Search results for: metal removal
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3802

Search results for: metal removal

1282 Enhanced Magnetic Hyperthermic Efficiency of Ferrite Based Nanoparticles

Authors: J. P. Borah, R. D. Raland

Abstract:

Hyperthermia is one of many techniques used destroys cancerous cell. It uses the physical methods to heat certain organ or tissue delivering an adequate temperature in an appropriate period of time, to the entire tumor volume for achieving optimal therapeutic results. Magnetic Metal ferrites nanoparticles (MFe₂O₄ where M = Mn, Zn, Ni, Co, Mg, etc.) are one of the most potential candidates for hyperthermia due to their tunability, biocompatibility, chemical stability and notable ability to mediate high rate of heat induction. However, to obtain the desirable properties for these applications, it is important to optimize their chemical composition, structure and magnetic properties. These properties are mainly sensitive to cation distribution of tetrahedral and octahedral sites. Among the ferrites, zinc ferrite (ZnFe₂O₄) and Manganese ferrite ((MnFe₂O₄) is one of a strong candidate for hyperthermia application because Mn and zinc have a non-magnetic cation and therefore the magnetic property is determined only by the cation distribution of iron, which provides a better platform to manipulate or tailor the properties. In this talk, influence of doping and surfactant towards cation re-distribution leading to an enhancement of magnetic properties of ferrite nanoparticles will be demonstrated. The efficiency of heat generation in association with the enhanced magnetic property is also well discussed in this talk.

Keywords: magnetic nanoparticle, hyperthermia, x-ray diffraction, TEM study

Procedia PDF Downloads 161
1281 The Effect of Solid Wastes Disposal at Amokpala Dump Site in Orumba North Local Government Area, Anambra State

Authors: Nwanneka Mmonwuba

Abstract:

Solid waste disposal to the environment was investigated by analyzing the quality characteristics of waste, air quality, and heavy metal concentration in the soil. The characteristics of waste were analyzed by enumerating the number of houses, hostels, hotels, markets, schools, and industries with the type of waste being discharged or deposited into the dump site. The percentage of waste was estimated with organic ranking first for both wet and dry seasons, 54% and 44%, respectively. The ambient air quality was analyzed using the crown gas monitor analyzer. The analysis showed that the mean concentration of NO₂, SO₂, and Co is 0.74, 0.37, and 47.35 ppm for the wet season and 0.47, 0.35, and 37.65 ppm for the dry season, respectively, and do not conform with the USEPA standard. The chemical analysis of the groundwater sample indicates alkalinity ranging from 7.38 to 9.11. the heavy metals concentration in the soil of cadmium, iron, copper, calcium, and potassium with 0.053, 0.722, 0227, 21.3, and 9.019, respectively, obtained from 0.3 m at the subsurface failed to conform to the NRC (2013) standard. Iron consent in the soil can be corrected using ascorbic acid and soda ash. The permanent reduction of effects is to try relocating people who live very close to the dumpsite, or the dumpsite should be sited elsewhere and replaced with a sanitary landfill.

Keywords: solid waste, groundwater, disposal, dumpsite

Procedia PDF Downloads 43
1280 EMI Shielding in Carbon Based Nanocomposites

Authors: Mukul Kumar Srivastava, Sumit Basu

Abstract:

Carbon fiber reinforced polymer (CFRP) composites find wide use in the space and aerospace industries primarily due to their favourable strength-to-weight ratios. However, in spite of the impressive mechanical properties, their ability to shield sophisticated electronics from electromagnetic interference (EMI) is rather limited. As a result, metallic wire meshes or metal foils are often embedded in CFRP composites to provide adequate EMI shielding. This comes at additional manufacturing cost, increased weight and, particularly in cases of aluminium, increased risk of galvanic corrosion in the presence of moisture. In this work, we will explore ways of enhancing EMI shielding of CFRP laminates in the 8-12 GHz range (the so-called X-band), without compromising their mechanical and fracture properties, through minimal modifications to their current well-established fabrication protocol. The computational-experimental study of EMI shielding in CFRP laminates will focus on the effects of incorporating multiwalled carbon nanotubes (MWCNT) and conducting nanoparticles in different ways in the resin and/or carbon fibers. We will also explore the possibility of utilising the excellent absorbing properties of MWCNT reinforced polymer foams to enhance the overall EMI shielding capabilities.

Keywords: EMI shielding, X-band, CFRP, MWCNT

Procedia PDF Downloads 79
1279 Determination of Forced Convection Heat Transfer Performance in Lattice Geometric Heat Sinks

Authors: Bayram Sahin, Baris Gezdirici, Murat Ceylan, Ibrahim Ates

Abstract:

In this experimental study, the effects of heat transfer and flow characteristics on lattice geometric heat sinks, where high rates of heat removal are required, were investigated. The design parameters were Reynolds number, the height of heat sink (H), horizontal (Sy) and vertical (Sx) distances between heat sinks. In the experiments, the Reynolds number ranged from 4000 to 20000; heat sink heights were (H) 20 mm and 40 mm; the distances (Sy) between the heat sinks in the flow direction were45 mm, 32 mm, 23.3 mm; the distances (Sx) between the heat sinks perpendicular to the flow direction were selected to be 23.3 mm, 12.5 mm and 6 mm. A total of 90 experiments were conducted and the maximum Nusselt number and minimum friction coefficient were targeted. Experimental results have shown that heat sinks in lattice geometry have a significant effect on heat transfer enhancement. Under the different experimental conditions, the highest increase in Nusselt number was 283% while the lowest increase was calculated as 66% as compared with the straight channel results. The lowest increase in the friction factor was also obtained as 173% according to the straight channel results. It is seen that the increase in heat sink height and flow velocity increased the level of turbulence in the channel, leading to higher Nusselt number and friction factor values.

