Search results for: motion data acquisition
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 26765

Search results for: motion data acquisition

24215 Transient Response of Rheological Properties of a CI-Water Based Magnetorheological Fluid under Different Operating Modes

Authors: Chandra Shekhar Maurya, Chiranjit Sarkar

Abstract:

The transient response of rheological properties of a carbonyl iron (CI)-water-based magnetorheological fluid (MRF) was studied under shear rate, shear stress, and shear strain working mode subjected to step-change in an applied magnetic field. MR fluid is a kind of smart material whose rheological properties change under an applied magnetic field. We prepared an MR fluid comprising of CI 65 weight %, water 35 weight %, and OPTIGEL WX used as an additive by changing the weight %. It was found that the MR effect of the CI/water suspension was enhanced by using an additive. A transient shear stress response was observed by switched on and switched off of the magnetic field to see the stability, relaxation behavior, and resulting change in rheological properties. When the magnetic field is on, a sudden increase in the shear stress was observed due to the fast motion of magnetic structures that describe the transition from the liquidlike state to the solid-like state due to an increase in dipole-dipole interaction of magnetic particles. Simultaneously, the complete reverse transition occurs due to instantaneous breakage of the chain structure once the magnetic field is switched off.

Keywords: magnetorheological fluid, rheological properties, shears stress, shears strain, viscosity

Procedia PDF Downloads 180
24214 The Latency-Amplitude Binomial of Waves Resulting from the Application of Evoked Potentials for the Diagnosis of Dyscalculia

Authors: Maria Isabel Garcia-Planas, Maria Victoria Garcia-Camba

Abstract:

Recent advances in cognitive neuroscience have allowed a step forward in perceiving the processes involved in learning from the point of view of the acquisition of new information or the modification of existing mental content. The evoked potentials technique reveals how basic brain processes interact to achieve adequate and flexible behaviours. The objective of this work, using evoked potentials, is to study if it is possible to distinguish if a patient suffers a specific type of learning disorder to decide the possible therapies to follow. The methodology used, is the analysis of the dynamics of different areas of the brain during a cognitive activity to find the relationships between the different areas analyzed in order to better understand the functioning of neural networks. Also, the latest advances in neuroscience have revealed the existence of different brain activity in the learning process that can be highlighted through the use of non-invasive, innocuous, low-cost and easy-access techniques such as, among others, the evoked potentials that can help to detect early possible neuro-developmental difficulties for their subsequent assessment and cure. From the study of the amplitudes and latencies of the evoked potentials, it is possible to detect brain alterations in the learning process specifically in dyscalculia, to achieve specific corrective measures for the application of personalized psycho pedagogical plans that allow obtaining an optimal integral development of the affected people.

Keywords: dyscalculia, neurodevelopment, evoked potentials, Learning disabilities, neural networks

Procedia PDF Downloads 142
24213 Blood Oxygen Saturation Measurement System Using Broad-Band Light Source with LabVIEW Program

Authors: Myoung Ah Kim, Dong Ho Sin, Chul Gyu Song

Abstract:

Blood oxygen saturation system is a well-established, noninvasive photoplethysmographic method to monitor vital signs. Conventional blood oxygen saturation measurements for the two LED light source is the ambiguity of the oxygen saturation measurement principle and the measurement results greatly influenced and heat and motion artifact. A high accuracy in order to solve these problems blood oxygen saturation measuring method has been proposed using a broadband light source that can be easily understood by the algorithm. The measurement of blood oxygen saturation based on broad-band light source has advantage of simple testing facility and easy understanding. Broadband light source based on blood oxygen saturation measuring program proposed in this paper is a combination of LabVIEW and MATLAB. Using the wavelength range of 450 nm-750 nm using a floating light absorption of oxyhemoglobin and deoxyhemoglobin to measure the blood oxygen saturation. Hand movement is to fix the probe to the motor stage in order to prevent oxygen saturation measurement that affect the sample and probe kept constant interval. Experimental results show that the proposed method noticeably increases the accuracy and saves time compared with the conventional methods.

Keywords: oxygen saturation, broad-band light source, CCD, light reflectance theory

Procedia PDF Downloads 461
24212 Data Security and Privacy Challenges in Cloud Computing

Authors: Amir Rashid

Abstract:

Cloud Computing frameworks empower organizations to cut expenses by outsourcing computation resources on-request. As of now, customers of Cloud service providers have no methods for confirming the privacy and ownership of their information and data. To address this issue we propose the platform of a trusted cloud computing program (TCCP). TCCP empowers Infrastructure as a Service (IaaS) suppliers, for example, Amazon EC2 to give a shout box execution condition that ensures secret execution of visitor virtual machines. Also, it permits clients to bear witness to the IaaS supplier and decide if the administration is secure before they dispatch their virtual machines. This paper proposes a Trusted Cloud Computing Platform (TCCP) for guaranteeing the privacy and trustworthiness of computed data that are outsourced to IaaS service providers. The TCCP gives the deliberation of a shut box execution condition for a client's VM, ensuring that no cloud supplier's authorized manager can examine or mess up with its data. Furthermore, before launching the VM, the TCCP permits a client to dependably and remotely acknowledge that the provider at backend is running a confided in TCCP. This capacity extends the verification of whole administration, and hence permits a client to confirm the data operation in secure mode.

