Search results for: online fashion shopping
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3155

Search results for: online fashion shopping

605 A Critical Review and Bibliometric Analysis on Measures of Achievement Motivation

Authors: Kanupriya Rawat, Aleksandra Błachnio, Paweł Izdebski

Abstract:

Achievement motivation, which drives a person to strive for success, is an important construct in sports psychology. This systematic review aims to analyze the methods of measuring achievement motivation used in previous studies published over the past four decades and to find out which method of measuring achievement motivation is the most prevalent and the most effective by thoroughly examining measures of achievement motivation used in each study and by evaluating most highly cited achievement motivation measures in sport. In order to understand this latent construct, thorough measurement is necessary, hence a critical evaluation of measurement tools is required. The literature search was conducted in the following databases: EBSCO, MEDLINE, APA PsychARTICLES, Academic Search Ultimate, Open Dissertations, ERIC, Science direct, Web of Science, as well as Wiley Online Library. A total of 26 articles met the inclusion criteria and were selected. From this review, it was found that the Achievement Goal Questionnaire- Sport (AGQ-Sport) and the Task and Ego Orientation in Sport Questionnaire (TEOSQ) were used in most of the research, however, the average weighted impact factor of the Achievement Goal Questionnaire- Sport (AGQ-Sport) is the second highest and most relevant in terms of research articles related to the sport psychology discipline. Task and Ego Orientation in Sport Questionnaire (TEOSQ) is highly popular in cross-cultural adaptation but has the second last average IF among other scales due to the less impact factor of most of the publishing journals. All measures of achievement motivation have Cronbach’s alpha value of more than .70, which is acceptable. The advantages and limitations of each measurement tool are discussed, and the distinction between using implicit and explicit measures of achievement motivation is explained. Overall, both implicit and explicit measures of achievement motivation have different conceptualizations of achievement motivation and are applicable at either the contextual or situational level. The conceptualization and degree of applicability are perhaps the most crucial factors for researchers choosing a questionnaire, even though they differ in their development, reliability, and use.

Keywords: achievement motivation, task and ego orientation, sports psychology, measures of achievement motivation

Procedia PDF Downloads 96
604 Hybrid Incentives for Excellent Abroad Students Study for High Education Degrees

Authors: L. Sun, C. Hardacre, A. Garforth, N. Zhang

Abstract:

Higher Education (HE) degrees in the UK are attractive for international students. The recognized reputation of the HE and the world-leading researchers in some areas in the UK imply that the HE degree from the UK might be a passport to a successful career for abroad students. However, it is a challenge to inspire outstanding students applying for the universities in the UK. The incentives should be country-specific for undergraduates and postgraduates. The potential obstacles to stop students applying for the study in the UK mainly lie in these aspects: different HE systems between the UK and other countries, such as China; less information for the application procedures; worries for the study in English for those non-native speakers; and expensive international tuition fees. The hybrid incentives have been proposed by the efforts from the institutions, stuffs, and students themselves. For example, excellent students from top universities would join us based on the abroad exchange programs or ‘2+2 programme’ with discount tuition. They are potential PhD candidates in the further study in the UK. Diversity promotions are implemented to share information and answer queries for potential students and their guardians. Face to face presentations, workshops, and seminars deliver chances for students to admire teaching and learning in the UK, and give students direct answers for their confusions. WeChat official account and Twitter as the online information platform are set up to post messages of recruitment, the guidance for the application procedures, and international collaboration in teaching and research as well. Students who are studying in the UK and the alumni would share their experiences in the study and lives in the UK and their careers after obtaining the HE degree would play as a positive stimulus to our potential students. Short term modules in the UK with exchangeable credits in summer holidays would give abroad students firsthand experiences of the study in the reputable schools with excellent academics, different cultures and the network with international students. Successful cases at the University of Manchester illustrated the effectiveness of these presented methodologies.

Keywords: abroad students, degree study, high education, hybrid incentives

Procedia PDF Downloads 166
603 The State of Employee Motivation During Covid-19 Outbreak in Sri Lankan Construction Sector

Authors: Tharaki Hetti Arachchi

Abstract:

Sri Lanka has undergone numerous changes in the fields of social-economic and cultural processors during the past decades. Consequently, the Sri Lankan construction industry was subjected to rapid growth while contributing a considerable amount to the national economy. The prevailing situation under the Covid-19 pandemic exhibited challenges to almost all of the sectors of the country in attaining success. Although productivity is one of the dimensions that measure the degree of project success, achieving sufficient productivity has become challengeable due to the Covid-19 outbreak. As employee motivation is an influential factor in defining productivity, the present study becomes significant in discovering ways of enhancing construction productivity via employee motivation. The study has adopted a combination of qualitative and quantitative methodologies in attaining the study objectives. While the research population refers to construction professionals in Sri Lanka, the study sample is aimed at Quantity Surveyors in the bottom and middle managements of organizational hierarchies. The data collection was implemented via primary and secondary sources. The primary data collection was accomplished by undertaking semi-structured interviews and online questionnaire surveys while sampling the overall respondents based on the purposive sample method. The responses of the questionnaire survey were gathered in a form of a ‘Likert Scale’ to examine the degree of applicability on each respondent. Overall, 76.36% of primary data were recovered from the expected count while obtaining 60 responses from the questionnaire survey and 24 responses from interviews. Secondary data were obtained by reviewing sources such as research articles, journals, newspapers, books, etc. The findings suggest adopting and enhancing sixteen motivational factors in achieving greater productivity in the Sri Lankan construction sector.

Keywords: Covid 19 pandemic, motivation, quantity surveying, Sri Lanka

Procedia PDF Downloads 95
602 Recreation and Environmental Quality of Tropical Wetlands: A Social Media Based Spatial Analysis

Authors: Michael Sinclair, Andrea Ghermandi, Sheela A. Moses, Joseph Sabu

Abstract:

Passively crowdsourced data, such as geotagged photographs from social media, represent an opportunistic source of location-based and time-specific behavioral data for ecosystem services analysis. Such data have innovative applications for environmental management and protection, which are replicable at wide spatial scales and in the context of both developed and developing countries. Here we test one such innovation, based on the analysis of the metadata of online geotagged photographs, to investigate the provision of recreational services by the entire network of wetland ecosystems in the state of Kerala, India. We estimate visitation to individual wetlands state-wide and extend, for the first time to a developing region, the emerging application of cultural ecosystem services modelling using data from social media. The impacts of restoration of wetland areal extension and water quality improvement are explored as a means to inform more sustainable management strategies. Findings show that improving water quality to a level suitable for the preservation of wildlife and fisheries could increase annual visits by 350,000, an increase of 13% in wetland visits state-wide, while restoring previously encroached wetland area could result in a 7% increase in annual visits, corresponding to 49,000 visitors, in the Ashtamudi and Vembanad lakes alone, two large coastal Ramsar wetlands in Kerala. We discuss how passive crowdsourcing of social media data has the potential to improve current ecosystem service analyses and environmental management practices also in the context of developing countries.