Keywords: forced convection, heat transfer enhancement, lattice geometric heat sinks, pressure drop

Procedia PDF Downloads 187
1278 Process Optimization of Mechanochemical Synthesis for the Production of 4,4 Bipyridine Based MOFS using Twin Screw Extrusion and Multivariate Analysis

Authors: Ahmed Metawea, Rodrigo Soto, Majeida Kharejesh, Gavin Walker, Ahmad B. Albadarin

Abstract:

In this study, towards a green approach, we have investigated the effect of operating conditions of solvent assessed twin-screw extruder (TSE) for the production of 4, 4-bipyridine (1-dimensional coordinated polymer (1D)) based coordinated polymer using cobalt nitrate as a metal precursor with molar ratio 1:1. Different operating parameters such as solvent percentage, screw speed and feeding rate are considered. The resultant product is characterized using offline characterization methods, namely Powder X-ray diffraction (PXRD), Raman spectroscopy and scanning electron microscope (SEM) in order to investigate the product purity and surface morphology. A lower feeding rate increased the product’s quality as more resident time was provided for the reaction to take place. The most important influencing factor was the amount of liquid added. The addition of water helped in facilitating the reaction inside the TSE by increasing the surface area of the reaction for particles

Keywords: MOFS, multivariate analysis, process optimization, chemometric

Procedia PDF Downloads 154
1277 Development of a Thermodynamic Model for Ladle Metallurgy Steel Making Processes Using Factsage and Its Macro Facility

Authors: Prasenjit Singha, Ajay Kumar Shukla

Abstract:

To produce high-quality steel in larger volumes, dynamic control of composition and temperature throughout the process is essential. In this paper, we developed a mass transfer model based on thermodynamics to simulate the ladle metallurgy steel-making process using FactSage and its macro facility. The overall heat and mass transfer processes consist of one equilibrium chamber, two non-equilibrium chambers, and one adiabatic reactor. The flow of material, as well as heat transfer, occurs across four interconnected unit chambers and a reactor. We used the macro programming facility of FactSage™ software to understand the thermochemical model of the secondary steel making process. In our model, we varied the oxygen content during the process and studied their effect on the composition of the final hot metal and slag. The model has been validated with respect to the plant data for the steel composition, which is similar to the ladle metallurgy steel-making process in the industry. The resulting composition profile serves as a guiding tool to optimize the process of ladle metallurgy in steel-making industries.

Keywords: desulphurization, degassing, factsage, reactor

Procedia PDF Downloads 210
1276 Uses and Manufacturing of Beech Corrugated Plywood

Authors: Prochazka Jiri, Beranek Tomas, Podlena Milan, Zeidler Ales

Abstract:

The poster deals with the issue of ISO shipping containers’ sheathing made of corrugated plywood instead of traditional corrugated metal sheets. It was found that the corrugated plywood is a suitable material for the sheathing due to its great flexural strength perpendicular to the course of the wave, sufficient impact resistance, surface compressive strength and low weight. Three sample sets of different thicknesses 5, 8 and 10 mm were tested in the experiments. The tests have shown that the 5 cm corrugated plywood is the most suitable thickness for sheathing. Experiments showed that to increase bending strength at needed value, it was necessary to increase the weight of the timber only by 1.6%. Flat cash test showed that 5 mm corrugated plywood is sufficient material for sheathing from a mechanical point of view. Angle of corrugation was found as a very important factor which massively affects the mechanical properties. The impact strength test has shown that plywood is relatively tough material in direction of corrugation. It was calculated that the use of corrugated plywood sheathing for the containers can reduce the weight of the walls up to 75%. Corrugated plywood is also suitable material for web of I-joists and wide interior design applications.

Keywords: corrugated plywood, veneer, beech plywood, ISO shipping container, I-joist

Procedia PDF Downloads 332
1275 Performance of Constant Load Feed Machining for Robotic Drilling

Authors: Youji Miyake

Abstract:

In aircraft assembly, a large number of preparatory holes are required for screw and rivet joints. Currently, many holes are drilled manually because it is difficult to machine the holes using conventional computerized numerical control(CNC) machines. The application of industrial robots to drill the hole has been considered as an alternative to the CNC machines. However, the rigidity of robot arms is so low that vibration is likely to occur during drilling. In this study, it is proposed constant-load feed machining as a method to perform high-precision drilling while minimizing the thrust force, which is considered to be the cause of vibration. In this method, the drill feed is realized by a constant load applied onto the tool so that the thrust force is theoretically kept below the applied load. The performance of the proposed method was experimentally examined through the deep hole drilling of plastic and simultaneous drilling of metal/plastic stack plates. It was confirmed that the deep hole drilling and simultaneous drilling could be performed without generating vibration by controlling the tool feed rate in the appropriate range.