Keywords: cloud security, IaaS, cloud data privacy and integrity, hybrid cloud

Procedia PDF Downloads 300
24211 A Digital Clone of an Irrigation Network Based on Hardware/Software Simulation

Authors: Pierre-Andre Mudry, Jean Decaix, Jeremy Schmid, Cesar Papilloud, Cecile Munch-Alligne

Abstract:

In most of the Swiss Alpine regions, the availability of water resources is usually adequate even in times of drought, as evidenced by the 2003 and 2018 summers. Indeed, important natural stocks are for the moment available in the form of snow and ice, but the situation is likely to change in the future due to global and regional climate change. In addition, alpine mountain regions are areas where climate change will be felt very rapidly and with high intensity. For instance, the ice regime of these regions has already been affected in recent years with a modification of the monthly availability and extreme events of precipitations. The current research, focusing on the municipality of Val de Bagnes, located in the canton of Valais, Switzerland, is part of a project led by the Altis company and achieved in collaboration with WSL, BlueArk Entremont, and HES-SO Valais-Wallis. In this region, water occupies a key position notably for winter and summer tourism. Thus, multiple actors want to apprehend the future needs and availabilities of water, on both the 2050 and 2100 horizons, in order to plan the modifications to the water supply and distribution networks. For those changes to be salient and efficient, a good knowledge of the current water distribution networks is of most importance. In the current case, the water drinking network is well documented, but this is not the case for the irrigation one. Since the water consumption for irrigation is ten times higher than for drinking water, data acquisition on the irrigation network is a major point to determine future scenarios. This paper first presents the instrumentation and simulation of the irrigation network using custom-designed IoT devices, which are coupled with a digital clone simulated to reduce the number of measuring locations. The developed IoT ad-hoc devices are energy-autonomous and can measure flows and pressures using industrial sensors such as calorimetric water flow meters. Measurements are periodically transmitted using the LoRaWAN protocol over a dedicated infrastructure deployed in the municipality. The gathered values can then be visualized in real-time on a dashboard, which also provides historical data for analysis. In a second phase, a digital clone of the irrigation network was modeled using EPANET, a software for water distribution systems that performs extended-period simulations of flows and pressures in pressurized networks composed of reservoirs, pipes, junctions, and sinks. As a preliminary work, only a part of the irrigation network was modelled and validated by comparisons with the measurements. The simulations are carried out by imposing the consumption of water at several locations. The validation is performed by comparing the simulated pressures are different nodes with the measured ones. An accuracy of +/- 15% is observed on most of the nodes, which is acceptable for the operator of the network and demonstrates the validity of the approach. Future steps will focus on the deployment of the measurement devices on the whole network and the complete modelling of the network. Then, scenarios of future consumption will be investigated. Acknowledgment— The authors would like to thank the Swiss Federal Office for Environment (FOEN), the Swiss Federal Office for Agriculture (OFAG) for their financial supports, and ALTIS for the technical support, this project being part of the Swiss Pilot program 'Adaptation aux changements climatiques'.

Keywords: hydraulic digital clone, IoT water monitoring, LoRaWAN water measurements, EPANET, irrigation network

Procedia PDF Downloads 147
24210 Graph Neural Network-Based Classification for Disease Prediction in Health Care Heterogeneous Data Structures of Electronic Health Record

Authors: Raghavi C. Janaswamy

Abstract:

In the healthcare sector, heterogenous data elements such as patients, diagnosis, symptoms, conditions, observation text from physician notes, and prescriptions form the essentials of the Electronic Health Record (EHR). The data in the form of clear text and images are stored or processed in a relational format in most systems. However, the intrinsic structure restrictions and complex joins of relational databases limit the widespread utility. In this regard, the design and development of realistic mapping and deep connections as real-time objects offer unparallel advantages. Herein, a graph neural network-based classification of EHR data has been developed. The patient conditions have been predicted as a node classification task using a graph-based open source EHR data, Synthea Database, stored in Tigergraph. The Synthea DB dataset is leveraged due to its closer representation of the real-time data and being voluminous. The graph model is built from the EHR heterogeneous data using python modules, namely, pyTigerGraph to get nodes and edges from the Tigergraph database, PyTorch to tensorize the nodes and edges, PyTorch-Geometric (PyG) to train the Graph Neural Network (GNN) and adopt the self-supervised learning techniques with the AutoEncoders to generate the node embeddings and eventually perform the node classifications using the node embeddings. The model predicts patient conditions ranging from common to rare situations. The outcome is deemed to open up opportunities for data querying toward better predictions and accuracy.

Keywords: electronic health record, graph neural network, heterogeneous data, prediction

Procedia PDF Downloads 88
24209 Healthcare in COVID-19 and It’s Impact on Children with Cochlear Implants

Authors: Amirreza Razzaghipour, Mahdi Khalili

Abstract:

References from the World Health Organization and the Center for Disease Control for deceleration the spread of the Novel COVID-19, comprises social estrangement, frequent handwashing, and covering your mouth when around others. As hearing healthcare specialists, the influence of existenceinvoluntary to boundary social interactions on persons with hearing impairment was significant for us to understand. We found ourselves delaying cochlear implant (CI) surgeries. All children, and chiefly those with hearing loss, are susceptible to reductions in spoken communication. Hearing plans, such as cochlear implants, provide children with hearing loss access to spoken communication and provision language development. when provided early and used consistently, these supplies help children with hearing loss to engage in spoken connections. Cochlear implant (CI) is a standard medical-surgical treatment for bilateral severe to profound hearing loss with no advantage with the hearing aid. Hearing is one of the most important senses in humans. Pediatric hearing loss establishes one of the most important public health challenges. Children with hearing loss are recognized early and habilitated via hearing aids or with cochlear implants (CIs). Suitable care and maintenance as well as continuous auditory verbal therapy (AVT) are also essential in reaching for the successful attainment of language acquisition. Children with hearing loss posture important challenges to their parents, particularly when there is limited admission to their hearing care providers. The disruption in the routine of their hearing and therapy follow-up services has had substantial effects on the children as well as their parents.

