Search results for: input shaping
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2719

Search results for: input shaping

199 Investigating the English Speech Processing System of EFL Japanese Older Children

Authors: Hiromi Kawai

Abstract:

This study investigates the nature of EFL older children’s L2 perceptive and productive abilities using classroom data, in order to find a pedagogical solution to the teaching of L2 sounds at an early stage of learning in a formal school setting. It is still inconclusive whether older children with only EFL formal school instruction at the initial stage of L2 learning are able to attain native-like perception and production in English within the very limited amount of exposure to the target language available. Based on the notion of the lack of study of EFL Japanese children’s acquisition of English segments, the researcher uses a model of L1 speech processing which was developed for investigating L1 English children’s speech and literacy difficulties using a psycholinguistic framework. The model is composed of input channel, output channel, and lexical representation, and examines how a child receives information from spoken or written language, remembers and stores it within the lexical representations and how the child selects and produces spoken or written words. Concerning language universality and language specificity in the language acquisitional process, the aim of finding any sound errors in L1 English children seemed to conform to the author’s intention to find abilities of English sounds in older Japanese children at the novice level of English in an EFL setting. 104 students in Grade 5 (between the ages of 10 and 11 years old) of an elementary school in Tokyo participated in this study. Four tests to measure their perceptive ability and three oral repetition tests to measure their productive ability were conducted with/without reference to lexical representation. All the test items were analyzed to calculate item facility (IF) indices, and correlational analyses and Structural Equation Modeling (SEM) were conducted to examine the relationship between the receptive ability and the productive ability. IF analysis showed that (1) the participants were better at perceiving a segment than producing a segment, (2) they had difficulty in auditory discrimination of paired consonants when one of them does not exist in the Japanese inventory, (3) they had difficulty in both perceiving and producing English vowels, and (4) their L1 loan word knowledge had an influence on their ability to perceive and produce L2 sounds. The result of the Multiple Regression Modeling showed that the two production tests could predict the participants’ auditory ability of real words in English. The result of SEM showed that the hypothesis that perceptive ability affects productive ability was supported. Based on these findings, the author discusses the possible explicit method of teaching English segments to EFL older children in a formal school setting.

Keywords: EFL older children, english segments, perception, production, speech processing system

Procedia PDF Downloads 244
198 Comparative Analysis of Simulation-Based and Mixed-Integer Linear Programming Approaches for Optimizing Building Modernization Pathways Towards Decarbonization

Authors: Nico Fuchs, Fabian Wüllhorst, Laura Maier, Dirk Müller

Abstract:

The decarbonization of building stocks necessitates the modernization of existing buildings. Key measures for this include reducing energy demands through insulation of the building envelope, replacing heat generators, and installing solar systems. Given limited financial resources, it is impractical to modernize all buildings in a portfolio simultaneously; instead, prioritization of buildings and modernization measures for a given planning horizon is essential. Optimization models for modernization pathways can assist portfolio managers in this prioritization. However, modeling and solving these large-scale optimization problems, often represented as mixed-integer problems (MIP), necessitates simplifying the operation of building energy systems particularly with respect to system dynamics and transient behavior. This raises the question of which level of simplification remains sufficient to accurately account for realistic costs and emissions of building energy systems, ensuring a fair comparison of different modernization measures. This study addresses this issue by comparing a two-stage simulation-based optimization approach with a single-stage mathematical optimization in a mixed-integer linear programming (MILP) formulation. The simulation-based approach serves as a benchmark for realistic energy system operation but requires a restriction of the solution space to discrete choices of modernization measures, such as the sizing of heating systems. After calculating the operation of different energy systems in terms of the resulting final energy demands in simulation models on a first stage, the results serve as input for a second stage MILP optimization, where the design of each building in the portfolio is optimized. In contrast to the simulation-based approach, the MILP-based approach can capture a broader variety of modernization measures due to the efficiency of MILP solvers but necessitates simplifying the building energy system operation. Both approaches are employed to determine the cost-optimal design and dimensioning of several buildings in a portfolio to meet climate targets within limited yearly budgets, resulting in a modernization pathway for the entire portfolio. The comparison reveals that the MILP formulation successfully captures design decisions of building energy systems, such as the selection of heating systems and the modernization of building envelopes. However, the results regarding the optimal dimensioning of heating technologies differ from the results of the two-stage simulation-based approach, as the MILP model tends to overestimate operational efficiency, highlighting the limitations of the MILP approach.

Keywords: building energy system optimization, model accuracy in optimization, modernization pathways, building stock decarbonization

Procedia PDF Downloads 36
197 Architectural Wind Data Maps Using an Array of Wireless Connected Anemometers

Authors: D. Serero, L. Couton, J. D. Parisse, R. Leroy

Abstract:

In urban planning, an increasing number of cities require wind analysis to verify comfort of public spaces and around buildings. These studies are made using computer fluid dynamic simulation (CFD). However, this technique is often based on wind information taken from meteorological stations located at several kilometers of the spot of analysis. The approximated input data on project surroundings produces unprecise results for this type of analysis. They can only be used to get general behavior of wind in a zone but not to evaluate precise wind speed. This paper presents another approach to this problem, based on collecting wind data and generating an urban wind cartography using connected ultrasound anemometers. They are wireless devices that send immediate data on wind to a remote server. Assembled in array, these devices generate geo-localized data on wind such as speed, temperature, pressure and allow us to compare wind behavior on a specific site or building. These Netatmo-type anemometers communicate by wifi with central equipment, which shares data acquired by a wide variety of devices such as wind speed, indoor and outdoor temperature, rainfall, and sunshine. Beside its precision, this method extracts geo-localized data on any type of site that can be feedback looped in the architectural design of a building or a public place. Furthermore, this method allows a precise calibration of a virtual wind tunnel using numerical aeraulic simulations (like STAR CCM + software) and then to develop the complete volumetric model of wind behavior over a roof area or an entire city block. The paper showcases connected ultrasonic anemometers, which were implanted for an 18 months survey on four study sites in the Grand Paris region. This case study focuses on Paris as an urban environment with multiple historical layers whose diversity of typology and buildings allows considering different ways of capturing wind energy. The objective of this approach is to categorize the different types of wind in urban areas. This, particularly the identification of the minimum and maximum wind spectrum, helps define the choice and performance of wind energy capturing devices that could be implanted there. The localization on the roof of a building, the type of wind, the altimetry of the device in relation to the levels of the roofs, the potential nuisances generated. The method allows identifying the characteristics of wind turbines in order to maximize their performance in an urban site with turbulent wind.