Keywords: constant load feed machining, robotic drilling, deep hole, simultaneous drilling

Procedia PDF Downloads 190
1274 “Double Layer” Theory of Hydrogenation

Authors: Vaclav Heral

Abstract:

Ideas about the mechanism of heterogeneous catalytic hydrogenation are diverse. The Horiuti-Polanyi mechanism is most often referred to, based on the idea of a semi-hydrogenated state. In our opinion, it does not represent a satisfactory explanation of the hydrogenation mechanism, because, for example: (1) It neglects the fact that the bond of atomic hydrogen to the metal surface is strongly polarized, (2) It does not explain why a surface deprived of atomic hydrogen (by thermal desorption or by alkyne) loses isomerization capabilities, but hydrogenation capabilities remain preserved, (3) It was observed that during the hydrogenation of 1-alkenes, the reaction can be of the 0th order to hydrogen and to the alkene at the same time, which is excluded during the competitive adsorption of both reactants on the catalyst surface. We offer an alternative mechanism that satisfactorily explains many of the ambiguities: It is the idea of an independent course of olefin isomerization, catalyzed by acidic atomic hydrogen bonded on the surface of the catalyst, in addition to the hydrogenation itself, in which a two-layer complex appears on the surface of the catalyst: olefin bound to the surface and molecular hydrogen bound to it in the second layer. The rate-determining step of hydrogenation is the conversion of this complex into the final product. We believe that the Horiuti-Polanyi mechanism is flawed and we naturally think that our two-layer theory better describes the experimental findings.

Keywords: acidity of hydrogenation catalyst, Horiuti-Polanyi, hydrogenation, two-layer hydrogenation

Procedia PDF Downloads 68
1273 Adsorption and Electrochemical Regeneration for Industrial Wastewater Treatment

Authors: H. M. Mohammad, A. Martin, N. Brown, N. Hodson, P. Hill, E. Roberts

Abstract:

Graphite intercalation compound (GIC) has been demonstrated to be a useful, low capacity and rapid adsorbent for the removal of organic micropollutants from water. The high electrical conductivity and low capacity of the material lends itself to electrochemical regeneration. Following electrochemical regeneration, equilibrium loading under similar conditions is reported to exceed that achieved by the fresh adsorbent. This behavior is reported in terms of the regeneration efficiency being greater than 100%. In this work, surface analysis techniques are employed to investigate the material in three states: ‘Fresh’, ‘Loaded’ and ‘Regenerated’. ‘Fresh’ GIC is shown to exhibit a hydrogen and oxygen rich surface layer approximately 150 nm thick. ‘Loaded’ GIC shows a similar but slightly thicker surface layer (approximately 370 nm thick) and significant enhancement in the hydrogen and oxygen abundance extending beyond 600 nm from the surface. 'Regenerated’ GIC shows an oxygen rich layer, slightly thicker than the fresh case at approximately 220 nm while showing a very much lower hydrogen enrichment at the surface. Results demonstrate that while the electrochemical regeneration effectively removes the phenol model pollutant, it also oxidizes the exposed carbon surface. These results may have a significant impact on the estimation of adsorbent life.

Keywords: graphite, adsorbent, electrochemical, regeneration, phenol

Procedia PDF Downloads 128
1272 Heavy Metals Concentration in Sediments Along the Ports, Samoa

Authors: T. Imo, F. Latū, S. Aloi, J. Leung-Wai, V. Vaurasi, P. Amosa, M. A. Sheikh

Abstract:

Contamination of heavy metals in coral reefs and coastal areas is a serious ecotoxicological and environmental problem due to direct runoff from anthropogenic wastes, commercial vessels, and discharge from industrial effluents. In Samoa, the information on the ecotoxicological impact of heavy metals on sediments is limited. This study presents baseline data on the concentration and distribution of heavy metals in sediments collected along the commercial and fishing ports in Samoa. Surface sediment samples were collected within the months of August-October 2013 from the 5 sites along the 2 ports. Sieved sample fractions were used for the evaluation of sediment physicochemical parameters namely pH, conductivity, organic matter, and bicarbonates of calcium. Heavy metal (Cu, Pb) analysis was achieved by flame atomic absorption spectrometry. Two heavy metals (Cu, Pb) were detected from each port with some concentration below the WHO permissible maximum concentration of environment quality standard. The results obtained from this study advocate for further studies regarding emerging threats of heavy metals on the vital marine resources which have significant importance to the livelihood of coastal societies, particularly Small Island States including Samoa.

Keywords: coastal environment, heavy metals, pollution, sediments

Procedia PDF Downloads 321
1271 The Reducing Agent of Glycerol for the Reduction of Metal Oxides under Microwave Heating

Authors: Kianoosh Shojae

Abstract:

In recent years, the environmental challenges due to the excessive use of fossil fuels have led to heightened greenhouse gas production. In response, biodiesel has emerged as a cleaner alternative, offering reduced pollutant emissions compared to traditional fuels. The large-scale production of biodiesel, involving ester exchange of animal fats or vegetable oils, results in a surplus of crude glycerin. With environmental regulations on the rise and an increasing demand for biodiesel, glycerin production has seen a significant upswing. This paper focuses on the economic significance of glycerin through its pyrolysis as a raw material, particularly in the synthesis of metals. As industries pivoted towards cleaner fuels, glycerin, as a byproduct of biodiesel production, is poised to remain a cost-effective and surplus product. In this work, for evaluating the possible performance of using the gaseous products from the pyrolysis reaction of glycerol, we concerned the glycerin pyrolysis reactions, emphasizing the catalytic role of activated carbon, various reaction pathways and the impact of carrier gas flow rate on hydrogen production, providing valuable insights into the evolving landscape of sustainable fuel alternatives.