Keywords: healthcare, covid-19, cochlear implants, spoken communication, hearing loss

Procedia PDF Downloads 168
24208 A Proposal to Tackle Security Challenges of Distributed Systems in the Healthcare Sector

Authors: Ang Chia Hong, Julian Khoo Xubin, Burra Venkata Durga Kumar

Abstract:

Distributed systems offer many benefits to the healthcare industry. From big data analysis to business intelligence, the increased computational power and efficiency from distributed systems serve as an invaluable resource in the healthcare sector to utilize. However, as the usage of these distributed systems increases, many issues arise. The main focus of this paper will be on security issues. Many security issues stem from distributed systems in the healthcare industry, particularly information security. The data of people is especially sensitive in the healthcare industry. If important information gets leaked (Eg. IC, credit card number, address, etc.), a person’s identity, financial status, and safety might get compromised. This results in the responsible organization losing a lot of money in compensating these people and even more resources expended trying to fix the fault. Therefore, a framework for a blockchain-based healthcare data management system for healthcare was proposed. In this framework, the usage of a blockchain network is explored to store the encryption key of the patient’s data. As for the actual data, it is encrypted and its encrypted data, called ciphertext, is stored in a cloud storage platform. Furthermore, there are some issues that have to be emphasized and tackled for future improvements, such as a multi-user scheme that could be proposed, authentication issues that have to be tackled or migrating the backend processes into the blockchain network. Due to the nature of blockchain technology, the data will be tamper-proof, and its read-only function can only be accessed by authorized users such as doctors and nurses. This guarantees the confidentiality and immutability of the patient’s data.

Keywords: distributed, healthcare, efficiency, security, blockchain, confidentiality and immutability

Procedia PDF Downloads 186
24207 Prospects in Teaching Arabic Grammatical Structures to Non-Arab Learners

Authors: Yahya Toyin Muritala, Nonglaksana Kama, Ahmad Yani

Abstract:

The aim of the paper is to investigate various linguistic techniques in enhancing and facilitating the acquisition of the practical knowledge of Arabic grammatical structuring among non-Arab learners of the standard classical Arabic language in non-Arabic speaking academic settings in the course of the current growth of the internationalism and cultural integration in some higher institutions. As the nature of the project requires standard investigations into the unique principal features of Arabic structurings and implications, the findings of the research work suggest some principles to follow in solving the problems faced by learners while acquiring grammatical aspects of Arabic language. The work also concentrates on the the structural features of the language in terms of inflection/parsing, structural arrangement order, functional particles, morphological formation and conformity etc. Therefore, grammatical aspect of Arabic which has gone through major stages in its early evolution of the classical stages up to the era of stagnation, development and modern stage of revitalization is a main subject matter of the paper as it is globally connected with communication and religion of Islam practiced by millions of Arabs and non-Arabs nowadays. The conclusion of the work shows new findings, through the descriptive and analytical methods, in terms of teaching language for the purpose of effective global communication with focus on methods of second language acquisitions by application.

Keywords: language structure, Arabic grammar, classical Arabic, intercultural communication, non-Arabic speaking environment and prospects

Procedia PDF Downloads 400
24206 A Numerical Study on Electrophoresis of a Soft Particle with Charged Core Coated with Polyelectrolyte Layer

Authors: Partha Sarathi Majee, S. Bhattacharyya

Abstract:

Migration of a core-shell soft particle under the influence of an external electric field in an electrolyte solution is studied numerically. The soft particle is coated with a positively charged polyelectrolyte layer (PEL) and the rigid core is having a uniform surface charge density. The Darcy-Brinkman extended Navier-Stokes equations are solved for the motion of the ionized fluid, the non-linear Nernst-Planck equations for the ion transport and the Poisson equation for the electric potential. A pressure correction based iterative algorithm is adopted for numerical computations. The effects of convection on double layer polarization (DLP) and diffusion dominated counter ions penetration are investigated for a wide range of Debye layer thickness, PEL fixed surface charge density, and permeability of the PEL. Our results show that when the Debye layer is in order of the particle size, the DLP effect is significant and produces a reduction in electrophoretic mobility. However, the double layer polarization effect is negligible for a thin Debye layer or low permeable cases. The point of zero mobility and the existence of mobility reversal depending on the electrolyte concentration are also presented.

Keywords: debye length, double layer polarization, electrophoresis, mobility reversal, soft particle

Procedia PDF Downloads 347
24205 A Fast Calculation Approach for Position Identification in a Distance Space

Authors: Dawei Cai, Yuya Tokuda

Abstract:

The market of localization based service (LBS) is expanding. The acquisition of physical location is the fundamental basis for LBS. GPS, the de facto standard for outdoor localization, does not work well in indoor environment due to the blocking of signals by walls and ceiling. To acquire high accurate localization in an indoor environment, many techniques have been developed. Triangulation approach is often used for identifying the location, but a heavy and complex computation is necessary to calculate the location of the distances between the object and several source points. This computation is also time and power consumption, and not favorable to a mobile device that needs a long action life with battery. To provide a low power consumption approach for a mobile device, this paper presents a fast calculation approach to identify the location of the object without online solving solutions to simultaneous quadratic equations. In our approach, we divide the location identification into two parts, one is offline, and other is online. In offline mode, we make a mapping process that maps the location area to distance space and find a simple formula that can be used to identify the location of the object online with very light computation. The characteristic of the approach is a good tradeoff between the accuracy and computational amount. Therefore, this approach can be used in smartphone and other mobile devices that need a long work time. To show the performance, some simulation experimental results are provided also in the paper.

Keywords: indoor localization, location based service, triangulation, fast calculation, mobile device

Procedia PDF Downloads 175
24204 Vibration Behavior of Nanoparticle Delivery in a Single-Walled Carbon Nanotube Using Nonlocal Timoshenko Beam Theory

Authors: Haw-Long Lee, Win-Jin Chang, Yu-Ching Yang

Abstract:

In the paper, the coupled equation of motion for the dynamic displacement of a fullerene moving in a (10,10) single-walled carbon nanotube (SWCNT) is derived using nonlocal Timoshenko beam theory, including the effects of rotary inertia and shear deformation. The effects of confined stiffness between the fullerene and nanotube, foundation stiffness, and nonlocal parameter on the dynamic behavior are analyzed using the Runge-Kutta Method. The numerical solution is in agreement with the analytical result for the special case. The numerical results show that increasing the confined stiffness and foundation stiffness decrease the dynamic displacement of SWCNT. However, the dynamic displacement increases with increasing the nonlocal parameter. In addition, result using the Euler beam theory and the Timoshenko beam theory are compared. It can be found that ignoring the effects of rotary inertia and shear deformation leads to an underestimation of the displacement.