Keywords: coastal wetlands, cultural ecosystem services, India, passive crowdsourcing, social media, wetland restoration

Procedia PDF Downloads 157
601 Extent of Knowledge, Preparedness and Perception on Telemedicine among Family Medicine Resident Physicians in Different Training Institutions in Cebu City, PH during COVID-19 Pandemic

Authors: Kristine Joy Y. Sumanga, Clarissa Mae D. Derecho

Abstract:

Telemedicine is providing health care services using electronic means at a distance, including the diagnosis, treatment, and prevention of diseases as well as the research and evaluation and education of health care providers. The role of telemedicine in this time of the COVID-19 pandemic is vital, especially in the practice of medicine. General Objective: To determine the extent of knowledge, preparedness and perception of telemedicine among Family Medicine Resident Physicians in different training institutions in Cebu City during the Coronavirus Disease 19 pandemic. Methods: A descriptive, cross-sectional survey research study was conducted in four hospital training institutions in Cebu City. A total of 41 respondents gave their consent and were given the online survey questionnaire pertaining to the extent of knowledge, preparedness and perceptions on telemedicine, including respondents’ demographic data and problems encountered in Telemedicine. Results: Out of the 41 respondents, 56.10% were young adults (26 to 30 years old), mostly females (70.73%), single (68.29%), first-year residents (43.90%), employed at a government hospital (70.73%) and are in the traditional residency pathway (82.93%). On relevant experience, 82.93% experienced telemedicine during residency, with 100% on follow-up consultations, and 95% were consulted due to infections. Respondents’ extent of knowledge was average, while the extent of preparedness and perception were great. Problems with low connectivity (80.48%) were noted by most of the respondents. Conclusion: Resident physicians moderately understood the information about telemedicine but with a great extent of preparedness and perception. They are always prepared for telemedicine modality because they are fully aware of its existence and need in the delivery of health care services among their patients at the time of the pandemic. Challenges to low connectivity and handling patients’ data privacy were the major concerns met by the resident physicians in the use of telemedicine.

Keywords: telemedicine, knowledge, preparedness, perception, family medicine, residents, COVID 19

Procedia PDF Downloads 79
600 Driving towards Sustainability with Shared Electric Mobility: A Case Study of Time-Sharing Electric Cars on University’s Campus

Authors: Jiayi Pan, Le Qin, Shichan Zhang

Abstract:

Following the worldwide growing interest in the sharing economy, especially in China, innovations within the field are rapidly emerging. It is, therefore, appropriate to address the under-investigated sustainability issues related to the development of shared mobility. In 2019, Shanghai Jiao Tong University (SJTU) introduced one of the first on-campus Time-sharing Electric Cars (TEC) that counts now about 4000 users. The increasing popularity of this original initiative highlights the necessity to assess its sustainability and find ways to extend the performance and availability of this new transport option. This study used an online questionnaire survey on TEC usage and experience to collect answers among students and university staff. The study also conducted interviews with TEC’s team in order to better understand its motivations and operating model. Data analysis underscores that TEC’s usage frequency is positively associated with a lower carbon footprint, showing that this scheme contributes to improving the environmental sustainability of transportation on campus. This study also demonstrates that TEC provides a convenient solution to those not owning a car in situations where soft mobility cannot satisfy their needs, this contributing to a globally positive assessment of TEC in the social domains of sustainability. As SJTU’s TEC project belongs to the non-profit sector and aims at serving current research, its economical sustainability is not among the main preoccupations, and TEC, along with similar projects, could greatly benefit from this study’s findings to better evaluate the overall benefits and develop operation on a larger scale. This study suggests various ways to further improve the TEC users’ experience and enhance its promotion. This research believably provides meaningful insights on the position of shared transportation within transport mode choice and how to assess the overall sustainability of such innovations.

Keywords: shared mobility, sharing economy, sustainability assessment, sustainable transportation, urban electric transportation

Procedia PDF Downloads 215
599 The Lasting Impact of Parental Conflict on Self-Differentiation of Young Adult OffspringThe Lasting Impact of Parental Conflict on Self-Differentiation of Young Adult Offspring

Authors: A. Benedetto, P. Wong, N. Papouchis, L. W. Samstag

Abstract:

Bowen’s concept of self-differentiation describes a healthy balance of autonomy and intimacy in close relationships, and it has been widely researched in the context of family dynamics. The current study aimed to clarify the impact of family dysfunction on self-differentiation by specifically examining conflict between parents, and by including young adults, an underexamined age group in this domain (N = 300; ages 18 to 30). It also identified a protective factor for offspring from conflictual homes. The 300 young adults (recruited online through Mechanical Turk) completed the Differentiation of Self Inventory (DSI), the Children’s Perception of Interparental Conflict Scale (CPIC), the Parental Bonding Instrument (PBI), and the Symptom Checklist-90-Revised (SCL-90-R). Analyses revealed that interparental conflict significantly impairs self-differentiation among young adult offspring. Specifically, exposure to parental conflict showed a negative impact on young adults’ sense of self, emotional reactivity, and interpersonal cutoff in the context of close relationships. Parental conflict was also related to increased psychological distress among offspring. Surprisingly, the study found that parental divorce does not impair self-differentiation in offspring, demonstrating the distinctly harmful impact of conflict. These results clarify a unique type of family dysfunction that impairs self-differentiation, specifically in distinguishing it from parental divorce; it examines young adults, a critical age group not previously examined in this domain; and it identifies a moderating protective factor (a strong parent-child bond) for offspring exposed to conflict. Overall, results suggest the need for modifications in parental behavior in order to protect offspring at risk of lasting emotional and interpersonal damage.

Keywords: divorce, family dysfunction, parental conflict, parent-child bond, relationships, self-differentiation, young adults

Procedia PDF Downloads 157
598 An Early Attempt of Artificial Intelligence-Assisted Language Oral Practice and Assessment

Authors: Paul Lam, Kevin Wong, Chi Him Chan

Abstract:

Constant practicing and accurate, immediate feedback are the keys to improving students’ speaking skills. However, traditional oral examination often fails to provide such opportunities to students. The traditional, face-to-face oral assessment is often time consuming – attending the oral needs of one student often leads to the negligence of others. Hence, teachers can only provide limited opportunities and feedback to students. Moreover, students’ incentive to practice is also reduced by their anxiety and shyness in speaking the new language. A mobile app was developed to use artificial intelligence (AI) to provide immediate feedback to students’ speaking performance as an attempt to solve the above-mentioned problems. Firstly, it was thought that online exercises would greatly increase the learning opportunities of students as they can now practice more without the needs of teachers’ presence. Secondly, the automatic feedback provided by the AI would enhance students’ motivation to practice as there is an instant evaluation of their performance. Lastly, students should feel less anxious and shy compared to directly practicing oral in front of teachers. Technically, the program made use of speech-to-text functions to generate feedback to students. To be specific, the software analyzes students’ oral input through certain speech-to-text AI engine and then cleans up the results further to the point that can be compared with the targeted text. The mobile app has invited English teachers for the pilot use and asked for their feedback. Preliminary trials indicated that the approach has limitations. Many of the users’ pronunciation were automatically corrected by the speech recognition function as wise guessing is already integrated into many of such systems. Nevertheless, teachers have confidence that the app can be further improved for accuracy. It has the potential to significantly improve oral drilling by giving students more chances to practice. Moreover, they believe that the success of this mobile app confirms the potential to extend the AI-assisted assessment to other language skills, such as writing, reading, and listening.