Keywords: biodiesel, glycerin pyrolysis, activated carbon catalysis, syngas

Procedia PDF Downloads 48
1270 Impact of Welding Distortion on the Design of Fabricated T-Girders Using Finite Element Modeling

Authors: Ahmed Hammad, Yehia Abdel-Nasser, Mohamed Shamma

Abstract:

The main configuration of ship construction consists of standard and fabricated stiffening members which are commonly used in shipbuilding such as fabricated T-sections. During the welding process, the non-uniform heating and rapid cooling lead to the inevitable presence of out-of-plane distortion and welding induced residual stresses. Because of these imperfections, the fabricated structural members may not attain their design load to be carried. The removal of these imperfections will require extra man-hours. In the present work, controlling these imperfections has been investigated at both design and fabrication stages. A typical fabricated T-girder is selected to investigate the problem of these imperfections using double-side welding. A numerical simulation based on finite element (FE) modeling has been used to investigate the effect of different parameters of the selected fabricated T-girder such as geometrical properties and welding sequences on the magnitude of welding imperfections. FE results were compared with the results of experimental model of a double-side fillet weld. The present work concludes that: Firstly, in the design stage, the optimum geometry of the fabricated T- girder is determined based on minimum steel weight and out- of- plane distortion. Secondly, in the fabrication stage, the best welding sequence is determined on the basis of minimum welding out- of- plane distortion.

Keywords: fabricated T-girder, FEM, out-of-plane distortion, section modulus, welding residual stresses

Procedia PDF Downloads 119
1269 Influence of Bacterial Biofilm on the Corrosive Processes in Electronic Equipment

Authors: Iryna P. Dzieciuch, Michael D. Putman

Abstract:

Humidity is known to degrade Navy ship electronic equipment, especially in hot moist environments. If left untreated, it can cause significant and permanent damage. Even rigorous inspection and frequent clean-up would not prevent further equipment contamination and degradation because of the constant presence of favorable growth conditions for many microorganisms. Generally, relative humidity levels of less than 60% will inhibit corrosion in electronic equipment, but because NAVY electronics often operate in hot and humid environments, prevention via dehumidification is not always possible. Currently, there is no defined research that fully describes key mechanisms which cause electronics and its coating degradation. The corrosive action of most bacteria is mainly developed through (i) mycelium adherence to the metal plates, (ii) facilitation the formation of pitting areas, (iii) production of organic acids such as citric, iso-citric, cis-aconitic, alpha-ketoglutaric, which are corrosive to electronic equipment and its components. Our approach studies corrosive action in electronic equipment: circuit-board, wires and connections that are exposed in the humid environment that gets worse during condensation. In our new approach the technical task is built on work with the bacterial communities in public areas, bacterial genetics, bioinformatics, biostatistics and Scanning Electron Microscopy (SEM) of corroded circuit boards. Based on these methods, we collect and examine environmental samples from biofilms of the corroded and non-corroded sites, where bacterial contamination of electronic equipment, such as machine racks and shore boats, is an ongoing concern. Sample collection and sample analysis is focused on addressing the key questions identified above through the following tasks: laboratory sample processing and evaluation under scanning electron microscopy, initial sequencing and data evaluation; bioinformatics and data analysis. Preliminary results from scanning electron microscopy (SEM) have revealed that metal particulates and alloys in corroded samples consists mostly of Tin ( < 40%), Silicon ( < 4%), Sulfur ( < 1%), Aluminum ( < 2%), Magnesium ( < 2%), Copper ( < 1%), Bromine ( < 2%), Barium ( <1%) and Iron ( < 2%) elements. We have also performed X 12000 magnification of the same sites and that proved existence of undisrupted biofilm organelles and crystal structures. Non-corrosion sites have revealed high presence of copper ( < 47%); other metals remain at the comparable level as on the samples with corrosion. We have performed X 1000 magnification on the non-corroded at the sites and have documented formation of copper crystals. The next step of this study, is to perform metagenomics sequencing at all sites and to compare bacterial composition present in the environment. While copper is nontoxic to the living organisms, the process of bacterial adhesion creates acidic environment by releasing citric, iso-citric, cis-aconitic, alpha-ketoglutaric acidics, which in turn release copper ions Cu++, which that are highly toxic to the bacteria and higher order living organisms. This phenomenon, might explain natural “antibiotic” properties that are lacking in elements such as tin. To prove or deny this hypothesis we will use next - generation sequencing (NGS) methods to investigate types and growth cycles of bacteria that from bacterial biofilm the on corrosive and non-corrosive samples.

Keywords: bacteria, biofilm, circuit board, copper, corrosion, electronic equipment, organic acids, tin

Procedia PDF Downloads 156
1268 Membrane Bioreactor versus Activated Sludge Process for Aerobic Wastewater Treatment and Recycling

Authors: Sarra Kitanou

Abstract:

Membrane bioreactor (MBR) systems are one of the most widely used wastewater treatment processes for various municipal and industrial waste streams. It is based on complex interactions between biological processes, filtration process and rheological properties of the liquid to be treated. Its complexity makes understanding system operation and optimization more difficult, and traditional methods based on experimental analysis are costly and time consuming. The present study was based on an external membrane bioreactor pilot scale with ceramic membranes compared to conventional activated sludge process (ASP) plant. Both systems received their influent from a domestic wastewater. The membrane bioreactor (MBR) produced an effluent with much better quality than ASP in terms of total suspended solids (TSS), organic matter such as biological oxygen demand (BOD) and chemical oxygen demand (COD), total Phosphorus and total Nitrogen. Other effluent quality parameters also indicate substantial differences between ASP and MBR. This study leads to conclude that in the case domestic wastewater, MBR treatment has excellent effluent quality. Hence, the replacement of the ASP by the MBRs may be justified on the basis of their improved removal of solids, nutrients, and micropollutants. Furthermore, in terms of reuse the great quality of the treated water allows it to be reused for irrigation.