Keywords: single-walled carbon nanotube, nanoparticle delivery, Nonlocal Timoshenko beam theory, Runge-Kutta Method, Van der Waals force

Procedia PDF Downloads 380
24203 Design and Implementation of a Geodatabase and WebGIS

Authors: Sajid Ali, Dietrich Schröder

Abstract:

The merging of internet and Web has created many disciplines and Web GIS is one these disciplines which is effectively dealing with the geospatial data in a proficient way. Web GIS technologies have provided an easy accessing and sharing of geospatial data over the internet. However, there is a single platform for easy and multiple accesses of the data lacks for the European Caribbean Association (Europaische Karibische Gesselschaft - EKG) to assist their members and other research community. The technique presented in this paper deals with designing of a geodatabase using PostgreSQL/PostGIS as an object oriented relational database management system (ORDBMS) for competent dissemination and management of spatial data and Web GIS by using OpenGeo Suite for the fast sharing and distribution of the data over the internet. The characteristics of the required design for the geodatabase have been studied and a specific methodology is given for the purpose of designing the Web GIS. At the end, validation of this Web based geodatabase has been performed over two Desktop GIS software and a web map application and it is also discussed that the contribution has all the desired modules to expedite further research in the area as per the requirements.

Keywords: desktop GISSoftware, European Caribbean association, geodatabase, OpenGeo suite, postgreSQL/PostGIS, webGIS, web map application

Procedia PDF Downloads 342
24202 Integration of “FAIR” Data Principles in Longitudinal Mental Health Research in Africa: Lessons from a Landscape Analysis

Authors: Bylhah Mugotitsa, Jim Todd, Agnes Kiragga, Jay Greenfield, Evans Omondi, Lukoye Atwoli, Reinpeter Momanyi

Abstract:

The INSPIRE network aims to build an open, ethical, sustainable, and FAIR (Findable, Accessible, Interoperable, Reusable) data science platform, particularly for longitudinal mental health (MH) data. While studies have been done at the clinical and population level, there still exists limitations in data and research in LMICs, which pose a risk of underrepresentation of mental disorders. It is vital to examine the existing longitudinal MH data, focusing on how FAIR datasets are. This landscape analysis aimed to provide both overall level of evidence of availability of longitudinal datasets and degree of consistency in longitudinal studies conducted. Utilizing prompters proved instrumental in streamlining the analysis process, facilitating access, crafting code snippets, categorization, and analysis of extensive data repositories related to depression, anxiety, and psychosis in Africa. While leveraging artificial intelligence (AI), we filtered through over 18,000 scientific papers spanning from 1970 to 2023. This AI-driven approach enabled the identification of 228 longitudinal research papers meeting inclusion criteria. Quality assurance revealed 10% incorrectly identified articles and 2 duplicates, underscoring the prevalence of longitudinal MH research in South Africa, focusing on depression. From the analysis, evaluating data and metadata adherence to FAIR principles remains crucial for enhancing accessibility and quality of MH research in Africa. While AI has the potential to enhance research processes, challenges such as privacy concerns and data security risks must be addressed. Ethical and equity considerations in data sharing and reuse are also vital. There’s need for collaborative efforts across disciplinary and national boundaries to improve the Findability and Accessibility of data. Current efforts should also focus on creating integrated data resources and tools to improve Interoperability and Reusability of MH data. Practical steps for researchers include careful study planning, data preservation, machine-actionable metadata, and promoting data reuse to advance science and improve equity. Metrics and recognition should be established to incentivize adherence to FAIR principles in MH research

Keywords: longitudinal mental health research, data sharing, fair data principles, Africa, landscape analysis

Procedia PDF Downloads 95
24201 Digital Memory in Motion: (Re) Creating and (Re) Posting of “Gaja-gamini walk” Reels as a Collective Feminist Practices on Instagram

Authors: Gazal Khan

Abstract:

This paper investigates the phenomenon of (re) creating and (re) posting of what is popularly known as "gaja-gamini walk" on instagram as a form of digital feminism, examining how these reels (short videos) make meaning in digital spaces. The study analyzes xyz “gaja- gamini walk” reels created by Indian influencers and instagram users, employing qualitative textual analysis, close readings, and digital ethnography to analyze the interplay between media, memory and digital spaces. The research highlights how “gaja-gamini walk” reels, characterized by an assertive presentation, redefines female body aesthetics, re (orients) sexual gaze to provide layered, interwoven and contested narratives. These reels facilitate a unique form of engagement by allowing users to re-share and participate in feminist discourse and allowing reels to function as sites of memory. The paper also discusses the social dynamics of these reels, their intertextuality with cultural narratives, and the limitations of the format for sustained feminist action. Through this analysis, the paper contributes to understanding the role of digital memory in contemporary feminist movements in context of Indian feminism.

Keywords: instagram, gaja-gamni walk, female gaze, digital feminism

Procedia PDF Downloads 35
24200 Argos-Linked Fastloc GPS Reveals the Resting Activity of Migrating Sea Turtles

Authors: Gail Schofield, Antoine M. Dujon, Nicole Esteban, Rebecca M. Lester, Graeme C. Hays

Abstract:

Variation in diel movement patterns during migration provides information on the strategies used by animals to maximize energy efficiency and ensure the successful completion of migration. For instance, many flying and land-based terrestrial species stop to rest and refuel at regular intervals along the migratory route, or at transitory ‘stopover’ sites, depending on resource availability. However, in cases where stopping is not possible (such as over–or through deep–open oceans, or over deserts and mountains), non-stop travel is required, with animals needing to develop strategies to rest while actively traveling. Recent advances in biologging technologies have identified mid-flight micro sleeps by swifts in Africa during the 10-month non-breeding period, and the use of lateralized sleep behavior in orca and bottlenose dolphins during migration. Here, highly accurate locations obtained by Argos-linked Fastloc-GPS transmitters of adult green (n=8 turtles, 9487 locations) and loggerhead (n=46 turtles, 47,588 locations) sea turtles migrating around thousand kilometers (over several weeks) from breeding to foraging grounds across the Indian and Mediterranean oceans were used to identify potential resting strategies. Stopovers were only documented for seven turtles, lasting up to 6 days; thus, this strategy was not commonly used, possibly due to the lack of potential ‘shallow’ ( < 100 m seabed depth) sites along routes. However, observations of the day versus night speed of travel indicated that turtles might use other mechanisms to rest. For instance, turtles traveled an average 31% slower at night compared to day during oceanic crossings. Slower travel speeds at night might be explained by turtles swimming in a less direct line at night and/or deeper dives reducing their forward motion, as indicated through studies using Argos-linked transmitters and accelerometers. Furthermore, within the first 24 h of entering waters shallower than 100 m towards the end of migration (the depth at which sea turtles can swim and rest on the seabed), some individuals travelled 72% slower at night, repeating this behavior intermittently (each time for a one-night duration at 3–6-day intervals) until reaching the foraging grounds. If the turtles were, in fact, resting on the seabed at this point, they could be inactive for up to 8-hours, facilitating protracted periods of rest after several weeks of constant swimming. Turtles might not rest every night once within these shallower depths, due to the time constraints of reaching foraging grounds and restoring depleted energetic reserves (as sea turtles are capital breeders, they tend not to feed for several months during migration to and from the breeding grounds and while breeding). In conclusion, access to data-rich, highly accurate Argos-linked Fastloc-GPS provided information about differences in the day versus night activity at different stages of migration, allowing us, for the first time, to compare the strategies used by a marine vertebrate with terrestrial land-based and flying species. However, the question of what resting strategies are used by individuals that remain in oceanic waters to forage, with combinations of highly accurate Argos-linked Fastloc-GPS transmitters and accelerometry or time-depth recorders being required for sufficient numbers of individuals.

Keywords: argos-linked fastloc GPS, data loggers, migration, resting strategy, telemetry

Procedia PDF Downloads 158
24199 Optimizing Data Transfer and Processing in Multi-Cloud Environments for Big Data Workloads

Authors: Gaurav Kumar Sinha

Abstract:

In an era defined by the proliferation of data and the utilization of cloud computing environments, the efficient transfer and processing of big data workloads across multi-cloud platforms have emerged as critical challenges. This research paper embarks on a comprehensive exploration of the complexities associated with managing and optimizing big data in a multi-cloud ecosystem.The foundation of this study is rooted in the recognition that modern enterprises increasingly rely on multiple cloud providers to meet diverse business needs, enhance redundancy, and reduce vendor lock-in. As a consequence, managing data across these heterogeneous cloud environments has become intricate, necessitating innovative approaches to ensure data integrity, security, and performance.The primary objective of this research is to investigate strategies and techniques for enhancing the efficiency of data transfer and processing in multi-cloud scenarios. It recognizes that big data workloads are characterized by their sheer volume, variety, velocity, and complexity, making traditional data management solutions insufficient for harnessing the full potential of multi-cloud architectures.The study commences by elucidating the challenges posed by multi-cloud environments in the context of big data. These challenges encompass data fragmentation, latency, security concerns, and cost optimization. To address these challenges, the research explores a range of methodologies and solutions. One of the key areas of focus is data transfer optimization. The paper delves into techniques for minimizing data movement latency, optimizing bandwidth utilization, and ensuring secure data transmission between different cloud providers. It evaluates the applicability of dedicated data transfer protocols, intelligent data routing algorithms, and edge computing approaches in reducing transfer times.Furthermore, the study examines strategies for efficient data processing across multi-cloud environments. It acknowledges that big data processing requires distributed and parallel computing capabilities that span across cloud boundaries. The research investigates containerization and orchestration technologies, serverless computing models, and interoperability standards that facilitate seamless data processing workflows.Security and data governance are paramount concerns in multi-cloud environments. The paper explores methods for ensuring data security, access control, and compliance with regulatory frameworks. It considers encryption techniques, identity and access management, and auditing mechanisms as essential components of a robust multi-cloud data security strategy.The research also evaluates cost optimization strategies, recognizing that the dynamic nature of multi-cloud pricing models can impact the overall cost of data transfer and processing. It examines approaches for workload placement, resource allocation, and predictive cost modeling to minimize operational expenses while maximizing performance.Moreover, this study provides insights into real-world case studies and best practices adopted by organizations that have successfully navigated the challenges of multi-cloud big data management. It presents a comparative analysis of various multi-cloud management platforms and tools available in the market.

Keywords: multi-cloud environments, big data workloads, data transfer optimization, data processing strategies

Procedia PDF Downloads 69
24198 Time Optimal Control Mode Switching between Detumbling and Pointing in the Early Orbit Phase

Authors: W. M. Ng, O. B. Iskender, L. Simonini, J. M. Gonzalez

Abstract:

A multitude of factors, including mechanical imperfections of the deployment system and separation instance of satellites from launchers, oftentimes results in highly uncontrolled initial tumbling motion immediately after deployment. In particular, small satellites which are characteristically launched as a piggyback to a large rocket, are generally allocated a large time window to complete detumbling within the early orbit phase. Because of the saturation risk of the actuators, current algorithms are conservative to avoid draining excessive power in the detumbling phase. This work aims to enable time-optimal switching of control modes during the early phase, reducing the time required to transit from launch to sun-pointing mode for power budget conscious satellites. This assumes the usage of B-dot controller for detumbling and PD controller for pointing. Nonlinear Euler's rotation equations are used to represent the attitude dynamics of satellites and Commercial-off-the-shelf (COTS) reaction wheels and magnetorquers are used to perform the manoeuver. Simulation results will be based on a spacecraft attitude simulator and the use case will be for multiple orbits of launch deployment general to Low Earth Orbit (LEO) satellites.