Keywords: computer fluid dynamic simulation in urban environment, wind energy harvesting devices, net-zero energy building, urban wind behavior simulation, advanced building skin design methodology

Procedia PDF Downloads 103
196 Determinants of Profit Efficiency among Poultry Egg Farmers in Ondo State, Nigeria: A Stochastic Profit Function Approach

Authors: Olufunke Olufunmilayo Ilemobayo, Barakat. O Abdulazeez

Abstract:

Profit making among poultry egg farmers has been a challenge to efficient distribution of scarce farm resources over the years, due majorly to low capital base, inefficient management, technical inefficiency, economic inefficiency, thus poultry egg production has moved into an underperformed situation, characterised by low profit margin. Though previous studies focus mainly on broiler production and efficiency of its production, however, paucity of information exist in the areas of profit efficiency in the study area. Hence, determinants of profit efficiency among poultry egg farmers in Ondo State, Nigeria were investigated. A purposive sampling technique was used to obtain primary data from poultry egg farmers in Owo and Akure local government area of Ondo State, through a well-structured questionnaire. socio-economic characteristics such as age, gender, educational level, marital status, household size, access to credit, extension contact, other variables were input and output data like flock size, cost of feeder and drinker, cost of feed, cost of labour, cost of drugs and medications, cost of energy, price of crate of table egg, price of spent layers were variables used in the study. Data were analysed using descriptive statistics, budgeting analysis, and stochastic profit function/inefficiency model. Result of the descriptive statistics shows that 52 per cent of the poultry farmers were between 31-40 years, 62 per cent were male, 90 per cent had tertiary education, 66 per cent were primarily poultry farmers, 78 per cent were original poultry farm owners and 55 per cent had more than 5 years’ work experience. Descriptive statistics on cost and returns indicated that 64 per cent of the return were from sales of egg, while the remaining 36 per cent was from sales of spent layers. The cost of feeding take the highest proportion of 69 per cent of cost of production and cost of medication the lowest (7 per cent). A positive gross margin of N5, 518,869.76, net farm income of ₦ 5, 500.446.82 and net return on investment of 0.28 indicated poultry egg production is profitable. Equipment’s cost (22.757), feeding cost (18.3437), labour cost (136.698), flock size (16.209), drug and medication cost (4.509) were factors that affecting profit efficiency, while education (-2.3143), household size (-18.4291), access to credit (-16.027), and experience (-7.277) were determinant of profit efficiency. Education, household size, access to credit and experience in poultry production were the main determinants of profit efficiency of poultry egg production in Ondo State. Other factors that affect profit efficiency were cost of feeding, cost of labour, flock size, cost of drug and medication, they positively and significantly influenced profit efficiency in Ondo State, Nigeria.

Keywords: cost and returns, economic inefficiency, profit margin, technical inefficiency

Procedia PDF Downloads 130
195 Working Memory and Phonological Short-Term Memory in the Acquisition of Academic Formulaic Language

Authors: Zhicheng Han

Abstract:

This study examines the correlation between knowledge of formulaic language, working memory (WM), and phonological short-term memory (PSTM) in Chinese L2 learners of English. This study investigates if WM and PSTM correlate differently to the acquisition of formulaic language, which may be relevant for the discourse around the conceptualization of formulas. Connectionist approaches have lead scholars to argue that formulas are form-meaning connections stored whole, making PSTM significant in the acquisitional process as it pertains to the storage and retrieval of chunk information. Generativist scholars, on the other hand, argued for active participation of interlanguage grammar in the acquisition and use of formulaic language, where formulas are represented in the mind but retain the internal structure built around a lexical core. This would make WM, especially the processing component of WM an important cognitive factor since it plays a role in processing and holding information for further analysis and manipulation. The current study asked L1 Chinese learners of English enrolled in graduate programs in China to complete a preference raking task where they rank their preference for formulas, grammatical non-formulaic expressions, and ungrammatical phrases with and without the lexical core in academic contexts. Participants were asked to rank the options in order of the likeliness of them encountering these phrases in the test sentences within academic contexts. Participants’ syntactic proficiency is controlled with a cloze test and grammar test. Regression analysis found a significant relationship between the processing component of WM and preference of formulaic expressions in the preference ranking task while no significant correlation is found for PSTM or syntactic proficiency. The correlational analysis found that WM, PSTM, and the two proficiency test scores have significant covariates. However, WM and PSTM have different predictor values for participants’ preference for formulaic language. Both storage and processing components of WM are significantly correlated with the preference for formulaic expressions while PSTM is not. These findings are in favor of the role of interlanguage grammar and syntactic knowledge in the acquisition of formulaic expressions. The differing effects of WM and PSTM suggest that selective attention to and processing of the input beyond simple retention play a key role in successfully acquiring formulaic language. Similar correlational patterns were found for preferring the ungrammatical phrase with the lexical core of the formula over the ones without the lexical core, attesting to learners’ awareness of the lexical core around which formulas are constructed. These findings support the view that formulaic phrases retain internal syntactic structures that are recognized and processed by the learners.

Keywords: formulaic language, working memory, phonological short-term memory, academic language

Procedia PDF Downloads 63
194 The Use of Stroke Journey Map in Improving Patients' Perceived Knowledge in Acute Stroke Unit

Authors: C. S. Chen, F. Y. Hui, B. S. Farhana, J. De Leon

Abstract:

Introduction: Stroke can lead to long-term disability, affecting one’s quality of life. Providing stroke education to patient and family members is essential to optimize stroke recovery and prevent recurrent stroke. Currently, nurses conduct stroke education by handing out pamphlets and explaining their contents to patients. However, this is not always effective as nurses have varying levels of knowledge and depth of content discussed with the patient may not be consistent. With the advancement of information technology, health education is increasingly being disseminated via electronic software and studies have shown this to have benefitted patients. Hence, a multi-disciplinary team consisting of doctors, nurses and allied health professionals was formed to create the stroke journey map software to deliver consistent and concise stroke education. Research Objectives: To evaluate the effectiveness of using a stroke journey map software in improving patients’ perceived knowledge in the acute stroke unit during hospitalization. Methods: Patients admitted to the acute stroke unit were given stroke journey map software during patient education. The software consists of 31 interactive slides that are brightly coloured and 4 videos, based on input provided by the multi-disciplinary team. Participants were then assessed with pre-and-post survey questionnaires before and after viewing the software. The questionnaire consists of 10 questions with a 5-point Likert scale which sums up to a total score of 50. The inclusion criteria are patients diagnosed with ischemic stroke and are cognitively alert and oriented. This study was conducted between May 2017 to October 2017. Participation was voluntary. Results: A total of 33 participants participated in the study. The results demonstrated that the use of a stroke journey map as a stroke education medium was effective in improving patients’ perceived knowledge. A comparison of pre- and post-implementation data of stroke journey map revealed an overall mean increase in patients’ perceived knowledge from 24.06 to 40.06. The data is further broken down to evaluate patients’ perceived knowledge in 3 domains: (1) Understanding of disease process; (2) Management and treatment plans; (3) Post-discharge care. Each domain saw an increase in mean score from 10.7 to 16.2, 6.9 to 11.9 and 6.6 to 11.7 respectively. Project Impact: The implementation of stroke journey map has a positive impact in terms of (1) Increasing patient’s perceived knowledge which could contribute to greater empowerment of health; (2) Reducing need for stroke education material printouts making it environmentally friendly; (3) Decreasing time nurses spent on giving education resulting in more time to attend to patients’ needs. Conclusion: This study has demonstrated the benefit of using stroke journey map as a platform for stroke education. Overall, it has increased patients’ perceived knowledge in understanding their disease process, the management and treatment plans as well as the discharge process.