Keywords: aerobic wastewater treatment, conventional activated sludge process, membrane bioreactor, reuse for irrigation

Procedia PDF Downloads 74
1267 Anthocyanin Complex: Characterization and Cytotoxicity Studies

Authors: Sucharat Limsitthichaikoon, Kedsarin Saodaeng, Aroonsri Priprem, Teerasak Damrongrungruang

Abstract:

Complexation of anthocyanins to mimic natural copigmentation process was investigated. Cyanidin-rich extracts from Zea mays L. CeritinaKulesh. anddelphinidin-rich extracts from ClitoriaternateaL. were used to form 4 anthocyanin complexes, AC1, AC2, AC3, and AC4, in the presence of several polyphenols and a trace metal. Characterizations of the ACs were conducted by UV, FTIR, DSC/TGA and morphological observations. Bathochromic shifts of the UV spectra of 4 formulas of ACs were observed at peak wavelengths of about 510-620 nm by 10 nm suggesting complex formation.FTIR spectra of the ACs indicate shifts of peaks from 1,733 cm-1 to 1,696 cm-1 indicating interactions and a decrease in the peak areas within the wavenumber of 3,400-3,500 cm-1 indicating changes in hydrogen bonding.Thermal analysis of all of the ACs suggests increases in melting temperature after complexation. AC with the highest melting temperature was morphologically observed by SEM and TEM to be crystal-like particles within a range of 50 to 200 nm. Particle size analysis of the AC by laser diffraction gave a range of 50-600 nm, indicating aggregation. This AC was shown to have no cytotoxic effect on cultured HGEPp0.5 and HGF (all p> 0.05) by MTT. Therefore, complexation of anthocyanins was simple and self-assembly process, potentially resulting in nanosized particles of anthocyanin complex.

Keywords: anthocyanins, complexation, purple corn cops, butterfly pea, physicochemical characteristics, cytotoxicity

Procedia PDF Downloads 358
1266 Spiking Behavior in Memristors with Shared Top Electrode Configuration

Authors: B. Manoj Kumar, C. Malavika, E. S. Kannan

Abstract:

The objective of this study is to investigate the switching behavior of two vertically aligned memristors connected by a shared top electrode, a configuration that significantly deviates from the conventional single oxide layer sandwiched between two electrodes. The device is fabricated by bridging copper electrodes with mechanically exfoliated van der Waals metal (specifically tantalum disulfide and tantalum diselenide). The device demonstrates threshold-switching behavior in its I-V characteristics. When the input voltage signal is ramped with voltages below the threshold, the output current shows spiking behavior, resembling integrated and firing actions without extra circuitry. We also investigated the self-reset behavior of the device. Using a continuous constant voltage bias, we activated the device to the firing state. After removing the bias and reapplying it shortly afterward, the current returned to its initial state. This indicates that the device can spontaneously return to its resting state. The outcome of this investigation offers a fresh perspective on memristor-based device design and an efficient method to construct hardware for neuromorphic computing systems.

Keywords: integrated and firing, memristor, spiking behavior, threshold switching

Procedia PDF Downloads 57
1265 Photocatalytic Degradation of Aqueous Organic Pollutant under UV Light Irradiation

Authors: D. Tassalit, N. Chekir, O. Benhabiles, N. A. Laoufi, F. Bentahar

Abstract:

In the setting of the waters purification, some molecules appear recalcitrant to the traditional treatments. The exploitation of the properties of some catalysts permits to amplify the oxidization performances with ultraviolet radiance and to remove this pollution by a non biological way. This study was conducted to investigate the effect of a photocatalysis oxidation system for organic pollutants treatment using a new reactor design and ZnO/TiO2 as a catalyst under UV light. Oxidative degradation of tylosin by hydroxyl radicals (OH°) was studied in aqueous medium using suspended forms of ZnO and TiO2. The results improve that the treatment was affected by many factors such as flow-rate of solution, initial pollutant concentration and catalyst concentration. The rate equation for the tylosin degradation followed first order kinetics and the rate-constants were determined. The reaction rate fitted well with Langmuir–Hinshelwood model and the removed ratio of tylosin was 97 % in less than 60 minutes. To determine the optimum catalyst loading, a series of experiments were carried out by varying the amount of catalyst from 0.05 to 0.5 g/L. The results demonstrate that the rate of photodegradation is optimum with catalyst loading of 0.1 g/L, reaction flow rate of 3.79 mL/s and solution natural pH. The rate was found to increase with the decrease in tylosin concentration from 30 to 5 mg/L. Therefore, this simple photoreactor design for the removal of organic pollutants has the potential to be used in wastewater treatment.

Keywords: advanced oxidation, photocatalysis, TiO2, ZnO, UV light, pharmaceuticals pollutants, Spiramycin, tylosin, wastewater treatment

Procedia PDF Downloads 427
1264 Numerical Analysis of Internal Cooled Turbine Blade Using Conjugate Heat Transfer

Authors: Bhavesh N. Bhatt, Zozimus D. Labana

Abstract:

This work is mainly focused on the analysis of heat transfer of blade by using internal cooling method. By using conjugate heat transfer technology we can effectively compute the cooling and heat transfer analysis of blade. Here blade temperature is limited by materials melting temperature. By using CFD code, we will analyze the blade cooling with the help of CHT method. There are two types of CHT methods. In the first method, we apply coupled CHT method in which all three domains modeled at once, and in the second method, we will first model external domain and then, internal domain of cooling channel. Ten circular cooling channels are used as a cooling method with different mass flow rate and temperature value. This numerical simulation is applied on NASA C3X turbine blade, and results are computed. Here results are showing good agreement with experimental results. Temperature and pressure are high at the leading edge of the blade on stagnation point due to its first faces the flow. On pressure side, shock wave is formed which also make a sudden change in HTC and other parameters. After applying internal cooling, we are succeeded in reducing the metal temperature of blade by some extends.