Keywords: attitude control, detumbling, small satellites, spacecraft autonomy, time optimal control

Procedia PDF Downloads 117
24197 Human-Centred Data Analysis Method for Future Design of Residential Spaces: Coliving Case Study

Authors: Alicia Regodon Puyalto, Alfonso Garcia-Santos

Abstract:

This article presents a method to analyze the use of indoor spaces based on data analytics obtained from inbuilt digital devices. The study uses the data generated by the in-place devices, such as smart locks, Wi-Fi routers, and electrical sensors, to gain additional insights on space occupancy, user behaviour, and comfort. Those devices, originally installed to facilitate remote operations, report data through the internet that the research uses to analyze information on human real-time use of spaces. Using an in-place Internet of Things (IoT) network enables a faster, more affordable, seamless, and scalable solution to analyze building interior spaces without incorporating external data collection systems such as sensors. The methodology is applied to a real case study of coliving, a residential building of 3000m², 7 floors, and 80 users in the centre of Madrid. The case study applies the method to classify IoT devices, assess, clean, and analyze collected data based on the analysis framework. The information is collected remotely, through the different platforms devices' platforms; the first step is to curate the data, understand what insights can be provided from each device according to the objectives of the study, this generates an analysis framework to be escalated for future building assessment even beyond the residential sector. The method will adjust the parameters to be analyzed tailored to the dataset available in the IoT of each building. The research demonstrates how human-centered data analytics can improve the future spatial design of indoor spaces.

Keywords: in-place devices, IoT, human-centred data-analytics, spatial design

Procedia PDF Downloads 198
24196 Induction Heating and Electromagnetic Stirring of Bi-Phasic Metal/Glass Molten Bath for Mixed Nuclear Waste Treatment

Authors: P. Charvin, R. Bourrou, F. Lemont, C. Lafon, A. Russello

Abstract:

For nuclear waste treatment and confinement, a specific IN-CAN melting module based on low-frequency induction heating have been designed. The frequency of 50Hz has been chosen to improve penetration length through metal. In this design, the liquid metal, strongly stirred by electromagnetic effects, presents shape of a dome caused by strong Laplace forces developing in the bulk of bath. Because of a lower density, the glass phase is located above the metal phase and is heated and stirred by metal through interface. Electric parameters (Intensity, frequency) give precious information about metal load and composition (resistivity of alloy) through impedance modification. Then, power supply can be adapted to energy transfer efficiency for suitable process supervision. Modeling of this system allows prediction of metal dome shape (in agreement with experimental measurement with a specific device), glass and metal velocity, heat and motion transfer through interface. MHD modeling is achieved with COMSOL and Fluent. First, a simplified model is used to obtain the shape of the metal dome. Then the shape is fixed to calculate the fluid flow and the thermal part.

Keywords: electromagnetic stirring, induction heating, interface modeling, metal load

Procedia PDF Downloads 270
24195 A Unique Multi-Class Support Vector Machine Algorithm Using MapReduce

Authors: Aditi Viswanathan, Shree Ranjani, Aruna Govada

Abstract:

With data sizes constantly expanding, and with classical machine learning algorithms that analyze such data requiring larger and larger amounts of computation time and storage space, the need to distribute computation and memory requirements among several computers has become apparent. Although substantial work has been done in developing distributed binary SVM algorithms and multi-class SVM algorithms individually, the field of multi-class distributed SVMs remains largely unexplored. This research seeks to develop an algorithm that implements the Support Vector Machine over a multi-class data set and is efficient in a distributed environment. For this, we recursively choose the best binary split of a set of classes using a greedy technique. Much like the divide and conquer approach. Our algorithm has shown better computation time during the testing phase than the traditional sequential SVM methods (One vs. One, One vs. Rest) and out-performs them as the size of the data set grows. This approach also classifies the data with higher accuracy than the traditional multi-class algorithms.

Keywords: distributed algorithm, MapReduce, multi-class, support vector machine

Procedia PDF Downloads 402
24194 Entrepreneurship Skills Acquisition through Education: Impact of the Nurturance of Knowledge, Skills, and Attitude on New Venture Creation

Authors: Satya Ranjan Acharya, Yamini Chandra

Abstract:

Entrepreneurship through higher education has taken a paradigm shift from traditional classroom lecture series method to a modern approach, which lay emphasis on nurturing competencies, enhancing knowledge, skills, attitudes/abilities (KSA), which has positive impact on the development of core capabilities. The present paper was focused on the analysis of entrepreneurship education as a pedagogical intervention for the post-graduate program offered at the Entrepreneurship Development Institute of India, Gujarat, India. The study is focused on a model with special emphasis on developing KSA and its effect on nurturing entrepreneurial spirit within students. The findings represent demographic and thematic assessment of the implemented pedagogical model with an outcome of students choosing a career in new venture creation or growth/diversification of family owned businesses. This research will be helpful for academicians, research scholars, potential entrepreneurs, ecosystem enablers and students to infer the effectiveness of nurturing entrepreneurial skills and bringing more changes in personal attitudes by the way of enhancing the knowledge and skills required for the execution of an entrepreneurial career. This research is original in nature as it provides an in-depth insight into an implemented model of curriculum, focused on the development and nurturance of basic skills and its impact on the career choice of students.