Keywords: acute stroke, education, ischemic stroke, knowledge, stroke

Procedia PDF Downloads 161
193 Molecular Modeling and Prediction of the Physicochemical Properties of Polyols in Aqueous Solution

Authors: Maria Fontenele, Claude-Gilles Dussap, Vincent Dumouilla, Baptiste Boit

Abstract:

Roquette Frères is a producer of plant-based ingredients that employs many processes to extract relevant molecules and often transforms them through chemical and physical processes to create desired ingredients with specific functionalities. In this context, Roquette encounters numerous multi-component complex systems in their processes, including fibers, proteins, and carbohydrates, in an aqueous environment. To develop, control, and optimize both new and old processes, Roquette aims to develop new in silico tools. Currently, Roquette uses process modelling tools which include specific thermodynamic models and is willing to develop computational methodologies such as molecular dynamics simulations to gain insights into the complex interactions in such complex media, and especially hydrogen bonding interactions. The issue at hand concerns aqueous mixtures of polyols with high dry matter content. The polyols mannitol and sorbitol molecules are diastereoisomers that have nearly identical chemical structures but very different physicochemical properties: for example, the solubility of sorbitol in water is 2.5 kg/kg of water, while mannitol has a solubility of 0.25 kg/kg of water at 25°C. Therefore, predicting liquid-solid equilibrium properties in this case requires sophisticated solution models that cannot be based solely on chemical group contributions, knowing that for mannitol and sorbitol, the chemical constitutive groups are the same. Recognizing the significance of solvation phenomena in polyols, the GePEB (Chemical Engineering, Applied Thermodynamics, and Biosystems) team at Institut Pascal has developed the COSMO-UCA model, which has the structural advantage of using quantum mechanics tools to predict formation and phase equilibrium properties. In this work, we use molecular dynamics simulations to elucidate the behavior of polyols in aqueous solution. Specifically, we employ simulations to compute essential metrics such as radial distribution functions and hydrogen bond autocorrelation functions. Our findings illuminate a fundamental contrast: sorbitol and mannitol exhibit disparate hydrogen bond lifetimes within aqueous environments. This observation serves as a cornerstone in elucidating the divergent physicochemical properties inherent to each compound, shedding light on the nuanced interplay between their molecular structures and water interactions. We also present a methodology to predict the physicochemical properties of complex solutions, taking as sole input the three-dimensional structure of the molecules in the medium. Finally, by developing knowledge models, we represent some physicochemical properties of aqueous solutions of sorbitol and mannitol.

Keywords: COSMO models, hydrogen bond, molecular dynamics, thermodynamics

Procedia PDF Downloads 44
192 Analyzing Temperature and Pressure Performance of a Natural Air-Circulation System

Authors: Emma S. Bowers

Abstract:

Perturbations in global environments and temperatures have heightened the urgency of creating cost-efficient, energy-neutral building techniques. Structural responses to this thermal crisis have included designs (including those of the building standard PassivHaus) with airtightness, window placement, insulation, solar orientation, shading, and heat-exchange ventilators as potential solutions or interventions. Limitations in the predictability of the circulation of cooled air through the ambient temperature gradients throughout a structure are one of the major obstacles facing these enhanced building methods. A diverse range of air-cooling devices utilizing varying technologies is implemented around the world. Many of them worsen the problem of climate change by consuming energy. Using natural ventilation principles of air buoyancy and density to circulate fresh air throughout a building with no energy input can combat these obstacles. A unique prototype of an energy-neutral air-circulation system was constructed in order to investigate potential temperature and pressure gradients related to the stack effect (updraft of air through a building due to changes in air pressure). The stack effect principle maintains that since warmer air rises, it will leave an area of low pressure that cooler air will rush in to fill. The result is that warmer air will be expelled from the top of the building as cooler air is directed through the bottom, creating an updraft. Stack effect can be amplified by cooling the air near the bottom of a building and heating the air near the top. Using readily available, mostly recyclable or biodegradable materials, an insulated building module was constructed. A tri-part construction model was utilized: a subterranean earth-tube heat exchanger constructed of PVC pipe and placed in a horizontally oriented trench, an insulated, airtight cube aboveground to represent a building, and a solar chimney (painted black to increase heat in the out-going air). Pressure and temperature sensors were placed at four different heights within the module as well as outside, and data was collected for a period of 21 days. The air pressures and temperatures over the course of the experiment were compared and averaged. The promise of this design is that it represents a novel approach which directly addresses the obstacles of air flow and expense, using the physical principle of stack effect to draw a continuous supply of fresh air through the structure, using low-cost and readily available materials (and zero manufactured energy). This design serves as a model for novel approaches to creating temperature controlled buildings using zero energy and opens the door for future research into the effects of increasing module scale, increasing length and depth of the earth tube, and shading the building. (Model can be provided).

Keywords: air circulation, PassivHaus, stack effect, thermal gradient

Procedia PDF Downloads 154
191 Acute Neurophysiological Responses to Resistance Training; Evidence of a Shortened Super Compensation Cycle and Early Neural Adaptations

Authors: Christopher Latella, Ashlee M. Hendy, Dan Vander Westhuizen, Wei-Peng Teo

Abstract:

Introduction: Neural adaptations following resistance training interventions have been widely investigated, however the evidence regarding the mechanisms of early adaptation are less clear. Understanding neural responses from an acute resistance training session is pivotal in the prescription of frequency, intensity and volume in applied strength and conditioning practice. Therefore the primary aim of this study was to investigate the time course of neurophysiological mechanisms post training against current super compensation theory, and secondly, to examine whether these responses reflect neural adaptations observed with resistance training interventions. Methods: Participants (N=14) completed a randomised, counterbalanced crossover study comparing; control, strength and hypertrophy conditions. The strength condition involved 3 x 5RM leg extensions with 3min recovery, while the hypertrophy condition involved 3 x 12 RM with 60s recovery. Transcranial magnetic stimulation (TMS) and peripheral nerve stimulation were used to measure excitability of the central and peripheral neural pathways, and maximal voluntary contraction (MVC) to quantify strength changes. Measures were taken pre, immediately post, 10, 20 and 30 mins and 1, 2, 6, 24, 48, 72 and 96 hrs following training. Results: Significant decreases were observed at post, 10, 20, 30 min, 1 and 2 hrs for both training groups compared to control group for force, (p <.05), maximal compound wave; (p < .005), silent period; (p < .05). A significant increase in corticospinal excitability; (p < .005) was observed for both groups. Corticospinal excitability between strength and hypertrophy groups was near significance, with a large effect (η2= .202). All measures returned to baseline within 6 hrs post training. Discussion: Neurophysiological mechanisms appear to be significantly altered in the period 2 hrs post training, returning to homeostasis by 6 hrs. The evidence suggests that the time course of neural recovery post resistance training occurs 18-40 hours shorter than previous super compensation models. Strength and hypertrophy protocols showed similar response profiles with current findings suggesting greater post training corticospinal drive from hypertrophy training, despite previous evidence that strength training requires greater neural input. The increase in corticospinal drive and decrease inl inhibition appear to be a compensatory mechanism for decreases in peripheral nerve excitability and maximal voluntary force output. The changes in corticospinal excitability and inhibition are akin to adaptive processes observed with training interventions of 4 wks or longer. It appears that the 2 hr recovery period post training is the most influential for priming further neural adaptations with resistance training. Secondly, the frequency of prescribed resistance sessions can be scheduled closer than previous super compensation theory for optimal strength gains.