Keywords: artificial Intelligence, mobile learning, oral assessment, oral practice, speech-to-text function

Procedia PDF Downloads 104
597 A Convolutional Neural Network Based Vehicle Theft Detection, Location, and Reporting System

Authors: Michael Moeti, Khuliso Sigama, Thapelo Samuel Matlala

Abstract:

One of the principal challenges that the world is confronted with is insecurity. The crime rate is increasing exponentially, and protecting our physical assets especially in the motorist industry, is becoming impossible when applying our own strength. The need to develop technological solutions that detect and report theft without any human interference is inevitable. This is critical, especially for vehicle owners, to ensure theft detection and speedy identification towards recovery efforts in cases where a vehicle is missing or attempted theft is taking place. The vehicle theft detection system uses Convolutional Neural Network (CNN) to recognize the driver's face captured using an installed mobile phone device. The location identification function uses a Global Positioning System (GPS) to determine the real-time location of the vehicle. Upon identification of the location, Global System for Mobile Communications (GSM) technology is used to report or notify the vehicle owner about the whereabouts of the vehicle. The installed mobile app was implemented by making use of python as it is undoubtedly the best choice in machine learning. It allows easy access to machine learning algorithms through its widely developed library ecosystem. The graphical user interface was developed by making use of JAVA as it is better suited for mobile development. Google's online database (Firebase) was used as a means of storage for the application. The system integration test was performed using a simple percentage analysis. Sixty (60) vehicle owners participated in this study as a sample, and questionnaires were used in order to establish the acceptability of the system developed. The result indicates the efficiency of the proposed system, and consequently, the paper proposes the use of the system can effectively monitor the vehicle at any given place, even if it is driven outside its normal jurisdiction. More so, the system can be used as a database to detect, locate and report missing vehicles to different security agencies.

Keywords: CNN, location identification, tracking, GPS, GSM

Procedia PDF Downloads 172
596 The AI Method and System for Analyzing Wound Status in Wound Care Nursing

Authors: Ho-Hsin Lee, Yue-Min Jiang, Shu-Hui Tsai, Jian-Ren Chen, Mei-Yu XU, Wen-Tien Wu

Abstract:

This project presents an AI-based method and system for wound status analysis. The system uses a three-in-one sensor device to analyze wound status, including color, temperature, and a 3D sensor to provide wound information up to 2mm below the surface, such as redness, heat, and blood circulation information. The system has a 90% accuracy rate, requiring only one manual correction in 70% of cases, with a one-second delay. The system also provides an offline application that allows for manual correction of the wound bed range using color-based guidance to estimate wound bed size with 96% accuracy and a maximum of one manual correction in 96% of cases, with a one-second delay. Additionally, AI-assisted wound bed range selection achieves 100% of cases without manual intervention, with an accuracy rate of 76%, while AI-based wound tissue type classification achieves an 85.3% accuracy rate for five categories. The AI system also includes similar case search and expert recommendation capabilities. For AI-assisted wound range selection, the system uses WIFI6 technology, increasing data transmission speeds by 22 times. The project aims to save up to 64% of the time required for human wound record keeping and reduce the estimated time to assess wound status by 96%, with an 80% accuracy rate. Overall, the proposed AI method and system integrate multiple sensors to provide accurate wound information and offer offline and online AI-assisted wound bed size estimation and wound tissue type classification. The system decreases delay time to one second, reduces the number of manual corrections required, saves time on wound record keeping, and increases data transmission speed, all of which have the potential to significantly improve wound care and management efficiency and accuracy.

Keywords: wound status analysis, AI-based system, multi-sensor integration, color-based guidance

Procedia PDF Downloads 116
595 An Attentional Bi-Stream Sequence Learner (AttBiSeL) for Credit Card Fraud Detection

Authors: Mohsen Hasirian, Amir Shahab Shahabi

Abstract:

Modern societies, marked by expansive Internet connectivity and the rise of e-commerce, are now integrated with digital platforms at an unprecedented level. The efficiency, speed, and accessibility of e-commerce have garnered a substantial consumer base. Against this backdrop, electronic banking has undergone rapid proliferation within the realm of online activities. However, this growth has inadvertently given rise to an environment conducive to illicit activities, notably electronic payment fraud, posing a formidable challenge to the domain of electronic banking. A pivotal role in upholding the integrity of electronic commerce and business transactions is played by electronic fraud detection, particularly in the context of credit cards which underscores the imperative of comprehensive research in this field. To this end, our study introduces an Attentional Bi-Stream Sequence Learner (AttBiSeL) framework that leverages attention mechanisms and recurrent networks. By incorporating bidirectional recurrent layers, specifically bidirectional Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU) layers, the proposed model adeptly extracts past and future transaction sequences while accounting for the temporal flow of information in both directions. Moreover, the integration of an attention mechanism accentuates specific transactions to varying degrees, as manifested in the output of the recurrent networks. The effectiveness of the proposed approach in automatic credit card fraud classification is evaluated on the European Cardholders' Fraud Dataset. Empirical results validate that the hybrid architectural paradigm presented in this study yields enhanced accuracy compared to previous studies.

Keywords: credit card fraud, deep learning, attention mechanism, recurrent neural networks

Procedia PDF Downloads 34
594 E-learning resources for radiology training: Is an ideal program available?

Authors: Eric Fang, Robert Chen, Ghim Song Chia, Bien Soo Tan

Abstract:

Objective and Rationale: Training of radiology residents hinges on practical, on-the-job training in all facets and modalities of diagnostic radiology. Although residency is structured to be comprehensive, clinical exposure depends on the case mix available locally and during the posting period. To supplement clinical training, there are several e-learning resources available to allow for greater exposure to radiological cases. The objective of this study was to survey residents and faculty on the usefulness of these e-learning resources. Methods: E-learning resources were shortlisted with input from radiology residents, Google search and online discussion groups, and screened by their purported focus. Twelve e-learning resources were found to meet the criteria. Both radiology residents and experienced radiology faculty were then surveyed electronically. The e-survey asked for ratings on breadth, depth, testing capability and user-friendliness for each resource, as well as for rankings for the top 3 resources. Statistical analysis was performed using SAS 9.4. Results: Seventeen residents and fifteen faculties completed an e-survey. Mean response rate was 54% ± 8% (Range: 14- 96%). Ratings and rankings were statistically identical between residents and faculty. On a 5-point rating scale, breadth was 3.68 ± 0.18, depth was 3.95 ± 0.14, testing capability was 2.64 ± 0.16 and user-friendliness was 3.39 ± 0.13. Top-ranked resources were STATdx (first), Radiopaedia (second) and Radiology Assistant (third). 9% of responders singled out R-ITI as potentially good but ‘prohibitively costly’. Statistically significant predictive factors for higher rankings are familiarity with the resource (p = 0.001) and user-friendliness (p = 0.006). Conclusion: A good e-learning system will complement on-the-job training with a broad case base, deep discussion and quality trainee evaluation. Based on our study on twelve e-learning resources, no single program fulfilled all requirements. The perception and use of radiology e-learning resources depended more on familiarity and user-friendliness than on content differences and testing capability.