Keywords: attitude, entrepreneurship education, knowledge, new venture creation, pedagogical intervention, skills

Procedia PDF Downloads 194
24193 Information Management Approach in the Prediction of Acute Appendicitis

Authors: Ahmad Shahin, Walid Moudani, Ali Bekraki

Abstract:

This research aims at presenting a predictive data mining model to handle an accurate diagnosis of acute appendicitis with patients for the purpose of maximizing the health service quality, minimizing morbidity/mortality, and reducing cost. However, acute appendicitis is the most common disease which requires timely accurate diagnosis and needs surgical intervention. Although the treatment of acute appendicitis is simple and straightforward, its diagnosis is still difficult because no single sign, symptom, laboratory or image examination accurately confirms the diagnosis of acute appendicitis in all cases. This contributes in increasing morbidity and negative appendectomy. In this study, the authors propose to generate an accurate model in prediction of patients with acute appendicitis which is based, firstly, on the segmentation technique associated to ABC algorithm to segment the patients; secondly, on applying fuzzy logic to process the massive volume of heterogeneous and noisy data (age, sex, fever, white blood cell, neutrophilia, CRP, urine, ultrasound, CT, appendectomy, etc.) in order to express knowledge and analyze the relationships among data in a comprehensive manner; and thirdly, on applying dynamic programming technique to reduce the number of data attributes. The proposed model is evaluated based on a set of benchmark techniques and even on a set of benchmark classification problems of osteoporosis, diabetes and heart obtained from the UCI data and other data sources.

Keywords: healthcare management, acute appendicitis, data mining, classification, decision tree

Procedia PDF Downloads 352
24192 Methodology for the Multi-Objective Analysis of Data Sets in Freight Delivery

Authors: Dale Dzemydiene, Aurelija Burinskiene, Arunas Miliauskas, Kristina Ciziuniene

Abstract:

Data flow and the purpose of reporting the data are different and dependent on business needs. Different parameters are reported and transferred regularly during freight delivery. This business practices form the dataset constructed for each time point and contain all required information for freight moving decisions. As a significant amount of these data is used for various purposes, an integrating methodological approach must be developed to respond to the indicated problem. The proposed methodology contains several steps: (1) collecting context data sets and data validation; (2) multi-objective analysis for optimizing freight transfer services. For data validation, the study involves Grubbs outliers analysis, particularly for data cleaning and the identification of statistical significance of data reporting event cases. The Grubbs test is often used as it measures one external value at a time exceeding the boundaries of standard normal distribution. In the study area, the test was not widely applied by authors, except when the Grubbs test for outlier detection was used to identify outsiders in fuel consumption data. In the study, the authors applied the method with a confidence level of 99%. For the multi-objective analysis, the authors would like to select the forms of construction of the genetic algorithms, which have more possibilities to extract the best solution. For freight delivery management, the schemas of genetic algorithms' structure are used as a more effective technique. Due to that, the adaptable genetic algorithm is applied for the description of choosing process of the effective transportation corridor. In this study, the multi-objective genetic algorithm methods are used to optimize the data evaluation and select the appropriate transport corridor. The authors suggest a methodology for the multi-objective analysis, which evaluates collected context data sets and uses this evaluation to determine a delivery corridor for freight transfer service in the multi-modal transportation network. In the multi-objective analysis, authors include safety components, the number of accidents a year, and freight delivery time in the multi-modal transportation network. The proposed methodology has practical value in the management of multi-modal transportation processes.

Keywords: multi-objective, analysis, data flow, freight delivery, methodology

Procedia PDF Downloads 181
24191 Microseismicity of the Tehran Region Based on Three Seismic Networks

Authors: Jamileh Vasheghani Farahani

Abstract:

The main purpose of this research is to show the current active faults and active tectonic of the area by three seismic networks in Tehran region: 1-Tehran Disaster Mitigation and Management Organization (TDMMO), 2-Broadband Iranian National Seismic Network Center (BIN), 3-Iranian Seismological Center (IRSC). In this study, we analyzed microearthquakes happened in Tehran city and its surroundings using the Tehran networks from 1996 to 2015. We found some active faults and trends in the region. There is a 200-year history of historical earthquakes in Tehran. Historical and instrumental seismicity show that the east of Tehran is more active than the west. The Mosha fault in the North of Tehran is one of the active faults of the central Alborz. Moreover, other major faults in the region are Kahrizak, Eyvanakey, Parchin and North Tehran faults. An important seismicity region is an intersection of the Mosha and North Tehran fault systems (Kalan village in Lavasan). This region shows a cluster of microearthquakes. According to the historical and microseismic events analyzed in this research, there is a seismic gap in SE of Tehran. The empirical relationship is used to assess the Mmax based on the rupture length. There is a probability of occurrence of a strong motion of 7.0 to 7.5 magnitudes in the region (based on the assessed capability of the major faults such as Parchin and Eyvanekey faults and historical earthquakes).

Keywords: Iran, major faults, microseismicity, Tehran

Procedia PDF Downloads 368
24190 Minimization of Denial of Services Attacks in Vehicular Adhoc Networking by Applying Different Constraints

Authors: Amjad Khan

Abstract:

The security of Vehicular ad hoc networking is of great importance as it involves serious life threats. Thus to provide secure communication amongst Vehicles on road, the conventional security system is not enough. It is necessary to prevent the network resources from wastage and give them protection against malicious nodes so that to ensure the data bandwidth availability to the legitimate nodes of the network. This work is related to provide a non conventional security system by introducing some constraints to minimize the DoS (Denial of services) especially data and bandwidth. The data packets received by a node in the network will pass through a number of tests and if any of the test fails, the node will drop those data packets and will not forward it anymore. Also if a node claims to be the nearest node for forwarding emergency messages then the sender can effectively identify the true or false status of the claim by using these constraints. Consequently the DoS(Denial of Services) attack is minimized by the instant availability of data without wasting the network resources.