Keywords: neural responses, resistance training, super compensation, transcranial magnetic stimulation

Procedia PDF Downloads 285
190 Techno Economic Analysis for Solar PV and Hydro Power for Kafue Gorge Power Station

Authors: Elvis Nyirenda

Abstract:

This research study work was done to evaluate and propose an optimum measure to enhance the uptake of clean energy technologies such as solar photovoltaics, the study also aims at enhancing the country’s energy mix from the overdependence on hydro power which is susceptible to droughts and climate change challenges The country in the years 2015 - 2016 and 2018 - 2019 had received rainfall below average due to climate change and a shift in the weather pattern; this resulted in prolonged power outages and load shedding for more than 10 hours per day. ZESCO Limited, the utility company that owns infrastructure in the generation, transmission, and distribution of electricity (state-owned), is seeking alternative sources of energy in order to reduce the over-dependence on hydropower stations. One of the alternative sources of energy is Solar Energy from the sun. However, solar power is intermittent in nature and to smoothen the load curve, investment in robust energy storage facilities is of great importance to enhance security and reliability of electricity supply in the country. The methodology of the study looked at the historical performance of the Kafue gorge upper power station and utilised the hourly generation figures as input data for generation modelling in Homer software. The average yearly demand was derived from the available data on the system SCADA. The two dams were modelled as natural battery with the absolute state of charging and discharging determined by the available water resource and the peak electricity demand. The software Homer Energy System is used to simulate the scheme incorporating a pumped storage facility and Solar photovoltaic systems. The pumped hydro scheme works like a natural battery for the conservation of water, with the only losses being evaporation and water leakages from the dams and the turbines. To address the problem of intermittency on the solar resource and the non-availability of water for hydropower generation, the study concluded that utilising the existing Hydro power stations, Kafue Gorge upper and Kafue Gorge Lower to work conjunctively with Solar energy will reduce power deficits and increase the security of supply for the country. An optimum capacity of 350MW of solar PV can be integrated while operating Kafue Gorge power station in both generating and pumping mode to enable efficient utilisation of water at Kafue Gorge upper Dam and Kafue Gorge Lower dam.

Keywords: hydropower, solar power systems, energy storage, photovoltaics, solar irradiation, pumped hydro storage system, supervisory control and data acquisition, Homer energy

Procedia PDF Downloads 118
189 Tuberculosis Outpatient Treatment in the Context of Reformation of the Health Care System

Authors: Danylo Brindak, Viktor Liashko, Olexander Chepurniy

Abstract:

Despite considerable experience in implementation of the best international approaches and services within response to epidemy of multi-drug resistant tuberculosis, the results of situation analysis indicate the presence of faults in this area. In 2014, Ukraine (for the first time) was included in the world’s five countries with the highest level of drug-resistant tuberculosis. The effectiveness of its treatment constitutes only 35% in the country. In this context, the increase in allocation of funds to control the epidemic of multidrug-resistant tuberculosis does not produce perceptible positive results. During 2001-2016, only the Global Fund to fight AIDS, Tuberculosis, and Malaria allocated to Ukraine more than USD 521,3 million for programs of tuberculosis and HIV/AIDS control. However, current conditions in post-Semashko system create little motivation for rational use of resources or cost control at inpatient TB facilities. There is no motivation to reduce overdue hospitalization and to target resources to priority sectors of modern tuberculosis control, including a model of care focused on the patient. In the presence of a line-item budget at medical institutions, based on the input factors as the ratios of beds and staff, there is a passive disposal of budgetary funds by health care institutions and their employees who have no motivation to improve quality and efficiency of service provision. Outpatient treatment of tuberculosis is being implemented in Ukraine since 2011 and has many risks, namely creation of parallel systems, low consistency through dependence on funding for the project, reduced the role of the family doctor, the fragmentation of financing, etc. In terms of reforming approaches to health system financing, which began in Ukraine in late 2016, NGO Infection Control in Ukraine conducted piloting of a new, motivating method of remuneration of employees in primary health care. The innovative aspect of this funding mechanism is cost according to results of treatment. The existing method of payment on the basis of the standard per inhabitant (per capita ratio) was added with motivating costs according to results of work. The effectiveness of such treatment of TB patients at the outpatient stage is 90%, while in whole on the basis of a current system the effectiveness of treatment of newly diagnosed pulmonary TB with positive swab is around 60% in the country. Even though Ukraine has 5.24 TB beds per 10 000 citizens. Implemented pilot model of ambulatory treatment will be used for the creation of costs system according to results of activities, the integration of TB and primary health and social services and their focus on achieving results, the reduction of inpatient treatment of tuberculosis.

Keywords: health care reform, multi-drug resistant tuberculosis, outpatient treatment efficiency, tuberculosis

Procedia PDF Downloads 148
188 The Environmental Impact of Sustainability Dispersion of Chlorine Releases in Coastal Zone of Alexandra: Spatial-Ecological Modeling

Authors: Mohammed El Raey, Moustafa Osman Mohammed

Abstract:

The spatial-ecological modeling is relating sustainable dispersions with social development. Sustainability with spatial-ecological model gives attention to urban environments in the design review management to comply with Earth’s System. Naturally exchange patterns of ecosystems have consistent and periodic cycles to preserve energy flows and materials in Earth’s System. The probabilistic risk assessment (PRA) technique is utilized to assess the safety of industrial complex. The other analytical approach is the Failure-Safe Mode and Effect Analysis (FMEA) for critical components. The plant safety parameters are identified for engineering topology as employed in assessment safety of industrial ecology. In particular, the most severe accidental release of hazardous gaseous is postulated, analyzed and assessment in industrial region. The IAEA- safety assessment procedure is used to account the duration and rate of discharge of liquid chlorine. The ecological model of plume dispersion width and concentration of chlorine gas in the downwind direction is determined using Gaussian Plume Model in urban and ruler areas and presented with SURFER®. The prediction of accident consequences is traced in risk contour concentration lines. The local greenhouse effect is predicted with relevant conclusions. The spatial-ecological model is also predicted the distribution schemes from the perspective of pollutants that considered multiple factors of multi-criteria analysis. The data extends input–output analysis to evaluate the spillover effect, and conducted Monte Carlo simulations and sensitivity analysis. Their unique structure is balanced within “equilibrium patterns”, such as the biosphere and collective a composite index of many distributed feedback flows. These dynamic structures are related to have their physical and chemical properties and enable a gradual and prolonged incremental pattern. While this spatial model structure argues from ecology, resource savings, static load design, financial and other pragmatic reasons, the outcomes are not decisive in artistic/ architectural perspective. The hypothesis is an attempt to unify analytic and analogical spatial structure for development urban environments using optimization software and applied as an example of integrated industrial structure where the process is based on engineering topology as optimization approach of systems ecology.

Keywords: spatial-ecological modeling, spatial structure orientation impact, composite structure, industrial ecology

Procedia PDF Downloads 82
187 Discovering the Effects of Meteorological Variables on the Air Quality of Bogota, Colombia, by Data Mining Techniques

Authors: Fabiana Franceschi, Martha Cobo, Manuel Figueredo

Abstract:

Bogotá, the capital of Colombia, is its largest city and one of the most polluted in Latin America due to the fast economic growth over the last ten years. Bogotá has been affected by high pollution events which led to the high concentration of PM10 and NO2, exceeding the local 24-hour legal limits (100 and 150 g/m3 each). The most important pollutants in the city are PM10 and PM2.5 (which are associated with respiratory and cardiovascular problems) and it is known that their concentrations in the atmosphere depend on the local meteorological factors. Therefore, it is necessary to establish a relationship between the meteorological variables and the concentrations of the atmospheric pollutants such as PM10, PM2.5, CO, SO2, NO2 and O3. This study aims to determine the interrelations between meteorological variables and air pollutants in Bogotá, using data mining techniques. Data from 13 monitoring stations were collected from the Bogotá Air Quality Monitoring Network within the period 2010-2015. The Principal Component Analysis (PCA) algorithm was applied to obtain primary relations between all the parameters, and afterwards, the K-means clustering technique was implemented to corroborate those relations found previously and to find patterns in the data. PCA was also used on a per shift basis (morning, afternoon, night and early morning) to validate possible variation of the previous trends and a per year basis to verify that the identified trends have remained throughout the study time. Results demonstrated that wind speed, wind direction, temperature, and NO2 are the most influencing factors on PM10 concentrations. Furthermore, it was confirmed that high humidity episodes increased PM2,5 levels. It was also found that there are direct proportional relationships between O3 levels and wind speed and radiation, while there is an inverse relationship between O3 levels and humidity. Concentrations of SO2 increases with the presence of PM10 and decreases with the wind speed and wind direction. They proved as well that there is a decreasing trend of pollutant concentrations over the last five years. Also, in rainy periods (March-June and September-December) some trends regarding precipitations were stronger. Results obtained with K-means demonstrated that it was possible to find patterns on the data, and they also showed similar conditions and data distribution among Carvajal, Tunal and Puente Aranda stations, and also between Parque Simon Bolivar and las Ferias. It was verified that the aforementioned trends prevailed during the study period by applying the same technique per year. It was concluded that PCA algorithm is useful to establish preliminary relationships among variables, and K-means clustering to find patterns in the data and understanding its distribution. The discovery of patterns in the data allows using these clusters as an input to an Artificial Neural Network prediction model.

Keywords: air pollution, air quality modelling, data mining, particulate matter

Procedia PDF Downloads 259
186 Machine Learning for Disease Prediction Using Symptoms and X-Ray Images

Authors: Ravija Gunawardana, Banuka Athuraliya

Abstract:

Machine learning has emerged as a powerful tool for disease diagnosis and prediction. The use of machine learning algorithms has the potential to improve the accuracy of disease prediction, thereby enabling medical professionals to provide more effective and personalized treatments. This study focuses on developing a machine-learning model for disease prediction using symptoms and X-ray images. The importance of this study lies in its potential to assist medical professionals in accurately diagnosing diseases, thereby improving patient outcomes. Respiratory diseases are a significant cause of morbidity and mortality worldwide, and chest X-rays are commonly used in the diagnosis of these diseases. However, accurately interpreting X-ray images requires significant expertise and can be time-consuming, making it difficult to diagnose respiratory diseases in a timely manner. By incorporating machine learning algorithms, we can significantly enhance disease prediction accuracy, ultimately leading to better patient care. The study utilized the Mask R-CNN algorithm, which is a state-of-the-art method for object detection and segmentation in images, to process chest X-ray images. The model was trained and tested on a large dataset of patient information, which included both symptom data and X-ray images. The performance of the model was evaluated using a range of metrics, including accuracy, precision, recall, and F1-score. The results showed that the model achieved an accuracy rate of over 90%, indicating that it was able to accurately detect and segment regions of interest in the X-ray images. In addition to X-ray images, the study also incorporated symptoms as input data for disease prediction. The study used three different classifiers, namely Random Forest, K-Nearest Neighbor and Support Vector Machine, to predict diseases based on symptoms. These classifiers were trained and tested using the same dataset of patient information as the X-ray model. The results showed promising accuracy rates for predicting diseases using symptoms, with the ensemble learning techniques significantly improving the accuracy of disease prediction. The study's findings indicate that the use of machine learning algorithms can significantly enhance disease prediction accuracy, ultimately leading to better patient care. The model developed in this study has the potential to assist medical professionals in diagnosing respiratory diseases more accurately and efficiently. However, it is important to note that the accuracy of the model can be affected by several factors, including the quality of the X-ray images, the size of the dataset used for training, and the complexity of the disease being diagnosed. In conclusion, the study demonstrated the potential of machine learning algorithms for disease prediction using symptoms and X-ray images. The use of these algorithms can improve the accuracy of disease diagnosis, ultimately leading to better patient care. Further research is needed to validate the model's accuracy and effectiveness in a clinical setting and to expand its application to other diseases.