Keywords: e-learning, medicine, radiology, survey

Procedia PDF Downloads 333
593 The Role of Trust in Intention to Use Prescribed and Non-prescribed Connected Devices

Authors: Jean-michel Sahut, Lubica Hikkerova, Wissal Ben Arfi

Abstract:

The Internet of Things (IoT) emerged over the last few decades in many fields. Healthcare can significantly benefit from IoT. This study aims to examine factors influencing the adoption of IoT in eHealth. To do so, an innovative framework has been developed which applies both the Technology Acceptance Model (TAM) and the United Theory of Acceptance and Use of Technology (UTAUT) model and builds on them by analyzing trust and perceived-risk dimensions to predict intention to use IoT in eHealth. In terms of methodology, a Partial Least Approach Structural Equation Modelling was carried out on a sample of 267 French users. The findings of this research support the significant positive effect of constructs set out in the TAM (perceived ease of use) on predicting behavioral intention by adding the effects identified for UTAUT variables. This research also demonstrates how perceived risk and trust are significant factors for models examining behavioral intentions to use IoT. Perceived risk enhanced by the trust has a significant effect on patients’ behavioral intentions. Moreover, the results highlight the key role of prescription as a moderator of IoT adoption in eHealth. Depending on whether an individual has a prescription to use connected devices or not, ease of use has a stronger impact on adoption, while trust has a negative impact on adoption for users without a prescription. In accordance with the empirical results, several practical implications can be proposed. All connected devices applied in a medical context should be divided into groups according to their functionality: whether they are essential for the patient’s health and whether they require a prescription or not. Devices used with a prescription are easily accepted because the intention to use them is moderated by the medical trust (discussed above). For users without a prescription, ease of use is a more significant factor than for users who have a prescription. This suggests that currently, connected e-Health devices and online healthcare systems have to take this factor into account to better meet the needs and expectations of end-users.

Keywords: internet of things, Healthcare, trust, consumer acceptance

Procedia PDF Downloads 146
592 Efficiency of Information Technology Based Learning and Teaching in Higher Educations

Authors: Mahalingam Palaniandi

Abstract:

Higher education plays vital role in the nation building process for a country and the rest of world. The higher education sector develops the change-agents for the various fields which will help the human-kind wheel to run further. Conventional and traditional class-room based learning and teaching was followed in many decades which is one-to-one and one-to-many. In a way, these are simplest form of learners to be assembled in a class room wherein the teacher used the blackboard to demonstrate the theory and laboratories used for practical. As the technology evolved tremendously for the last 40 years, the teaching and learning environment changed slowly, wherein, the learning community will be anywhere in the world and teacher deliver the content through internet based tools such as video conferencing, web based conferencing tools or E-learning platforms such as Blackboard or noodle. Present day, the mobile technologies plays an important tool to deliver the teaching content on-the-go. Both PC based and mobile based learning technology brought the learning and teaching community together in various aspects. However, as the learning technology also brought various hurdles for learning processes such as plagiarism and not using the reference books entirely as most of the students wants the information instantaneously using internet without actually going to the library to take the notes from the millions of the books which are not available online as e-books which result lack of fundamental knowledge of the concepts complex theories. However, technology is inseparable in human life, now-a-days and every part of it contains piece of information technology right from computers to home appliances. To make use of the IT based learning and teaching at most efficiency, we should have a proper framework and recommendations laid to the learning community in order to derive the maximum efficiency from the IT based teaching and leaning. This paper discusses various IT based tools available for the learning community, efficiency from its usage and recommendations for the suitable framework that needs to be implemented at higher education institutions which makes the learners stronger in both theory as well as real-time knowledge of their studies that is going to be used in their future for the better world.

Keywords: higher education, e-learning, teaching learning, eLearning tools

Procedia PDF Downloads 427
591 Understanding Student Engagement through Sentiment Analytics of Response Times to Electronically Shared Feedback

Authors: Yaxin Bi, Peter Nicholl

Abstract:

The rapid advancement of Information and communication technologies (ICT) is extremely influencing every aspect of Higher Education. It has transformed traditional teaching, learning, assessment and feedback into a new era of Digital Education. This also introduces many challenges in capturing and understanding student engagement with their studies in Higher Education. The School of Computing at Ulster University has developed a Feedback And Notification (FAN) Online tool that has been used to send students links to personalized feedback on their submitted assessments and record students’ frequency of review of the shared feedback as well as the speed of collection. The feedback that the students initially receive is via a personal email directing them through to the feedback via a URL link that maps to the feedback created by the academic marker. This feedback is typically a Word or PDF report including comments and the final mark for the work submitted approximately three weeks before. When the student clicks on the link, the student’s personal feedback is viewable in the browser and they can view the contents. The FAN tool provides the academic marker with a report that includes when and how often a student viewed the feedback via the link. This paper presents an investigation into student engagement through analyzing the interaction timestamps and frequency of review by the student. We have proposed an approach to modeling interaction timestamps and use sentiment classification techniques to analyze the data collected over the last five years for a set of modules. The data studied is across a number of final years and second-year modules in the School of Computing. The paper presents the details of quantitative analysis methods and describes further their interactions with the feedback overtime on each module studied. We have projected the students into different groups of engagement based on sentiment analysis results and then provide a suggestion of early targeted intervention for the set of students seen to be under-performing via our proposed model.

Keywords: feedback, engagement, interaction modelling, sentiment analysis

Procedia PDF Downloads 103
590 The Library as a Metaphor: Perceptions, Evolution, and the Shifting Role in Society Through a Librarian's Lens

Authors: Nihar Kanta Patra, Akhtar Hussain

Abstract:

This comprehensive study, through the perspective of librarians, explores the library as a metaphor and its profound significance in representing knowledge and learning. It delves into how librarians perceive the library as a metaphor and the ways in which it symbolizes the acquisition, preservation, and dissemination of knowledge. The research investigates the most common metaphors used to describe libraries, as witnessed by librarians, and analyzes how these metaphors reflect the evolving role of libraries in society. Furthermore, the study examines how the library metaphor influences the perception of librarians regarding academic libraries as physical places and academic library websites as virtual spaces, exploring their potential for learning and exploration. It investigates the evolving nature of the library as a metaphor over time, as seen by librarians, considering the changing landscape of information and technology. The research explores the ways in which the library metaphor has expanded beyond its traditional representation, encompassing digital resources, online connectivity, and virtual realms, and provides insights into its potential evolution in the future. Drawing on the experiences of librarians in their interactions with library users, the study uncovers any specific cultural or generational differences in how people interpret or relate to the library as a metaphor. It sheds light on the diverse perspectives and interpretations of the metaphor based on cultural backgrounds, educational experiences, and technological familiarity. Lastly, the study investigates the evolving roles of libraries as observed by librarians and explores how these changing roles can influence the metaphors we use to represent them. It examines the dynamic nature of libraries as they adapt to societal needs, technological advancements, and new modes of information dissemination. By analyzing these various dimensions, this research provides a comprehensive understanding of the library as a metaphor through the lens of librarians, illuminating its significance, evolution, and its transformative impact on knowledge, learning, and the changing role of libraries in society.