Keywords: gas turbine, conjugate heat transfer, NASA C3X Blade, circular film cooling channel

Procedia PDF Downloads 324
1263 Effect of Particle Size on Sintering Characteristics of Injection Molded 316L Powder

Authors: H. Özkan Gülsoy, Antonyraj Arockiasamy

Abstract:

The application of powder injection molding technology for the fabrication of metallic and non-metallic components is of growing interest as the process considerably saves time and cost. Utilizing this fabrication method, full dense components are being prepared in various sizes. In this work, our effort is focused to study the densification behavior of the parts made using different size 316L stainless steel powders. The metal powders were admixed with an adequate amount of polymeric compounds and molded as standard tensile bars. Solvent and thermal debinding was carried out followed by sintering in ultra pure hydrogen atmosphere based on the differential scanning calorimetry (DSC) cycle. Mechanical property evaluation and microstructural characterization of the sintered specimens was performed using universal Instron tensile testing machine, Vicker’s microhardness tester, optical (OM) and scanning electron microscope (SEM), energy dispersive spectroscopy (EDS), and X-ray diffraction were used. The results are compared and analyzed to predict the strength and weakness of the test conditions.

Keywords: powder injection molding, sintering, particle size, stainless steels

Procedia PDF Downloads 359
1262 A Prospective Study of a Modified Pin-In-Plaster Technique for Treatment of Distal Radius Fractures

Authors: S. alireza Mirghasemi, Shervin Rashidinia, Mohammadsaleh Sadeghi, Mohsen Talebizadeh, Narges Rahimi Gabaran, S. Shahin Eftekhari, Sara Shahmoradi

Abstract:

Purpose: There are various pin-in-plaster methods for treating distal radius fractures. This study is meant to introduce a modified technique of pin-in-plaster. Materials and methods: Fifty-four patients with distal radius fractures were followed up for one year. Patients were excluded if they had type B fractures according to AO classification, multiple injuries or pathological fractures, and were treated more than 7 days after injury. Range of motion and functional results were evaluated. Radiographic parameters including radial inclination, tilt, and height, were measured preoperatively and postoperatively. Results: The average radial tilt was 10.6° and radial height was 10.2 mm at the sixth month postoperatively. Three cases of pin tract infection were recorded, who were treated totally with oral antibiotics. There was no case of pin loosening. Of total 73 patients underwent surgery, three cases of radial nerve irritation were recorded at the time of cast removal. All of them resolved at the 6th month follow up. No median nerve compression and carpal tunnel syndrome have found. We also had no case of tendon injury. Conclusion: Our modified technique is effective to restore anatomic congruity and maintain reduction.

Keywords: distal radius fracture, percutaneous pinning, pin-in-plaster, modified method of pin-in-plaster, operative treatment

Procedia PDF Downloads 505
1261 Miniaturizing the Volumetric Titration of Free Nitric Acid in U(vi) Solutions: On the Lookout for a More Sustainable Process Radioanalytical Chemistry through Titration-On-A-Chip

Authors: Jose Neri, Fabrice Canto, Alastair Magnaldo, Laurent Guillerme, Vincent Dugas

Abstract:

A miniaturized and automated approach for the volumetric titration of free nitric acid in U(VI) solutions is presented. Free acidity measurement refers to the acidity quantification in solutions containing hydrolysable heavy metal ions such as U(VI), U(IV) or Pu(IV) without taking into account the acidity contribution from the hydrolysis of such metal ions. It is, in fact, an operation having an essential role for the control of the nuclear fuel recycling process. The main objective behind the technical optimization of the actual ‘beaker’ method was to reduce the amount of radioactive substance to be handled by the laboratory personnel, to ease the instrumentation adjustability within a glove-box environment and to allow a high-throughput analysis for conducting more cost-effective operations. The measurement technique is based on the concept of the Taylor-Aris dispersion in order to create inside of a 200 μm x 5cm circular cylindrical micro-channel a linear concentration gradient in less than a second. The proposed analytical methodology relies on the actinide complexation using pH 5.6 sodium oxalate solution and subsequent alkalimetric titration of nitric acid with sodium hydroxide. The titration process is followed with a CCD camera for fluorescence detection; the neutralization boundary can be visualized in a detection range of 500nm- 600nm thanks to the addition of a pH sensitive fluorophore. The operating principle of the developed device allows the active generation of linear concentration gradients using a single cylindrical micro channel. This feature simplifies the fabrication and ease of use of the micro device, as it does not need a complex micro channel network or passive mixers to generate the chemical gradient. Moreover, since the linear gradient is determined by the liquid reagents input pressure, its generation can be fully achieved in faster intervals than one second, being a more timely-efficient gradient generation process compared to other source-sink passive diffusion devices. The resulting linear gradient generator device was therefore adapted to perform for the first time, a volumetric titration on a chip where the amount of reagents used is fixed to the total volume of the micro channel, avoiding an important waste generation like in other flow-based titration techniques. The associated analytical method is automated and its linearity has been proven for the free acidity determination of U(VI) samples containing up to 0.5M of actinide ion and nitric acid in a concentration range of 0.5M to 3M. In addition to automation, the developed analytical methodology and technique greatly improves the standard off-line oxalate complexation and alkalimetric titration method by reducing a thousand fold the required sample volume, forty times the nuclear waste per analysis as well as the analysis time by eight-fold. The developed device represents, therefore, a great step towards an easy-to-handle nuclear-related application, which in the short term could be used to improve laboratory safety as much as to reduce the environmental impact of the radioanalytical chain.

