim, this study investigates the hypothesized relationship between social sustainability and Crime Prevention through Environmental Design (CPTED) approach at the neighborhood scale. This study proposes a model of key influential dimensions of CPTED analyzed into localized factors and sub-factors. These factors are then prioritized using pairwise comparison logic and fuzzy group Analytic Hierarchy Process (AHP) method in order to determine the relative importance of each factor on achieving social sustainability. The proposed model then investigates social sustainability in six case study neighborhoods of Isfahan city based on residents’ perceptions of safety within their neighborhood. Mixed method of data collection is used by using a self-administered questionnaire to explore the residents’ perceptions of social sustainability in their area of residency followed by an on-site observation to measure the CPTED construct. In all, 150 respondents from selected neighborhoods were involved in this research. The model indicates that CPTED approach has a significant direct influence on increasing social sustainability in neighborhood scale. According to the findings, among different dimensions of CPTED, ‘activity support’ and ‘image/ management’ have the most influence on people’s feeling of safety within studied areas. This model represents a useful designing tool in achieving urban safety and security during the development of more socially sustainable and user-friendly urban areas.Keywords: crime prevention through environmental design (CPTED), developing countries, fuzzy analytic hierarchy process (FAHP), social sustainability
Procedia PDF Downloads 30828499 The Network Relative Model Accuracy (NeRMA) Score: A Method to Quantify the Accuracy of Prediction Models in a Concurrent External Validation
Authors: Carl van Walraven, Meltem Tuna
Abstract:
Background: Network meta-analysis (NMA) quantifies the relative efficacy of 3 or more interventions from studies containing a subgroup of interventions. This study applied the analytical approach of NMA to quantify the relative accuracy of prediction models with distinct inclusion criteria that are evaluated on a common population (‘concurrent external validation’). Methods: We simulated binary events in 5000 patients using a known risk function. We biased the risk function and modified its precision by pre-specified amounts to create 15 prediction models with varying accuracy and distinct patient applicability. Prediction model accuracy was measured using the Scaled Brier Score (SBS). Overall prediction model accuracy was measured using fixed-effects methods that accounted for model applicability patterns. Prediction model accuracy was summarized as the Network Relative Model Accuracy (NeRMA) Score which ranges from -∞ through 0 (accuracy of random guessing) to 1 (accuracy of most accurate model in concurrent external validation). Results: The unbiased prediction model had the highest SBS. The NeRMA score correctly ranked all simulated prediction models by the extent of bias from the known risk function. A SAS macro and R-function was created to implement the NeRMA Score. Conclusions: The NeRMA Score makes it possible to quantify the accuracy of binomial prediction models having distinct inclusion criteria in a concurrent external validation.Keywords: prediction model accuracy, scaled brier score, fixed effects methods, concurrent external validation
Procedia PDF Downloads 23828498 Effect of Tool Size and Cavity Depth on Response Characteristics during Electric Discharge Machining on Superalloy Metal - An Experimental Investigation
Authors: Sudhanshu Kumar
Abstract:
Electrical discharge machining, also known as EDM, process is one of the most applicable machining process for removal of material in hard to machine materials like superalloy metals. EDM process utilizes electrical energy into sparks to erode the metals in presence of dielectric medium. In the present investigation, superalloy, Inconel 718 has been selected as workpiece and electrolytic copper as tool electrode. Attempt has been made to understand the effect of size of tool with varying cavity depth during drilling of hole through EDM process. In order to systematic investigate, tool size in terms of tool diameter and cavity depth along with other important electrical parameters namely, peak current, pulse-on time and servo voltage have been varied at three different values and the experiments has been designed using fractional factorial (Taguchi) method. Each experiment has been repeated twice under the same condition in order to understand the variability within the experiments. The effect of variations in parameters has been evaluated in terms of material removal rate, tool wear rate and surface roughness. Results revel that change in tool diameter during machining affects the response characteristics significantly. Larger tool diameter yielded 13% more material removal rate than smaller tool diameter. Analysis of the effect of variation in cavity depth is notable. There is no significant effect of cavity depth on material removal rate, tool wear rate and surface quality. This indicates that number of experiments can be performed to analyze other parameters effect even at smaller depth of cavity which can reduce the cost and time of experiments. Further, statistical analysis has been carried out to identify the interaction effect between parameters.Keywords: EDM, Inconel 718, material removal rate, roughness, tool wear, tool size