Keywords: library, librarians, metaphor, perception

Procedia PDF Downloads 96
589 Modelling, Assessment, and Optimisation of Rules for Selected Umgeni Water Distribution Systems

Authors: Khanyisile Mnguni, Muthukrishnavellaisamy Kumarasamy, Jeff C. Smithers

Abstract:

Umgeni Water is a water board that supplies most parts of KwaZulu Natal with bulk portable water. Currently, Umgeni Water is running its distribution system based on required reservoir levels and demands and does not consider the energy cost at different times of the day, number of pump switches, and background leakages. Including these constraints can reduce operational cost, energy usage, leakages, and increase performance. Optimising pump schedules can reduce energy usage and costs while adhering to hydraulic and operational constraints. Umgeni Water has installed an online hydraulic software, WaterNet Advisor, that allows running different operational scenarios prior to implementation in order to optimise the distribution system. This study will investigate operation scenarios using optimisation techniques and WaterNet Advisor for a local water distribution system. Based on studies reported in the literature, introducing pump scheduling optimisation can reduce energy usage by approximately 30% without any change in infrastructure. Including tariff structures in an optimisation problem can reduce pumping costs by 15%, while including leakages decreases cost by 10%, and pressure drop in the system can be up to 12 m. Genetical optimisation algorithms are widely used due to their ability to solve nonlinear, non-convex, and mixed-integer problems. Other methods such as branch and bound linear programming have also been successfully used. A suitable optimisation method will be chosen based on its efficiency. The objective of the study is to reduce energy usage, operational cost, and leakages, and the feasibility of optimal solution will be checked using the Waternet Advisor. This study will provide an overview of the optimisation of hydraulic networks and progress made to date in multi-objective optimisation for a selected sub-system operated by Umgeni Water.

Keywords: energy usage, pump scheduling, WaterNet Advisor, leakages

Procedia PDF Downloads 94
588 A Personality-Based Behavioral Analysis on eSports

Authors: Halkiopoulos Constantinos, Gkintoni Evgenia, Koutsopoulou Ioanna, Antonopoulou Hera

Abstract:

E-sports and e-gaming have emerged in recent years since the increase in internet use have become universal and e-gamers are the new reality in our homes. The excessive involvement of young adults with e-sports has already been revealed and the adverse consequences have been reported in researches in the past few years, but the issue has not been fully studied yet. The present research is conducted in Greece and studies the psychological profile of video game players and provides information on personality traits, habits and emotional status that affect online gamers’ behaviors in order to help professionals and policy makers address the problem. Three standardized self-report questionnaires were administered to participants who were young male and female adults aged from 19-26 years old. The Profile of Mood States (POMS) scale was used to evaluate people’s perceptions of their everyday life mood; the personality features that can trace back to people’s habits and anticipated reactions were measured by Eysenck Personality Questionnaire (EPQ), and the Trait Emotional Intelligence Questionnaire (TEIQue) was used to measure which cognitive (gamers’ beliefs) and emotional parameters (gamers’ emotional abilities) mainly affected/ predicted gamers’ behaviors and leisure time activities?/ gaming behaviors. Data mining techniques were used to analyze the data, which resulted in machine learning algorithms that were included in the software package R. The research findings attempt to designate the effect of personality traits, emotional status and emotional intelligence influence and correlation with e-sports, gamers’ behaviors and help policy makers and stakeholders take action, shape social policy and prevent the adverse consequences on young adults. The need for further research, prevention and treatment strategies is also addressed.

Keywords: e-sports, e-gamers, personality traits, POMS, emotional intelligence, data mining, R

Procedia PDF Downloads 233
587 Willingness to Purchase and Pay a Price Premium for an Apartment with Exterior Green Walls

Authors: Tamar Trop, Michal Roffeh

Abstract:

One of the emerging trends in construction is installing an exterior “green wall” (GW). GW is an overarching and most common term for various techniques of incorporating greenery into buildings’ vertical elements, mainly facades. This green infrastructure yields numerous benefits for the urban environment, the public, and the buildings’ tenants and users, such as enhancing air quality and biodiversity, managing stormwater runoff, mitigating urban heat island and climate change, improving urban aesthetics and mental wellbeing, improving indoor comfort conditions, and saving energy. Yet, the penetration rate of GWs into the construction market, especially into the housing sector, is still very slow. Furthermore, the research regarding prospective homebuyers’ willingness to purchase and pay a price premium for GW apartments is scarce and does not refer to newly built buildings and specific GW types. This research aims to narrow these knowledge gaps by exploring the willingness of prospective homebuyers in Israel to purchase a newly built apartment with a hydroponic living wall, the size of the PP that they would be willing to pay for it, and the various factors ̶ knowledge-related, concern, economic, and personal ̶ that influence these motivations. A nationwide online survey was conducted among a sample of 514 adults using a structured questionnaire. Findings show that despite low familiarity with GWs and strong concerns about various kinds of nuisance, technical issues, and maintenance costs, potential homebuyers express a relatively high willingness to purchase and pay a significant price premium for such an apartment. The main motivations behind this willingness were found to be potential energy savings and governmental incentives. Study findings can contribute to a better understanding of the maturity of the housing market in Israel to adopt GWs and to better tailor intervention tools for increasing GWs’ uptake among potential homebuyers.