Keywords: free acidity, lab-on-a-chip, linear concentration gradient, Taylor-Aris dispersion, volumetric titration

Procedia PDF Downloads 384
1260 Influence of Silica Fume on the Hydration of Cement Pastes Studied by Simultaneous TG-DSC Analysis

Authors: Anton Trník, Lenka Scheinherrová, Robert Černý

Abstract:

Silica fume is a by-product of the ferro-silicon and silicon metal industries. It is mainly in the form of amorphous silica. Silica fume belongs to pozzolanic active materials which can be used in concrete to improve its final properties. In this paper, the influence of silica fume on hydration of cement pastes is studied using differential scanning calorimetry (DSC) and thermogravimetry (TG) at various curing times (2, 7, 28, and 90 days) in the temperature range from 25 to 1000 °C in an argon atmosphere. Samples are prepared from Portland cement CEM I 42.5 R which is partially replaced with the silica fume of 4, 8, and 12 wt.%. The water/binder ratio is chosen as 0.5. It is identified and described the liberation of physically bound water, calcium–silicate–hydrates dehydration, portlandite and calcite decomposition in studied samples. Also, it is found out that an exothermic peak at 950 °C is observed without a significant mass change for samples with 12 wt.% of silica fume after two days of hydration. This peak is probably caused by the pozzolanic reaction between silica fume and Portland cement. Its size corresponds to the degree of crystallization between Ca and Si. The portlandite content is lower for the samples with a higher amount of silica fume.

Keywords: differential scanning calorimetry, hydration, silica fume, thermogravimetry

Procedia PDF Downloads 237
1259 316L Passive Film Modification During Pitting Corrosion Process

Authors: Amina Sriba

Abstract:

In this work, interactions between the chemical elements forming the passive film of welded austenitic stainless steel during pitting corrosion are studied. We pay special attention to the chemical elements chromium, molybdenum, iron, nickel, and silicon since they make up the passive film that covers the fusion zone's surface in the welded joint. Molybdenum and chromium are typically the two essential components that control the three crucial stages of pit formation. It was found that while the involvement of chromium is more prominent during the propagation of a pit that has already begun, the enrichment of the molybdenum element in the passive film becomes apparent from the first stage of pit initiation. Additionally, during the pitting corrosion process, there was a noticeable fluctuation in the quantities of the produced oxides and hydroxide species from zone to zone. Regarding the formed hydroxide species, we clearly see that Nickel hydroxides are added to those of Chromium to constitute the outer layer in the passive film of the fusion zone sample, compared to the base metal sample, where only Chromium hydroxide formed on its surface during the pitting corrosion process. This reaction is caused by the preferential dissolution of the austenite phase instead of ferrite in the fusion zone.

Keywords: fusion zone, passive film, chemical elements, pit

Procedia PDF Downloads 43
1258 A Study of Combined Mechanical and Chemical Stabilisation of Fine Grained Dredge Soil of River Jhelum

Authors: Adnan F. Sheikh, Fayaz A. Mir

Abstract:

After the recent devastating flood in Kashmir in 2014, dredging of the local water bodies, especially Jhelum River has become a priority for the government. Local government under the project name of 'Comprehensive Flood Management Programme' plans to undertake an increase in discharge of existing flood channels by removal of encroachments and acquisition of additional land, dredging and other works of the water bodies. The total quantity of soil to be dredged will be 16.15 lac cumecs. Dredged soil is a major component that would result from the project which requires disposal/utilization. This study analyses the effect of cement and sand on the engineering properties of soil. The tests were conducted with variable additions of sand (10%, 20% and 30%), whereas cement was added at 12%. Samples with following compositions: soil-cement (12%) and soil-sand (30%) were tested as well. Laboratory experiments were conducted to determine the engineering characteristics of soil, i.e., compaction, strength, and CBR characteristics. The strength characteristics of the soil were determined by unconfined compressive strength test and direct shear test. Unconfined compressive strength of the soil was tested immediately and for a curing period of seven days. CBR test was performed for unsoaked, soaked (worst condition- 4 days) and cured (4 days) samples.

Keywords: comprehensive flood management programme, dredge soil, strength characteristics, flood

Procedia PDF Downloads 173
1257 Aqueous Extract of Argemone Mexicana Roots for Effective Corrosion Inhibition of Mild Steel in HCl Environment

Authors: Gopal Ji, Priyanka Dwivedi, Shanthi Sundaram, Rajiv Prakash

Abstract:

Inhibition effect of aqueous Argemone Mexicana root extract (AMRE) on mild steel corrosion in 1 M HCl has been studied by weight loss, Tafel polarization curves, electrochemical impedance spectroscopy (EIS), scanning electron microscopy (SEM) and atomic force microscopy (AFM) techniques. Results indicate that inhibition ability of AMRE increases with the increasing amount of the extract. A maximum corrosion inhibition of 94% is acknowledged at the extract concentration of 400 mg L-1. Polarization curves and impedance spectra reveal that both cathodic and anodic reactions are suppressed due to passive layer formation at metal-acid interface. It is also confirmed by SEM micro graphs and FTIR studies. Furthermore, the effects of acid concentration (1-5 M), immersion time (120 hours) and temperature (30-60˚C) on inhibition potential of AMRE have been investigated by weight loss method and electrochemical techniques. Adsorption mechanism is also proposed on the basis of weight loss results, which shows good agreement with Langmuir isotherm.