Keywords: black hole attack, grey hole attack, intransient traffic tempering, networking

Procedia PDF Downloads 285
24189 Traffic Prediction with Raw Data Utilization and Context Building

Authors: Zhou Yang, Heli Sun, Jianbin Huang, Jizhong Zhao, Shaojie Qiao

Abstract:

Traffic prediction is essential in a multitude of ways in modern urban life. The researchers of earlier work in this domain carry out the investigation chiefly with two major focuses: (1) the accurate forecast of future values in multiple time series and (2) knowledge extraction from spatial-temporal correlations. However, two key considerations for traffic prediction are often missed: the completeness of raw data and the full context of the prediction timestamp. Concentrating on the two drawbacks of earlier work, we devise an approach that can address these issues in a two-phase framework. First, we utilize the raw trajectories to a greater extent through building a VLA table and data compression. We obtain the intra-trajectory features with graph-based encoding and the intertrajectory ones with a grid-based model and the technique of back projection that restore their surrounding high-resolution spatial-temporal environment. To the best of our knowledge, we are the first to study direct feature extraction from raw trajectories for traffic prediction and attempt the use of raw data with the least degree of reduction. In the prediction phase, we provide a broader context for the prediction timestamp by taking into account the information that are around it in the training dataset. Extensive experiments on several well-known datasets have verified the effectiveness of our solution that combines the strength of raw trajectory data and prediction context. In terms of performance, our approach surpasses several state-of-the-art methods for traffic prediction.

Keywords: traffic prediction, raw data utilization, context building, data reduction

Procedia PDF Downloads 129
24188 Seismic Interpretation and Petrophysical Evaluation of SM Field, Libya

Authors: Abdalla Abdelnabi, Yousf Abushalah

Abstract:

The G Formation is a major gas producing reservoir in the SM Field, eastern, Libya. It is called G limestone because it consists of shallow marine limestone. Well data and 3D-Seismic in conjunction with the results of a previous study were used to delineate the hydrocarbon reservoir of Middle Eocene G-Formation of SM Field area. The data include three-dimensional seismic data acquired in 2009. It covers approximately an area of 75 mi² and with more than 9 wells penetrating the reservoir. Seismic data are used to identify any stratigraphic and structural and features such as channels and faults and which may play a significant role in hydrocarbon traps. The well data are used to calculation petrophysical analysis of S field. The average porosity of the Middle Eocene G Formation is very good with porosity reaching 24% especially around well W 6. Average water saturation was calculated for each well from porosity and resistivity logs using Archie’s formula. The average water saturation for the whole well is 25%. Structural mapping of top and bottom of Middle Eocene G formation revealed the highest area in the SM field is at 4800 ft subsea around wells W4, W5, W6, and W7 and the deepest point is at 4950 ft subsea. Correlation between wells using well data and structural maps created from seismic data revealed that net thickness of G Formation range from 0 ft in the north part of the field to 235 ft in southwest and south part of the field. The gas water contact is found at 4860 ft using the resistivity log. The net isopach map using both the trapezoidal and pyramid rules are used to calculate the total bulk volume. The original gas in place and the recoverable gas were calculated volumetrically to be 890 Billion Standard Cubic Feet (BSCF) and 630 (BSCF) respectively.

Keywords: 3D seismic data, well logging, petrel, kingdom suite

Procedia PDF Downloads 151
24187 Analysis of Spatial and Temporal Data Using Remote Sensing Technology

Authors: Kapil Pandey, Vishnu Goyal

Abstract:

Spatial and temporal data analysis is very well known in the field of satellite image processing. When spatial data are correlated with time, series analysis it gives the significant results in change detection studies. In this paper the GIS and Remote sensing techniques has been used to find the change detection using time series satellite imagery of Uttarakhand state during the years of 1990-2010. Natural vegetation, urban area, forest cover etc. were chosen as main landuse classes to study. Landuse/ landcover classes within several years were prepared using satellite images. Maximum likelihood supervised classification technique was adopted in this work and finally landuse change index has been generated and graphical models were used to present the changes.

Keywords: GIS, landuse/landcover, spatial and temporal data, remote sensing

Procedia PDF Downloads 433
24186 Smart Irrigation System for Applied Irrigation Management in Tomato Seedling Production

Authors: Catariny C. Aleman, Flavio B. Campos, Matheus A. Caliman, Everardo C. Mantovani

Abstract:

The seedling production stage is a critical point in the vegetable production system. Obtaining high-quality seedlings is a prerequisite for subsequent cropping to occur well and productivity optimization is required. The water management is an important step in agriculture production. The adequate water requirement in horticulture seedlings can provide higher quality and increase field production. The practice of irrigation is indispensable and requires a duly adjusted quality irrigation system, together with a specific water management plan to meet the water demand of the crop. Irrigation management in seedling management requires a great deal of specific information, especially when it involves the use of inputs such as hydrorentering polymers and automation technologies of the data acquisition and irrigation system. The experiment was conducted in a greenhouse at the Federal University of Viçosa, Viçosa - MG. Tomato seedlings (Lycopersicon esculentum Mill) were produced in plastic trays of 128 cells, suspended at 1.25 m from the ground. The seedlings were irrigated by 4 micro sprinklers of fixed jet 360º per tray, duly isolated by sideboards, following the methodology developed for this work. During Phase 1, in January / February 2017 (duration of 24 days), the cultivation coefficient (Kc) of seedlings cultured in the presence and absence of hydrogel was evaluated by weighing lysimeter. In Phase 2, September 2017 (duration of 25 days), the seedlings were submitted to 4 irrigation managements (Kc, timer, 0.50 ETo, and 1.00 ETo), in the presence and absence of hydrogel and then evaluated in relation to quality parameters. The microclimate inside the greenhouse was monitored with the use of air temperature, relative humidity and global radiation sensors connected to a microcontroller that performed hourly calculations of reference evapotranspiration by Penman-Monteith standard method FAO56 modified for the balance of long waves according to Walker, Aldrich, Short (1983), and conducted water balance and irrigation decision making for each experimental treatment. Kc of seedlings cultured on a substrate with hydrogel (1.55) was higher than Kc on a pure substrate (1.39). The use of the hydrogel was a differential for the production of earlier tomato seedlings, with higher final height, the larger diameter of the colon, greater accumulation of a dry mass of shoot, a larger area of crown projection and greater the rate of relative growth. The handling 1.00 ETo promoted higher relative growth rate.

Keywords: automatic system; efficiency of water use; precision irrigation, micro sprinkler.

Procedia PDF Downloads 117