Keywords: K-nearest neighbor, mask R-CNN, random forest, support vector machine

Procedia PDF Downloads 157
185 Improving Teaching in English-Medium Instruction Classes at Japanese Universities through Needs-Based Professional Development Workshops

Authors: Todd Enslen

Abstract:

In order to attract more international students to study for undergraduate degrees in Japan, many universities have been developing English-Medium Instruction degree programs. This means that many faculty members must now teach their courses in English, which raises a number of concerns. A common misconception of English-Medium Instruction (EMI) is that teaching in English is simply a matter of translating materials. Since much of the teaching in Japan still relies on a more traditional, teachercentered, approach, continuing with this style in an EMI environment that targets international students can cause a clash between what is happening and what students expect in the classroom, not to mention what the Scholarship of Teaching and Learning (SoTL) has shown is effective teaching. A variety of considerations need to be taken into account in EMI classrooms such as varying English abilities of the students, modifying input material, and assuring comprehension through interactional checks. This paper analyzes the effectiveness of the English-Medium Instruction (EMI) undergraduate degree programs in engineering, agriculture, and science at a large research university in Japan by presenting the results from student surveys regarding the areas where perceived improvements need to be made. The students were the most dissatisfied with communication with their teachers in English, communication with Japanese students in English, adherence to only English being used in the classes, and the quality of the education they received. In addition, the results of a needs analysis survey of Japanese teachers having to teach in English showed that they believed they were most in need of English vocabulary and expressions to use in the classroom and teaching methods for teaching in English. The result from the student survey and the faculty survey show similar concerns between the two groups. By helping the teachers to understand student-centered teaching and the benefits for learning that it provides, teachers may begin to incorporate more student-centered approaches that in turn help to alleviate the dissatisfaction students are currently experiencing. Through analyzing the current environment in Japanese higher education against established best practices in teaching and EMI, three areas that need to be addressed in professional development workshops were identified. These were “culture” as it relates to the English language, “classroom management techniques” and ways to incorporate them into classes, and “language” issues. Materials used to help faculty better understand best practices as they relate to these specific areas will be provided to help practitioners begin the process of helping EMI faculty build awareness of better teaching practices. Finally, the results from faculty development workshops participants’ surveys will show the impact that these workshops can have. Almost all of the participants indicated that they learned something new and would like to incorporate the ideas from the workshop into their teaching. In addition, the vast majority of the participants felt the workshop provided them with new information, and they would like more workshops like these.

Keywords: English-medium instruction, materials development, professional development, teaching effectiveness

Procedia PDF Downloads 89
184 Solar Electric Propulsion: The Future of Deep Space Exploration

Authors: Abhishek Sharma, Arnab Banerjee

Abstract:

The research is intended to study the solar electric propulsion (SEP) technology for planetary missions. The main benefits of using solar electric propulsion for such missions are shorter flight times, more frequent target accessibility and the use of a smaller launch vehicle than that required by a comparable chemical propulsion mission. Energized by electric power from on-board solar arrays, the electrically propelled system uses 10 times less propellant than conventional chemical propulsion system, yet the reduced fuel mass can provide vigorous power which is capable of propelling robotic and crewed missions beyond the Lower Earth Orbit (LEO). The various thrusters used in the SEP are gridded ion thrusters and the Hall Effect thrusters. The research is solely aimed to study the ion thrusters and investigate the complications related to it and what can be done to overcome the glitches. The ion thrusters are used because they are found to have a total lower propellant requirement and have substantially longer time. In the ion thrusters, the anode pushes or directs the incoming electrons from the cathode. But the anode is not maintained at a very high potential which leads to divergence. Divergence leads to the charges interacting against the surface of the thruster. Just as the charges ionize the xenon gases, they are capable of ionizing the surfaces and over time destroy the surface and hence contaminate it. Hence the lifetime of thruster gets limited. So a solution to this problem is using substances which are not easy to ionize as the surface material. Another approach can be to increase the potential of anode so that the electrons don’t deviate much or reduce the length of thruster such that the positive anode is more effective. The aim is to work on these aspects as to how constriction of the deviation of charges can be done by keeping the input power constant and hence increase the lifetime of the thruster. Predominantly ring cusp magnets are used in the ion thrusters. However, the study is also intended to observe the effect of using solenoid for producing micro-solenoidal magnetic field apart from using the ring cusp magnetic field which are used in the discharge chamber for prevention of interaction of electrons with the ionization walls. Another foremost area of interest is what are the ways by which power can be provided to the Solar Electric Propulsion Vehicle for lowering and boosting the orbit of the spacecraft and also provide substantial amount of power to the solenoid for producing stronger magnetic fields. This can be successfully achieved by using the concept of Electro-dynamic tether which will serve as a power source for powering both the vehicle and the solenoids in the ion thruster and hence eliminating the need for carrying extra propellant on the spacecraft which will reduce the weight and hence reduce the cost of space propulsion.

Keywords: electro-dynamic tether, ion thruster, lifetime of thruster, solar electric propulsion vehicle

Procedia PDF Downloads 211
183 Preparation of Papers - Developing a Leukemia Diagnostic System Based on Hybrid Deep Learning Architectures in Actual Clinical Environments

Authors: Skyler Kim

Abstract:

An early diagnosis of leukemia has always been a challenge to doctors and hematologists. On a worldwide basis, it was reported that there were approximately 350,000 new cases in 2012, and diagnosing leukemia was time-consuming and inefficient because of an endemic shortage of flow cytometry equipment in current clinical practice. As the number of medical diagnosis tools increased and a large volume of high-quality data was produced, there was an urgent need for more advanced data analysis methods. One of these methods was the AI approach. This approach has become a major trend in recent years, and several research groups have been working on developing these diagnostic models. However, designing and implementing a leukemia diagnostic system in real clinical environments based on a deep learning approach with larger sets remains complex. Leukemia is a major hematological malignancy that results in mortality and morbidity throughout different ages. We decided to select acute lymphocytic leukemia to develop our diagnostic system since acute lymphocytic leukemia is the most common type of leukemia, accounting for 74% of all children diagnosed with leukemia. The results from this development work can be applied to all other types of leukemia. To develop our model, the Kaggle dataset was used, which consists of 15135 total images, 8491 of these are images of abnormal cells, and 5398 images are normal. In this paper, we design and implement a leukemia diagnostic system in a real clinical environment based on deep learning approaches with larger sets. The proposed diagnostic system has the function of detecting and classifying leukemia. Different from other AI approaches, we explore hybrid architectures to improve the current performance. First, we developed two independent convolutional neural network models: VGG19 and ResNet50. Then, using both VGG19 and ResNet50, we developed a hybrid deep learning architecture employing transfer learning techniques to extract features from each input image. In our approach, fusing the features from specific abstraction layers can be deemed as auxiliary features and lead to further improvement of the classification accuracy. In this approach, features extracted from the lower levels are combined into higher dimension feature maps to help improve the discriminative capability of intermediate features and also overcome the problem of network gradient vanishing or exploding. By comparing VGG19 and ResNet50 and the proposed hybrid model, we concluded that the hybrid model had a significant advantage in accuracy. The detailed results of each model’s performance and their pros and cons will be presented in the conference.