Keywords: mild steel, polarization, SEM, acid corrosion, EIS, green inhibition

Procedia PDF Downloads 485
1256 Functional Nanomaterials for Environmental Applications

Authors: S. A. M. Sabrina, Gouget Lammel, Anne Chantal, Chazalviel, Jean Noël, Ozanam François, Etcheberry Arnaud, Tighlit Fatma Zohra, B. Samia, Gabouze Noureddine

Abstract:

The elaboration and characterization of hybrid nano materials give rise to considerable interest due to the new properties that arising. They are considered as an important category of new materials having innovative characteristics by combining the specific intrinsic properties of inorganic compounds (semiconductors) with the grafted organic species. This open the way to improved properties and spectacular applications in various and important fields, especially in the environment. In this work, nano materials based-semiconductors were elaborated by chemical route. The obtained surfaces were grafted with organic functional groups. The functionalization process was optimized in order to confer to the hybrid nano material a good stability as well as the right properties required for the subsequent applications. Different characterization techniques were used to investigate the resulting nano structures, such as SEM, UV-Visible, FTIR, Contact angle and electro chemical measurements. Finally, applications were envisaged in environmental area. The elaborated nano structures were tested for the detection and the elimination of pollutants.

Keywords: hybrid materials, porous silicon, peptide, metal detection

Procedia PDF Downloads 495
1255 Glycan Analyzer: Software to Annotate Glycan Structures from Exoglycosidase Experiments

Authors: Ian Walsh, Terry Nguyen-Khuong, Christopher H. Taron, Pauline M. Rudd

Abstract:

Glycoproteins and their covalently bonded glycans play critical roles in the immune system, cell communication, disease and disease prognosis. Ultra performance liquid chromatography (UPLC) coupled with mass spectrometry is conventionally used to qualitatively and quantitatively characterise glycan structures in a given sample. Exoglycosidases are enzymes that catalyze sequential removal of monosaccharides from the non-reducing end of glycans. They naturally have specificity for a particular type of sugar, its stereochemistry (α or β anomer) and its position of attachment to an adjacent sugar on the glycan. Thus, monitoring the peak movements (both in the UPLC and MS1) after application of exoglycosidases provides a unique and effective way to annotate sugars with high detail - i.e. differentiating positional and linkage isomers. Manual annotation of an exoglycosidase experiment is difficult and time consuming. As such, with increasing sample complexity and the number of exoglycosidases, the analysis could result in manually interpreting hundreds of peak movements. Recently, we have implemented pattern recognition software for automated interpretation of UPLC-MS1 exoglycosidase digestions. In this work, we explain the software, indicate how much time it will save and provide example usage showing the annotation of positional and linkage isomers in Immunoglobulin G, apolipoprotein J, and simple glycan standards.

Keywords: bioinformatics, automated glycan assignment, liquid chromatography, mass spectrometry

Procedia PDF Downloads 194
1254 Electronic Nose Based on Metal Oxide Semiconductor Sensors as an Alternative Technique for the Spoilage Classification of Oat Milk

Authors: A. Deswal, N. S. Deora, H. N. Mishra

Abstract:

The aim of the present study was to develop a rapid method for electronic nose for online quality control of oat milk. Analysis by electronic nose and bacteriological measurements were performed to analyse spoilage kinetics of oat milk samples stored at room temperature and refrigerated conditions for up to 15 days. Principal component analysis (PCA), discriminant factorial analysis (DFA) and soft independent modelling by class analogy (SIMCA) classification techniques were used to differentiate the samples of oat milk at different days. The total plate count (bacteriological method) was selected as the reference method to consistently train the electronic nose system. The e-nose was able to differentiate between the oat milk samples of varying microbial load. The results obtained by the bacteria total viable counts showed that the shelf-life of oat milk stored at room temperature and refrigerated conditions were 20 hours and 13 days, respectively. The models built classified oat milk samples based on the total microbial population into “unspoiled” and “spoiled”.

Keywords: electronic-nose, bacteriological, shelf-life, classification

Procedia PDF Downloads 255
1253 Organic Substance Removal from Pla-Som Family Industrial Wastewater through APCW System

Authors: W. Wararam, K. Angchanpen, T. Pattamapitoon, K. Chunkao, O. Phewnil, M. Srichomphu, T. Jinjaruk

Abstract:

The research focused on the efficiency for treating high organic wastewater from pla-som production process by anaerobic tanks, oxidation ponds and constructed wetland treatment systems (APCW). The combined system consisted of 50-mm plastic screen, five 5.8 m3 oil-grease trap tanks (2-day hydraulic retention time; HRT), four 4.3 m3 anaerobic tanks (1-day HRT), 16.7 m3 oxidation pond no.1 (7-day HRT), 12.0 m3 oxidation pond no.2 (3-day HRT), and 8.2 m3 constructed wetland plot (1-day HRT). After washing fresh raw fishes, they were sliced in small pieces and were converted into ground fish meat by blender machine. The fish meat was rinsed for 8 rounds: 1, 2, 3, 5, 6 and 7 by tap water and 4 and 8 by rice-wash-water, before mixing with salt, garlic, steamed rice and monosodium glutamate, followed by plastic wrapping for 72-hour of edibility. During pla-som production processing, the rinsed wastewater about 5 m3/day was fed to the treatment systems and fully stagnating storage in its components. The result found that, 1) percentage of treatment efficiency for BOD, COD, TDS and SS were 93, 95, 32 and 98 respectively, 2) the treatment was conducted with 500-kg raw fishes along with full equipment of high organic wastewater treatment systems, 3) the trend of the treatment efficiency and quantity in all indicators was similarly processed and 4) the small pieces of fish meat and fish blood were needed more than 3-day HRT in anaerobic digestion process.

Keywords: organic substance, Pla-Som family industry, wastewater, APCW system

Procedia PDF Downloads 356