Keywords: green façade, green wall, living wall, willingness to pay

Procedia PDF Downloads 33
586 Involvement of Community Pharmacists in Public Health Services in Asir Region, Saudi Arabia: A Cross-Sectional Study

Authors: Mona Almanasef, Dalia Almaghaslah, Geetha Kandasamy, Rajalakshimi Vasudevan, Sadia Batool

Abstract:

Background: Community pharmacists are one of the most accessible healthcare practitioners worldwide and their services are used by a large proportion of the population. Expanding the roles of community pharmacists could contribute to reducing pressure on general health practice and other areas of health services. This research aimed to evaluate the contribution of community pharmacists in the provision of public health services and to investigate the perceived barriers to the provision of these services in Saudi Arabia. Materials and Methods: This study followed a cross-sectional design using an online anonymous self-administered questionnaire. The study took place in the Asir region, Saudi Arabia, between September 2019 and February 2020. A convenience sampling strategy was used to select and recruit the study participants. The questionnaire was adapted from previous research and involved three sections: demographics, involvement in public health services and barriers to practicing public health roles. Results: The total number of respondents was 193. The proportion of respondents who reported that they were “very involved” or “involved” in each service was 61.7% for weight management, 60.6% for sexual health, 57.5% for healthy eating, 53.4% for physical activity promotion, 51.3% for dental health, 46.1% for smoking cessation, 39.4% for screening for diabetes, 35.7% for screening for hypertension, 31.1% for alcohol dependence and drug misuse counseling, 30.6% for screening for dyslipidaemia, and 21.8% for vaccination and immunization. Most of the barriers in the current research were rated as having low relevance to the provision of public health services. Conclusion: Findings in the current research suggest that community pharmacists in the Asir region have varying levels of involvement in public health roles. Further research needs to be undertaken to understand the barriers to the provision of public health services and what strategies would be beneficial for enhancing the public health role of community pharmacists in Saudi Arabia.

Keywords: community pharmacist, public health, Asir region, Saudi Arabia

Procedia PDF Downloads 105
585 Whey Protein in Type 2 Diabetes Mellitus: A Systematic Review and Meta-Analysis

Authors: Zyrah Lou R. Samar, Genecarlo Liwanag

Abstract:

Type 2 Diabetes Mellitus is the more prevalent type, caused by a combination of insulin resistance and inadequate insulin response to hyperglycemia1. Aside from pharmacologic interventions, medical nutrition therapy is an integral part of the management of patients with Type 2 Diabetes Mellitus. Whey protein, which is one of the best protein sources, has been investigated for its applicability in improving glycemic control in patients with Type 2 Diabetes Mellitus. This systematic review and meta-analysis was conducted to measure the magnitude of the effect of whey protein on glycemic control in type 2 diabetes mellitus. The aim of this review is to evaluate the efficacy and safety of whey protein in patients with type 2 diabetes mellitus. Methods: A systematic electronic search for studies in the PubMed and Cochrane Collaboration database was done. Included in this review were randomized controlled trials of whey protein enrolling patients with type 2 diabetes mellitus. Three reviewers independently searched, assessed, and extracted data from the individual studies. Results: A systematic literature search on online databases such as Cochrane Central Registry, PubMed, and Herdin Plus was conducted in April to September 2021 to identify eligible studies. The search yielded 21 randomized controlled trials after removing duplicates. Only 5 articles were included after reviewing the full text, which met the criteria for selection. Conclusion: Whey protein supplementation significantly reduced fasting blood glucose. However, it did not reduce post-prandial blood glucose, HbA1c level, and weight when compared with the placebo. There has been a considerate heterogeneity across all studies, which may have contributed/confounded its effects. A larger sample size and better inclusion, and a more specific study may be included in the future reviews.

Keywords: whey protein, diabetes, nutrition, fasting blood sugar, postprandial glucose, HbA1c, weight reduction

Procedia PDF Downloads 109
584 Circle Work as a Relational Praxis to Facilitate Collaborative Learning within Higher Education: A Decolonial Pedagogical Framework for Teaching and Learning in the Virtual Classroom

Authors: Jennifer Nutton, Gayle Ployer, Ky Scott, Jenny Morgan

Abstract:

Working in a circle within higher education creates a decolonial space of mutual respect, responsibility, and reciprocity that facilitates collaborative learning and deep connections among learners and instructors. This approach is beyond simply facilitating a group in a circle but opens the door to creating a sacred space connecting each member to the land, to the Indigenous peoples who have taken care of the lands since time immemorial, to one another, and to one’s own positionality. These deep connections not only center human knowledges and relationships but also acknowledges responsibilities to land. Working in a circle as a relational pedagogical praxis also disrupts institutional power dynamics by creating a space of collaborative learning and deep connections in the classroom. Inherent within circle work is to facilitate connections not just academically but emotionally, physically, culturally, and spiritually. Recent literature supports the use of online talking circles, finding that it can offer a more relational and experiential learning environment, which is often absent in the virtual world and has been made more evident and necessary since the pandemic. These deeper experiences of learning and connection, rooted in both knowledge and the land, can then be shared with openness and vulnerability with one another, facilitating growth and change. This process of beginning with the land is critical to ensure we have the grounding to obstruct the ongoing realities of colonialism. The authors, who identify as both Indigenous and non-Indigenous, as both educators and learners, reflect on their teaching and learning experiences in circle. They share a relational pedagogical praxis framework that has been successful in educating future social workers, environmental activists, and leaders in social and human services, health, legal and political fields.

Keywords: circle work, relational pedagogies, decolonization, distance education

Procedia PDF Downloads 76
583 Connecting Teachers in a Web-Based Professional Development Community in Crisis Time: A Knowledge Building Approach

Authors: Wei Zhao

Abstract:

The pandemic crisis disrupted normal classroom practices so that the constraints of the traditional practice became apparent. This turns out to be new opportunities for technology-based learning and teaching. However, how the technology supports the preschool teachers go through this sudden crisis and how preschool teachers conceived of the use of technology, appropriate and design technological artifacts as a mediator of knowledge construction in order to suit young children’s literacy level are rarely explored. This study addresses these issues by looking at the influence of a web-supported teacher community on changes/shifts in preschool teachers’ epistemological beliefs and practices. This teachers’ professional development community was formulated before the pandemic time and developed virtually throughout the home-based learning caused by Covid-19. It served as a virtual and asynchronous community for those teachers to collaboratively plan for and conduct online lessons using the knowledge-building approach for the purpose of sustaining children’s learning curiosity and opening up new learning opportunities during the lock-down period. The knowledge-building approach helps to increase teachers’ collective responsibility to collaboratively work on shared educational goals in the teacher community and awareness of noticing new ideas or innovations in their classroom. Based on the data collected across five months during and after the lock-down period and the activity theory, results show a dynamic interplay between the evolution of the community culture, the growth of teacher community and teachers’ identity transformation and professional development. Technology is useful in this regard not only because it transforms the geographical distance and new gathering guidelines after the outbreak of pandemic into new ways of communal communication and collaboration. More importantly, while teachers selected, monitored and adapted the technology, it acts as a catalyst for changes in teachers’ old teaching practices and epistemological dispositions.