Procedia PDF Downloads 21828497 The Mechanical Properties of a Small-Size Seismic Isolation Rubber Bearing for Bridges
Authors: Yi F. Wu, Ai Q. Li, Hao Wang
Abstract:
Taking a novel type of bridge bearings with the diameter being 100mm as an example, the theoretical analysis, the experimental research as well as the numerical simulation of the bearing were conducted. Since the normal compression-shear machines cannot be applied to the small-size bearing, an improved device to test the properties of the bearing was proposed and fabricated. Besides, the simulation of the bearing was conducted on the basis of the explicit finite element software ANSYS/LS-DYNA, and some parameters of the bearing are modified in the finite element model to effectively reduce the computation cost. Results show that all the research methods are capable of revealing the fundamental properties of the small-size bearings, and a combined use of these methods can better catch both the integral properties and the inner detailed mechanical behaviors of the bearing.Keywords: ANSYS/LS-DYNA, compression shear, contact analysis, explicit algorithm, small-size
Procedia PDF Downloads 18228496 Virtual Co-Creation Model in Hijab Fashion Industry: Business Model Approach
Authors: Lisandy A. Suryana, Lidia Mayangsari, Santi Novani
Abstract:
Creative industry in Indonesia become an important aspect of the economy. One of the sectors of creative industry which give the highest contribution toward Indonesia’s GDP is fashion sector. In line with the target of Indonesia in 2020 to be the qibla’ of moeslem fashion of the world, all of the stakeholders of the business ecosystem should collaborate. Rather than focus on the internal aspects of producer, external aspects such as customers, government, community, etc. become important to be involved in the ecosystem to support the development and sustainability of those fashion sector. Unfortunately, although Indonesia has the biggest moeslem population, the number of hijab business penetration only 10%. Therefore, this research aims to analyze and develop the virtual co-creation platform for hijab creative industry as the strategy to achieve sustainability and increase the market share. This preliminary research describes the main stakeholders in the hijab creative industry based on business model approach. This business model is adapted by considering the service science context, and the data is collected by using the qualitative approach especially in-depth interview. This business model shows the relationship between resource integration, value co-creation, the value proposition of the company, and also the financial aspect of the business.Keywords: value co-creation, Hijab Fashion Industry, creative industry, service business model, business model canvas
Procedia PDF Downloads 38128495 Conceptual Model Design for E-Readiness of Entrepreneurial City Case Study: Entrepreneurial Cities in Iran
Authors: Mohsen Yaghmoor, Sima Radmanesh, Ameneh Gholami
Abstract:
Cities are the principal ground for manifestation of an information society. To create an entrepreneurial city, it is required that just and equal access to opportunities are provided for all segments of the city and technologies are intelligently employed. Furthermore, it is necessary for us to be electronically ready in all political, economic, social, cultural, and technological aspects. Also e-city creates enormous potentials and opportunities for development of the entrepreneurial city. After improvement of e-readiness for establishment of entrepreneurial e-city, potentials, and capitals of the city become productive and more suitable opportunities are offered to citizens, state sectors, and private sectors in order to become entrepreneurs. To create and develop an entrepreneurial city, we need to have readiness to detection and creation of entrepreneurial opportunities and finally exploitation of these opportunities which, in turn, lead to use of entrepreneurial events and their quality in the city. In this model, the quality of entrepreneurial events, the productivity of activities, the necessity of reducing the digital gap, positive and active attendance in information society and compatibility and aligning with the global society are emphasized. In an entrepreneurial city, citizens are not help seekers, private sector is not passive, and the government is entrepreneurial.Keywords: e-city, e-readiness, entrepreneurial city, entrepreneurial events, technological entrepreneurship