Keywords: acute lymphoblastic leukemia, hybrid model, leukemia diagnostic system, machine learning

Procedia PDF Downloads 187
182 Rainfall and Flood Forecast Models for Better Flood Relief Plan of the Mae Sot Municipality

Authors: S. Chuenchooklin, S. Taweepong, U. Pangnakorn

Abstract:

This research was conducted in the Mae Sot Watershed whereas located in the Moei River Basin at the Upper Salween River Basin in Tak Province, Thailand. The Mae Sot Municipality is the largest urbanized in Tak Province and situated in the midstream of the Mae Sot Watershed. It usually faces flash flood problem after heavy rain due to poor flood management has been reported since economic rapidly bloom up in recently years. Its catchment can be classified as ungauged basin with lack of rainfall data and no any stream gaging station was reported. It was attached by most severely flood event in 2013 as the worst studied case for those all communities in this municipality. Moreover, other problems are also faced in this watershed such shortage water supply for domestic consumption and agriculture utilizations including deterioration of water quality and landslide as well. The research aimed to increase capability building and strengthening the participation of those local community leaders and related agencies to conduct better water management in urban area was started by mean of the data collection and illustration of appropriated application of some short period rainfall forecasting model as the aim for better flood relief plan and management through the hydrologic model system and river analysis system programs. The authors intended to apply the global rainfall data via the integrated data viewer (IDV) program from the Unidata with the aim for rainfall forecasting in short period of 7 - 10 days in advance during rainy season instead of real time record. The IDV product can be present in advance period of rainfall with time step of 3 - 6 hours was introduced to the communities. The result can be used to input to either the hydrologic modeling system model (HEC-HMS) or the soil water assessment tool model (SWAT) for synthesizing flood hydrographs and use for flood forecasting as well. The authors applied the river analysis system model (HEC-RAS) to present flood flow behaviors in the reach of the Mae Sot stream via the downtown of the Mae Sot City as flood extents as water surface level at every cross-sectional profiles of the stream. Both models of HMS and RAS were tested in 2013 with observed rainfall and inflow-outflow data from the Mae Sot Dam. The result of HMS showed fit to the observed data at dam and applied at upstream boundary discharge to RAS in order to simulate flood extents and tested in the field, and the result found satisfied. The result of IDV’s rainfall forecast data was compared to observed data and found fair. However, it is an appropriate tool to use in the ungauged catchment to use with flood hydrograph and river analysis models for future efficient flood relief plan and management.

Keywords: global rainfall, flood forecast, hydrologic modeling system, river analysis system

Procedia PDF Downloads 349
181 Ensemble Machine Learning Approach for Estimating Missing Data from CO₂ Time Series

Authors: Atbin Mahabbati, Jason Beringer, Matthias Leopold

Abstract:

To address the global challenges of climate and environmental changes, there is a need for quantifying and reducing uncertainties in environmental data, including observations of carbon, water, and energy. Global eddy covariance flux tower networks (FLUXNET), and their regional counterparts (i.e., OzFlux, AmeriFlux, China Flux, etc.) were established in the late 1990s and early 2000s to address the demand. Despite the capability of eddy covariance in validating process modelling analyses, field surveys and remote sensing assessments, there are some serious concerns regarding the challenges associated with the technique, e.g. data gaps and uncertainties. To address these concerns, this research has developed an ensemble model to fill the data gaps of CO₂ flux to avoid the limitations of using a single algorithm, and therefore, provide less error and decline the uncertainties associated with the gap-filling process. In this study, the data of five towers in the OzFlux Network (Alice Springs Mulga, Calperum, Gingin, Howard Springs and Tumbarumba) during 2013 were used to develop an ensemble machine learning model, using five feedforward neural networks (FFNN) with different structures combined with an eXtreme Gradient Boosting (XGB) algorithm. The former methods, FFNN, provided the primary estimations in the first layer, while the later, XGB, used the outputs of the first layer as its input to provide the final estimations of CO₂ flux. The introduced model showed slight superiority over each single FFNN and the XGB, while each of these two methods was used individually, overall RMSE: 2.64, 2.91, and 3.54 g C m⁻² yr⁻¹ respectively (3.54 provided by the best FFNN). The most significant improvement happened to the estimation of the extreme diurnal values (during midday and sunrise), as well as nocturnal estimations, which is generally considered as one of the most challenging parts of CO₂ flux gap-filling. The towers, as well as seasonality, showed different levels of sensitivity to improvements provided by the ensemble model. For instance, Tumbarumba showed more sensitivity compared to Calperum, where the differences between the Ensemble model on the one hand and the FFNNs and XGB, on the other hand, were the least of all 5 sites. Besides, the performance difference between the ensemble model and its components individually were more significant during the warm season (Jan, Feb, Mar, Oct, Nov, and Dec) compared to the cold season (Apr, May, Jun, Jul, Aug, and Sep) due to the higher amount of photosynthesis of plants, which led to a larger range of CO₂ exchange. In conclusion, the introduced ensemble model slightly improved the accuracy of CO₂ flux gap-filling and robustness of the model. Therefore, using ensemble machine learning models is potentially capable of improving data estimation and regression outcome when it seems to be no more room for improvement while using a single algorithm.

Keywords: carbon flux, Eddy covariance, extreme gradient boosting, gap-filling comparison, hybrid model, OzFlux network

Procedia PDF Downloads 141
180 Advancing Food System Resilience by Pseudocereals Utilization

Authors: Yevheniia Varyvoda, Douglas Taren

Abstract:

At the aggregate level, climate variability, the rising number of active violent conflicts, globalization and industrialization of agriculture, the loss in diversity of crop species, the increase in demand for agricultural production, and the adoption of healthy and sustainable dietary patterns are exacerbating factors of food system destabilization. The importance of pseudocereals to fuel and sustain resilient food systems is recognized by leading organizations working to end hunger, particularly for their critical capability to diversify livelihood portfolios and provide plant-sourced healthy nutrition in the face of systemic shocks and stresses. Amaranth, buckwheat, and quinoa are the most promising and used pseudocereals for ensuring food system resilience in the reality of climate change due to their high nutritional profile, good digestibility, palatability, medicinal value, abiotic stress tolerance, pest and disease resistance, rapid growth rate, adaptability to marginal and degraded lands, high genetic variability, low input requirements, and income generation capacity. The study provides the rationale and examples of advancing local and regional food systems' resilience by scaling up the utilization of amaranth, buckwheat, and quinoa along all components of food systems to architect indirect nutrition interventions and climate-smart approaches. Thus, this study aims to explore the drivers for ancient pseudocereal utilization, the potential resilience benefits that can be derived from using them, and the challenges and opportunities for pseudocereal utilization within the food system components. The PSALSAR framework regarding the method for conducting systematic review and meta-analysis for environmental science research was used to answer these research questions. Nevertheless, the utilization of pseudocereals has been slow for a number of reasons, namely the increased production of commercial and major staples such as maize, rice, wheat, soybean, and potato, the displacement due to pressure from imported crops, lack of knowledge about value-adding practices in food supply chain, limited technical knowledge and awareness about nutritional and health benefits, absence of marketing channels and limited access to extension services and information about resilient crops. The success of climate-resilient pathways based on pseudocereal utilization underlines the importance of co-designed activities that use modern technologies, high-value traditional knowledge of underutilized crops, and a strong acknowledgment of cultural norms to increase community-level economic and food system resilience.