Keywords: activity theory, changes in epistemology and practice, knowledge building, web-based teachers’ professional development community

Procedia PDF Downloads 182
582 A Framework for Building Information Modelling Execution Plan in the Construction Industry, Lagos State, Nigeria

Authors: Tosin Deborah Akanbi

Abstract:

The Building Information Modeling Execution Plan (BEP) is a document that manifests the specifications for the adoption and execution of building information modeling in the construction sector in an organized manner so as to attain the listed goals. In this regard, the study examined the barriers to the adoption of building information modeling, evaluated the effect of building information modeling adoption characteristics on the key elements of a building information modeling execution plan and developed a strategic framework for a BEP in the Lagos State construction industry. Data were gathered through a questionnaire survey with 332 construction professionals in the study area. Three online structured interviews were conducted to support and validate the findings of the quantitative analysis. The results showed the significant relationships and connections between the variables in the framework: BIM usage and model quality control (aBIMskill -> dMQ, Beta = 0.121, T statistics = 1.829), BIM adoption characteristics and information exchange (bBIM_CH -> dIE, Beta = 0.128, T statistics = 1.727), BIM adoption characteristics and process design (bBIM_CH -> dPD, Beta = 0.170, T statistics = 2.754), BIM adoption characteristics and roles and responsibilities (bBIM_CH -> dRR, Beta = 0.131, T statistics = 2.181), interest BIM barriers and BIM adoption characteristics (cBBIM_INT -> bBIM_CH, Beta = 0.137, T statistics = 2.309), legal BIM barriers and BIM adoption characteristics (cBBIM_LEG -> bBIM_CH, Beta = 0.168, T statistics = 2.818), professional BIM barriers and BIM adoption characteristics (cBBIM_PRO -> bBIM_CH, Beta = 0.152, T statistics = 2.645). The results also revealed that seven final themes were generated, namely: model structure and process design, BIM information exchange and collaboration procedures, project goals and deliverables, project model quality control, roles and responsibilities, reflect Lagos state construction industry and validity of the BEP framework. Thus, there is a need for the policy makers to direct interventions to promote, encourage and support the understanding and adoption of BIM by emphasizing the various benefits of using the technology in the Lagos state construction industry.

Keywords: building information modelling execution plan, BIM adoption characteristics, BEP framework, construction industry

Procedia PDF Downloads 20
581 Learning from Dendrites: Improving the Point Neuron Model

Authors: Alexander Vandesompele, Joni Dambre

Abstract:

The diversity in dendritic arborization, as first illustrated by Santiago Ramon y Cajal, has always suggested a role for dendrites in the functionality of neurons. In the past decades, thanks to new recording techniques and optical stimulation methods, it has become clear that dendrites are not merely passive electrical components. They are observed to integrate inputs in a non-linear fashion and actively participate in computations. Regardless, in simulations of neural networks dendritic structure and functionality are often overlooked. Especially in a machine learning context, when designing artificial neural networks, point neuron models such as the leaky-integrate-and-fire (LIF) model are dominant. These models mimic the integration of inputs at the neuron soma, and ignore the existence of dendrites. In this work, the LIF point neuron model is extended with a simple form of dendritic computation. This gives the LIF neuron increased capacity to discriminate spatiotemporal input sequences, a dendritic functionality as observed in another study. Simulations of the spiking neurons are performed using the Bindsnet framework. In the common LIF model, incoming synapses are independent. Here, we introduce a dependency between incoming synapses such that the post-synaptic impact of a spike is not only determined by the weight of the synapse, but also by the activity of other synapses. This is a form of short term plasticity where synapses are potentiated or depressed by the preceding activity of neighbouring synapses. This is a straightforward way to prevent inputs from simply summing linearly at the soma. To implement this, each pair of synapses on a neuron is assigned a variable,representing the synaptic relation. This variable determines the magnitude ofthe short term plasticity. These variables can be chosen randomly or, more interestingly, can be learned using a form of Hebbian learning. We use Spike-Time-Dependent-Plasticity (STDP), commonly used to learn synaptic strength magnitudes. If all neurons in a layer receive the same input, they tend to learn the same through STDP. Adding inhibitory connections between the neurons creates a winner-take-all (WTA) network. This causes the different neurons to learn different input sequences. To illustrate the impact of the proposed dendritic mechanism, even without learning, we attach five input neurons to two output neurons. One output neuron isa regular LIF neuron, the other output neuron is a LIF neuron with dendritic relationships. Then, the five input neurons are allowed to fire in a particular order. The membrane potentials are reset and subsequently the five input neurons are fired in the reversed order. As the regular LIF neuron linearly integrates its inputs at the soma, the membrane potential response to both sequences is similar in magnitude. In the other output neuron, due to the dendritic mechanism, the membrane potential response is different for both sequences. Hence, the dendritic mechanism improves the neuron’s capacity for discriminating spa-tiotemporal sequences. Dendritic computations improve LIF neurons even if the relationships between synapses are established randomly. Ideally however, a learning rule is used to improve the dendritic relationships based on input data. It is possible to learn synaptic strength with STDP, to make a neuron more sensitive to its input. Similarly, it is possible to learn dendritic relationships with STDP, to make the neuron more sensitive to spatiotemporal input sequences. Feeding structured data to a WTA network with dendritic computation leads to a significantly higher number of discriminated input patterns. Without the dendritic computation, output neurons are less specific and may, for instance, be activated by a sequence in reverse order.

Keywords: dendritic computation, spiking neural networks, point neuron model

Procedia PDF Downloads 134
580 Need of Trained Clinical Research Professionals Globally to Conduct Clinical Trials

Authors: Tambe Daniel Atem

Abstract:

Background: Clinical Research is an organized research on human beings intended to provide adequate information on the drug use as a therapeutic agent on its safety and efficacy. The significance of the study is to educate the global health and life science graduates in Clinical Research in depth to perform better as it involves testing drugs on human beings. Objectives: to provide an overall understanding of the scientific approach to the evaluation of new and existing medical interventions and to apply ethical and regulatory principles appropriate to any individual research. Methodology: It is based on – Primary data analysis and Secondary data analysis. Primary data analysis: means the collection of data from journals, the internet, and other online sources. Secondary data analysis: a survey was conducted with a questionnaire to interview the Clinical Research Professionals to understand the need of training to perform clinical trials globally. The questionnaire consisted details of the professionals working with the expertise. It also included the areas of clinical research which needed intense training before entering into hardcore clinical research domain. Results: The Clinical Trials market worldwide worth over USD 26 billion and the industry has employed an estimated 2,10,000 people in the US and over 70,000 in the U.K, and they form one-third of the total research and development staff. There are more than 2,50,000 vacant positions globally with salary variations in the regions for a Clinical Research Coordinator. R&D cost on new drug development is estimated at US$ 70-85 billion. The cost of doing clinical trials for a new drug is US$ 200-250 million. Due to an increase trained Clinical Research Professionals India has emerged as a global hub for clinical research. The Global Clinical Trial outsourcing opportunity in India in the pharmaceutical industry increased to more than $2 billion in 2014 due to increased outsourcing from U.S and Europe to India. Conclusion: Assessment of training need is recommended for newer Clinical Research Professionals and trial sites, especially prior the conduct of larger confirmatory clinical trials.