Procedia PDF Downloads 38628494 Interaction between Space Syntax and Agent-Based Approaches for Vehicle Volume Modelling
Authors: Chuan Yang, Jing Bie, Panagiotis Psimoulis, Zhong Wang
Abstract:
Modelling and understanding vehicle volume distribution over the urban network are essential for urban design and transport planning. The space syntax approach was widely applied as the main conceptual and methodological framework for contemporary vehicle volume models with the help of the statistical method of multiple regression analysis (MRA). However, the MRA model with space syntax variables shows a limitation in vehicle volume predicting in accounting for the crossed effect of the urban configurational characters and socio-economic factors. The aim of this paper is to construct models by interacting with the combined impact of the street network structure and socio-economic factors. In this paper, we present a multilevel linear (ML) and an agent-based (AB) vehicle volume model at an urban scale interacting with space syntax theoretical framework. The ML model allowed random effects of urban configurational characteristics in different urban contexts. And the AB model was developed with the incorporation of transformed space syntax components of the MRA models into the agents’ spatial behaviour. Three models were implemented in the same urban environment. The ML model exhibit superiority over the original MRA model in identifying the relative impacts of the configurational characters and macro-scale socio-economic factors that shape vehicle movement distribution over the city. Compared with the ML model, the suggested AB model represented the ability to estimate vehicle volume in the urban network considering the combined effects of configurational characters and land-use patterns at the street segment level.Keywords: space syntax, vehicle volume modeling, multilevel model, agent-based model
Procedia PDF Downloads 14728493 An Integrated Mixed-Integer Programming Model to Address Concurrent Project Scheduling and Material Ordering
Authors: Babak H. Tabrizi, Seyed Farid Ghaderi
Abstract:
Concurrent planning of project scheduling and material ordering can provide more flexibility to the project scheduling problem, as the project execution costs can be enhanced. Hence, the issue has been taken into account in this paper. To do so, a mixed-integer mathematical model is developed which considers the aforementioned flexibility, in addition to the materials quantity discount and space availability restrictions. Moreover, the activities duration has been treated as decision variables. Finally, the efficiency of the proposed model is tested by different instances. Additionally, the influence of the aforementioned parameters is investigated on the model performance.Keywords: material ordering, project scheduling, quantity discount, space availability
Procedia PDF Downloads 36928492 Optimal Placement and Sizing of Distributed Generation in Microgrid for Power Loss Reduction and Voltage Profile Improvement
Authors: Ferinar Moaidi, Mahdi Moaidi
Abstract:
Environmental issues and the ever-increasing in demand of electrical energy make it necessary to have distributed generation (DG) resources in the power system. In this research, in order to realize the goals of reducing losses and improving the voltage profile in a microgrid, the allocation and sizing of DGs have been used. The proposed Genetic Algorithm (GA) is described from the array of artificial intelligence methods for solving the problem. The algorithm is implemented on the IEEE 33 buses network. This study is presented in two scenarios, primarily to illustrate the effect of location and determination of DGs has been done to reduce losses and improve the voltage profile. On the other hand, decisions made with the one-level assumptions of load are not universally accepted for all levels of load. Therefore, in this study, load modelling is performed and the results are presented for multi-levels load state.Keywords: distributed generation, genetic algorithm, microgrid, load modelling, loss reduction, voltage improvement
Procedia PDF Downloads 14528491 A Fuzzy Structural Equation Model for Development of a Safety Performance Index Assessment Tool in Construction Sites
Authors: Murat Gunduz, Mustafa Ozdemir
Abstract:
In this research, a framework is to be proposed to model the safety performance in construction sites. Determinants of safety performance are to be defined through extensive literature review and a multidimensional safety performance model is to be developed. In this context, a questionnaire is to be administered to construction companies with sites. The collected data through questionnaires including linguistic terms are then to be defuzzified to get concrete numbers by using fuzzy set theory which provides strong and significant instruments for the measurement of ambiguities and provides the opportunity to meaningfully represent concepts expressed in the natural language. The validity of the proposed safety performance model, relationships between determinants of safety performance are to be analyzed using the structural equation modeling (SEM) which is a highly strong multi variable analysis technique that makes possible the evaluation of latent structures. After validation of the model, a safety performance index assessment tool is to be proposed by the help of software. The proposed safety performance assessment tool will be based on the empirically validated theoretical model.Keywords: Fuzzy set theory, safety performance assessment, safety index, structural equation modeling (SEM), construction sites
Procedia PDF Downloads 52628490 AI/ML Atmospheric Parameters Retrieval Using the “Atmospheric Retrievals conditional Generative Adversarial Network (ARcGAN)”
Authors: Thomas Monahan, Nicolas Gorius, Thanh Nguyen
Abstract:
Exoplanet atmospheric parameters retrieval is a complex, computationally intensive, inverse modeling problem in which an exoplanet’s atmospheric composition is extracted from an observed spectrum. Traditional Bayesian sampling methods require extensive time and computation, involving algorithms that compare large numbers of known atmospheric models to the input spectral data. Runtimes are directly proportional to the number of parameters under consideration. These increased power and runtime requirements are difficult to accommodate in space missions where model size, speed, and power consumption are of particular importance. The use of traditional Bayesian sampling methods, therefore, compromise model complexity or sampling accuracy. The Atmospheric Retrievals conditional Generative Adversarial Network (ARcGAN) is a deep convolutional generative adversarial network that improves on the previous model’s speed and accuracy. We demonstrate the efficacy of artificial intelligence to quickly and reliably predict atmospheric parameters and present it as a viable alternative to slow and computationally heavy Bayesian methods. In addition to its broad applicability across instruments and planetary types, ARcGAN has been designed to function on low power application-specific integrated circuits. The application of edge computing to atmospheric retrievals allows for real or near-real-time quantification of atmospheric constituents at the instrument level. Additionally, edge computing provides both high-performance and power-efficient computing for AI applications, both of which are critical for space missions. With the edge computing chip implementation, ArcGAN serves as a strong basis for the development of a similar machine-learning algorithm to reduce the downlinked data volume from the Compact Ultraviolet to Visible Imaging Spectrometer (CUVIS) onboard the DAVINCI mission to Venus.Keywords: deep learning, generative adversarial network, edge computing, atmospheric parameters retrieval
Procedia PDF Downloads 17228489 Exploring Nanoformulations for Therapeutic Induction of Necroptosis
Authors: Tianjiao Chu, Carla Rios Luci, Christy Maksoudian, Ara Sargsian, Bella B. Manshian, Stefaan J. Soenen
Abstract:
Nanomaterials have gained high interest in their use as potent anticancer agents. Apart from delivering chemotherapeutic agents in order to reduce off-target effects, molecular agents have also been widely explored. The advances in our understanding of cell biology and cell death mechanisms1 has generated a broad library of potential therapeutic targets by siRNA, mRNA, or pDNA complexes. In the present study, we explore the ability of pDNA-polyplexes to induce tumor-specific necroptosis. This results in a cascade of effects, where immunogenic cell death potentiates anti-tumor immune responses and results in an influx of dendritic cells and cytotoxic T cells, rendering the tumor more amenable to immune checkpoint inhibition. This study aims to explore whether the induction of necroptosis in a subpopulation of tumor cells can be used to potentiate immune checkpoint inhibition studies.Keywords: nanoparticle, MLKL, necroptosis, immunotherapy
Procedia PDF Downloads 14128488 Photocatalytic Eco-Active Ceramic Slabs to Abate Air Pollution under LED Light
Authors: Claudia L. Bianchi, Giuseppina Cerrato, Federico Galli, Federica Minozzi, Valentino Capucci
Abstract:
At the beginning of the industrial productions, porcelain gres tiles were considered as just a technical material, aesthetically not very beautiful. Today thanks to new industrial production methods, both properties, and beauty of these materials completely fit the market requests. In particular, the possibility to prepare slabs of large sizes is the new frontier of building materials. Beside these noteworthy architectural features, new surface properties have been introduced in the last generation of these materials. In particular, deposition of TiO₂ transforms the traditional ceramic into a photocatalytic eco-active material able to reduce polluting molecules present in air and water, to eliminate bacteria and to reduce the surface dirt thanks to the self-cleaning property. The problem of photocatalytic materials resides in the fact that it is necessary a UV light source to activate the oxidation processes on the surface of the material, processes that are turned off inexorably when the material is illuminated by LED lights and, even more so, when we are in darkness. First, it was necessary a thorough study change the existing plants to deposit the photocatalyst very evenly and this has been done thanks to the advent of digital printing and the development of an ink custom-made that stabilizes the powdered TiO₂ in its formulation. In addition, the commercial TiO₂, which is used for the traditional photocatalytic coating, has been doped with metals in order to activate it even in the visible region and thus in the presence of sunlight or LED. Thanks to this active coating, ceramic slabs are able to purify air eliminating odors and VOCs, and also can be cleaned with very soft detergents due to the self-cleaning properties given by the TiO₂ present at the ceramic surface. Moreover, the presence of dopant metals (patent WO2016157155) also allows the material to work as well as antibacterial in the dark, by eliminating one of the negative features of photocatalytic building materials that have so far limited its use on a large scale. Considering that we are constantly in contact with bacteria, some of which are dangerous for health. Active tiles are 99,99% efficient on all bacteria, from the most common such as Escherichia coli to the most dangerous such as Staphilococcus aureus Methicillin-resistant (MRSA). DIGITALIFE project LIFE13 ENV/IT/000140 – award for best project of October 2017.Keywords: Ag-doped microsized TiO₂, eco-active ceramic, photocatalysis, digital coating
Procedia PDF Downloads 23228487 Correlations in the Ising Kagome Lattice
Authors: Antonio Aguilar Aguilar, Eliezer Braun Guitler
Abstract:
Using a previously developed procedure and with the aid of algebraic software, a two-dimensional generalized Ising model with a 4×2 unitary cell (UC), we obtain a Kagome Lattice with twelve different spin-spin values of interaction, in order to determine the partition function per spin L(T). From the partition function we can study the magnetic behavior of the system. Because of the competition phenomenon between spins, a very complex behavior among them in a variety of magnetic states can be observed.Keywords: correlations, Ising, Kagome, exact functions
Procedia PDF Downloads 37128486 Data Collection with Bounded-Sized Messages in Wireless Sensor Networks
Authors: Min Kyung An
Abstract:
In this paper, we study the data collection problem in Wireless Sensor Networks (WSNs) adopting the two interference models: The graph model and the more realistic physical interference model known as Signal-to-Interference-Noise-Ratio (SINR). The main issue of the problem is to compute schedules with the minimum number of timeslots, that is, to compute the minimum latency schedules, such that data from every node can be collected without any collision or interference to a sink node. While existing works studied the problem with unit-sized and unbounded-sized message models, we investigate the problem with the bounded-sized message model, and introduce a constant factor approximation algorithm. To the best known of our knowledge, our result is the first result of the data collection problem with bounded-sized model in both interference models.Keywords: data collection, collision-free, interference-free, physical interference model, SINR, approximation, bounded-sized message model, wireless sensor networks
Procedia PDF Downloads 22428485 The Effects of a Thin Liquid Layer on the Hydrodynamic Machine Rotor
Authors: Jaroslav Krutil, František Pochylý, Simona Fialová, Vladimír Habán
Abstract:
A mathematical model of the additional effects of the liquid in the hydrodynamic gap is presented in the paper. An in-compressible viscous fluid is considered. Based on computational modeling are determined the matrices of mass, stiffness and damping. The mathematical model is experimentally verified.Keywords: computational modeling, mathematical model, hydrodynamic gap, matrices of mass, stiffness and damping
Procedia PDF Downloads 55928484 The Impacts of Export in Stimulating Economic Growth in Ethiopia: ARDL Model Analysis
Authors: Natnael Debalklie Teshome
Abstract:
The purpose of the study was to empirically investigate the impacts of export performance and its volatility on economic growth in the Ethiopian economy. To do so, time-series data of the sample period from 1974/75 – 2017/18 were collected from databases and annual reports of IMF, WB, NBE, MoFED, UNCTD, and EEA. The extended Cobb-Douglas production function of the neoclassical growth model framed under the endogenous growth theory was used to consider both the performance and instability aspects of export. First, the unit root test was conducted using ADF and PP tests, and data were found in stationery with a mix of I(0) and I(1). Then, the bound test and Wald test were employed, and results showed that there exists long-run co-integration among study variables. All the diagnostic test results also reveal that the model fulfills the criteria of the best-fitted model. Therefore, the ARDL model and VECM were applied to estimate the long-run and short-run parameters, while the Granger causality test was used to test the causality between study variables. The empirical findings of the study reveal that only export and coefficient of variation had significant positive and negative impacts on RGDP in the long run, respectively, while other variables were found to have an insignificant impact on the economic growth of Ethiopia. In the short run, except for gross capital formation and coefficients of variation, which have a highly significant positive impact, all other variables have a strongly significant negative impact on RGDP. This shows exports had a strong, significant impact in both the short-run and long-run periods. However, its positive and statistically significant impact is observed only in the long run. Similarly, there was a highly significant export fluctuation in both periods, while significant commodity concentration (CCI) was observed only in the short run. Moreover, the Granger causality test reveals that unidirectional causality running from export performance to RGDP exists in the long run and from both export and RGDP to CCI in the short run. Therefore, the export-led growth strategy should be sustained and strengthened. In addition, boosting the industrial sector is vital to bring structural transformation. Hence, the government has to give different incentive schemes and supportive measures to exporters to extract the spillover effects of exports. Greater emphasis on price-oriented diversification and specialization on major primary products that the country has a comparative advantage should also be given to reduce value-based instability in the export earnings of the country. The government should also strive to increase capital formation and human capital development via enhancing investments in technology and quality of education to accelerate the economic growth of the country.Keywords: export, economic growth, export diversification, instability, co-integration, granger causality, Ethiopian economy
Procedia PDF Downloads 7928483 Improving Chest X-Ray Disease Detection with Enhanced Data Augmentation Using Novel Approach of Diverse Conditional Wasserstein Generative Adversarial Networks
Authors: Malik Muhammad Arslan, Muneeb Ullah, Dai Shihan, Daniyal Haider, Xiaodong Yang
Abstract:
Chest X-rays are instrumental in the detection and monitoring of a wide array of diseases, including viral infections such as COVID-19, tuberculosis, pneumonia, lung cancer, and various cardiac and pulmonary conditions. To enhance the accuracy of diagnosis, artificial intelligence (AI) algorithms, particularly deep learning models like Convolutional Neural Networks (CNNs), are employed. However, these deep learning models demand a substantial and varied dataset to attain optimal precision. Generative Adversarial Networks (GANs) can be employed to create new data, thereby supplementing the existing dataset and enhancing the accuracy of deep learning models. Nevertheless, GANs have their limitations, such as issues related to stability, convergence, and the ability to distinguish between authentic and fabricated data. In order to overcome these challenges and advance the detection and classification of CXR normal and abnormal images, this study introduces a distinctive technique known as DCWGAN (Diverse Conditional Wasserstein GAN) for generating synthetic chest X-ray (CXR) images. The study evaluates the effectiveness of this Idiosyncratic DCWGAN technique using the ResNet50 model and compares its results with those obtained using the traditional GAN approach. The findings reveal that the ResNet50 model trained on the DCWGAN-generated dataset outperformed the model trained on the classic GAN-generated dataset. Specifically, the ResNet50 model utilizing DCWGAN synthetic images achieved impressive performance metrics with an accuracy of 0.961, precision of 0.955, recall of 0.970, and F1-Measure of 0.963. These results indicate the promising potential for the early detection of diseases in CXR images using this Inimitable approach.Keywords: CNN, classification, deep learning, GAN, Resnet50
Procedia PDF Downloads 89