Keywords: clinical research, clinical trials, clinical research professionals

Procedia PDF Downloads 454
579 A Pragmatic Approach of Memes Created in Relation to the COVID-19 Pandemic

Authors: Alexandra-Monica Toma

Abstract:

Internet memes are an element of computer mediated communication and an important part of online culture that combines text and image in order to generate meaning. This term coined by Richard Dawkings refers to more than a mere way to briefly communicate ideas or emotions, thus naming a complex and an intensely perpetuated phenomenon in the virtual environment. This paper approaches memes as a cultural artefact and a virtual trope that mirrors societal concerns and issues, and analyses the pragmatics of their use. Memes have to be analysed in series, usually relating to some image macros, which is proof of the interplay between imitation and creativity in the memes’ writing process. We believe that their potential to become viral relates to three key elements: adaptation to context, reference to a successful meme series, and humour (jokes, irony, sarcasm), with various pragmatic functions. The study also uses the concept of multimodality and stresses how the memes’ text interacts with the image, discussing three types of relations: symmetry, amplification, and contradiction. Moreover, the paper proves that memes could be employed as speech acts with illocutionary force, when the interaction between text and image is enriched through the connection to a specific situation. The features mentioned above are analysed in a corpus that consists of memes related to the COVID-19 pandemic. This corpus shows them to be highly adaptable to context, which helps build the feeling of connection and belonging in an otherwise tremendously fragmented world. Some of them are created based on well-known image macros, and their humour results from an intricate dialogue between texts and contexts. Memes created in relation to the COVID-19 pandemic can be considered speech acts and are often used as such, as proven in the paper. Consequently, this paper tackles the key features of memes, makes a thorough analysis of the memes sociocultural, linguistic, and situational context, and emphasizes their intertextuality, with special accent on their illocutionary potential.

Keywords: context, memes, multimodality, speech acts

Procedia PDF Downloads 203
578 Gender-Based Differences in the Social Judgment of Hungarian Politicians' Sex Scandals

Authors: Sara Dalma Galgoczi, Judith Gabriella Kengyel

Abstract:

Sex scandals are quite an engaging topic to work with, especially with their judgment in society. Most people are interested in other people's lives, specifically in public figures' such as celebrities or politicians, because ordinary people feel like they have the right to know more things about the famous and notorious ones than they would probably willing to share. Intimacy and sexual acts aren't exceptions; moreover, sexuality is one of the central interests of humans ever since. Besides, knowing and having an opinion about any kind of scandal can change even whole social groups or classes estimation of anyone. This study aims to research the social judgment of some Hungarian politicians' sex scandals and asks important questions like diverse public opinions in the light of gender or delegates’ abuse of power. Considering that this study is about collecting and evaluating opinions from the public, and no one before researched and published this exact topic and cases, an online survey was created. In the survey were different sections. We collected data about party-preference, conservativism-liberalism scale; then we used the following questionnaires: from Zero-sum perspective with regard to gender equality (Ruthig, Kehn, Gamblin, Vanderzanden & Jones, 2017), Ambivalent Sexism Inventory (ASI; Glick & Fiske, 1996), Ambivalence Toward Men Inventory (AMI; Glick & Fiske, 1999). Finally, 5 short summaries were presented about five Hungarian politicians' sex scandal cases (3 males, 2 females) from the recent past. These stories were followed by questions about their opinion of the party and attitudes towards the parties' reactions to the cases. We came to the conclusion that people are more permissive with the scandals of men, and benevolent sexism and ambivalence towards men mediate this relation. Men tend to see these cases as part of politicians' private lives more than women. Party preference had a significant effect - people tend to pass a sentence the delegates of the opposing parties, and they rather release the delegates of their preferred party.

Keywords: sex scandal, sexism, social judgement, politician

Procedia PDF Downloads 124
577 Investigating the Effectiveness of Multilingual NLP Models for Sentiment Analysis

Authors: Othmane Touri, Sanaa El Filali, El Habib Benlahmar

Abstract:

Natural Language Processing (NLP) has gained significant attention lately. It has proved its ability to analyze and extract insights from unstructured text data in various languages. It is found that one of the most popular NLP applications is sentiment analysis which aims to identify the sentiment expressed in a piece of text, such as positive, negative, or neutral, in multiple languages. While there are several multilingual NLP models available for sentiment analysis, there is a need to investigate their effectiveness in different contexts and applications. In this study, we aim to investigate the effectiveness of different multilingual NLP models for sentiment analysis on a dataset of online product reviews in multiple languages. The performance of several NLP models, including Google Cloud Natural Language API, Microsoft Azure Cognitive Services, Amazon Comprehend, Stanford CoreNLP, spaCy, and Hugging Face Transformers are being compared. The models based on several metrics, including accuracy, precision, recall, and F1 score, are being evaluated and compared to their performance across different categories of product reviews. In order to run the study, preprocessing of the dataset has been performed by cleaning and tokenizing the text data in multiple languages. Then training and testing each model has been applied using a cross-validation approach where randomly dividing the dataset into training and testing sets and repeating the process multiple times has been used. A grid search approach to optimize the hyperparameters of each model and select the best-performing model for each category of product reviews and language has been applied. The findings of this study provide insights into the effectiveness of different multilingual NLP models for Multilingual Sentiment Analysis and their suitability for different languages and applications. The strengths and limitations of each model were identified, and recommendations for selecting the most performant model based on the specific requirements of a project were provided. This study contributes to the advancement of research methods in multilingual NLP and provides a practical guide for researchers and practitioners in the field.

Keywords: NLP, multilingual, sentiment analysis, texts

Procedia PDF Downloads 107
576 Privacy Concerns and Law Enforcement Data Collection to Tackle Domestic and Sexual Violence

Authors: Francesca Radice

Abstract:

Domestic and sexual violence provokes, on average in Australia, one female death per week due to intimate violence behaviours. 83% of couples meet online, and intercepting domestic and sexual violence at this level would be beneficial. It has been observed that violent or coercive behaviour has been apparent from initial conversations on dating apps like Tinder. Child pornography, stalking, and coercive control are some criminal offences from dating apps, including women murdered after finding partners through Tinder. Police databases and predictive policing are novel approaches taken to prevent crime before harm is done. This research will investigate how police databases can be used in a privacy-preserving way to characterise users in terms of their potential for violent crime. Using the COPS database of NSW Police, we will explore how the past criminal record can be interpreted to yield a category of potential danger for each dating app user. It is up to the judgement of each subscriber on what degree of the potential danger they are prepared to enter into. Sentiment analysis is an area where research into natural language processing has made great progress over the last decade. This research will investigate how sentiment analysis can be used to interpret interchanges between dating app users to detect manipulative or coercive sentiments. These can be used to alert law enforcement if continued for a defined number of communications. One of the potential problems of this approach is the potential prejudice a categorisation can cause. Another drawback is the possibility of misinterpreting communications and involving law enforcement without reason. The approach will be thoroughly tested with cross-checks by human readers who verify both the level of danger predicted by the interpretation of the criminal record and the sentiment detected from personal messages. Even if only a few violent crimes can be prevented, the approach will have a tangible value for real people.

Keywords: sentiment analysis, data mining, predictive policing, virtual manipulation

Procedia PDF Downloads 78