Keywords: resilience, pseudocereals, food system, climate change

Procedia PDF Downloads 82
179 Collaboration between Grower and Research Organisations as a Mechanism to Improve Water Efficiency in Irrigated Agriculture

Authors: Sarah J. C. Slabbert

Abstract:

The uptake of research as part of the diffusion or adoption of innovation by practitioners, whether individuals or organisations, has been a popular topic in agricultural development studies for many decades. In the classical, linear model of innovation theory, the innovation originates from an expert source such as a state-supported research organisation or academic institution. The changing context of agriculture led to the development of the agricultural innovation systems model, which recognizes innovation as a complex interaction between individuals and organisations, which include private industry and collective action organisations. In terms of this model, an innovation can be developed and adopted without any input or intervention from a state or parastatal research organisation. This evolution in the diffusion of agricultural innovation has put forward new challenges for state or parastatal research organisations, which have to demonstrate the impact of their research to the legislature or a regulatory authority: Unless the organisation and the research it produces cross the knowledge paths of the intended audience, there will be no awareness, no uptake and certainly no impact. It is therefore critical for such a research organisation to base its communication strategy on a thorough understanding of the knowledge needs, information sources and knowledge networks of the intended target audience. In 2016, the South African Water Research Commission (WRC) commissioned a study to investigate the knowledge needs, information sources and knowledge networks of Water User Associations and commercial irrigators with the aim of improving uptake of its research on efficient water use in irrigation. The first phase of the study comprised face-to-face interviews with the CEOs and Board Chairs of four Water User Associations along the Orange River in South Africa, and 36 commercial irrigation farmers from the same four irrigation schemes. Intermediaries who act as knowledge conduits to the Water User Associations and the irrigators were identified and 20 of them were subsequently interviewed telephonically. The study found that irrigators interact regularly with grower organisations such as SATI (South African Table Grape Industry) and SAPPA (South African Pecan Nut Association) and that they perceive these organisations as credible, trustworthy and reliable, within their limitations. State and parastatal research institutions, on the other hand, are associated with a range of negative attributes. As a result, the awareness of, and interest in, the WRC and its research on water use efficiency in irrigated agriculture are low. The findings suggest that a communication strategy that involves collaboration with these grower organisations would empower the WRC to participate much more efficiently and with greater impact in agricultural innovation networks. The paper will elaborate on the findings and discuss partnering frameworks and opportunities to manage perceptions and uptake.

Keywords: agricultural innovation systems, communication strategy, diffusion of innovation, irrigated agriculture, knowledge paths, research organisations, target audiences, water use efficiency

Procedia PDF Downloads 115
178 Using ANN in Emergency Reconstruction Projects Post Disaster

Authors: Rasha Waheeb, Bjorn Andersen, Rafa Shakir

Abstract:

Purpose The purpose of this study is to avoid delays that occur in emergency reconstruction projects especially in post disaster circumstances whether if they were natural or manmade due to their particular national and humanitarian importance. We presented a theoretical and practical concepts for projects management in the field of construction industry that deal with a range of global and local trails. This study aimed to identify the factors of effective delay in construction projects in Iraq that affect the time and the specific quality cost, and find the best solutions to address delays and solve the problem by setting parameters to restore balance in this study. 30 projects were selected in different areas of construction were selected as a sample for this study. Design/methodology/approach This study discusses the reconstruction strategies and delay in time and cost caused by different delay factors in some selected projects in Iraq (Baghdad as a case study).A case study approach was adopted, with thirty construction projects selected from the Baghdad region, of different types and sizes. Project participants from the case projects provided data about the projects through a data collection instrument distributed through a survey. Mixed approach and methods were applied in this study. Mathematical data analysis was used to construct models to predict delay in time and cost of projects before they started. The artificial neural networks analysis was selected as a mathematical approach. These models were mainly to help decision makers in construction project to find solutions to these delays before they cause any inefficiency in the project being implemented and to strike the obstacles thoroughly to develop this industry in Iraq. This approach was practiced using the data collected through survey and questionnaire data collection as information form. Findings The most important delay factors identified leading to schedule overruns were contractor failure, redesigning of designs/plans and change orders, security issues, selection of low-price bids, weather factors, and owner failures. Some of these are quite in line with findings from similar studies in other countries/regions, but some are unique to the Iraqi project sample, such as security issues and low-price bid selection. Originality/value we selected ANN’s analysis first because ANN’s was rarely used in project management , and never been used in Iraq to finding solutions for problems in construction industry. Also, this methodology can be used in complicated problems when there is no interpretation or solution for a problem. In some cases statistical analysis was conducted and in some cases the problem is not following a linear equation or there was a weak correlation, thus we suggested using the ANN’s because it is used for nonlinear problems to find the relationship between input and output data and that was really supportive.

Keywords: construction projects, delay factors, emergency reconstruction, innovation ANN, post disasters, project management

Procedia PDF Downloads 167
177 Predicting the Exposure Level of Airborne Contaminants in Occupational Settings via the Well-Mixed Room Model

Authors: Alireza Fallahfard, Ludwig Vinches, Stephane Halle

Abstract:

In the workplace, the exposure level of airborne contaminants should be evaluated due to health and safety issues. It can be done by numerical models or experimental measurements, but the numerical approach can be useful when it is challenging to perform experiments. One of the simplest models is the well-mixed room (WMR) model, which has shown its usefulness to predict inhalation exposure in many situations. However, since the WMR is limited to gases and vapors, it cannot be used to predict exposure to aerosols. The main objective is to modify the WMR model to expand its application to exposure scenarios involving aerosols. To reach this objective, the standard WMR model has been modified to consider the deposition of particles by gravitational settling and Brownian and turbulent deposition. Three deposition models were implemented in the model. The time-dependent concentrations of airborne particles predicted by the model were compared to experimental results conducted in a 0.512 m3 chamber. Polystyrene particles of 1, 2, and 3 µm in aerodynamic diameter were generated with a nebulizer under two air changes per hour (ACH). The well-mixed condition and chamber ACH were determined by the tracer gas decay method. The mean friction velocity on the chamber surfaces as one of the input variables for the deposition models was determined by computational fluid dynamics (CFD) simulation. For the experimental procedure, the particles were generated until reaching the steady-state condition (emission period). Then generation stopped, and concentration measurements continued until reaching the background concentration (decay period). The results of the tracer gas decay tests revealed that the ACHs of the chamber were: 1.4 and 3.0, and the well-mixed condition was achieved. The CFD results showed the average mean friction velocity and their standard deviations for the lowest and highest ACH were (8.87 ± 0.36) ×10-2 m/s and (8.88 ± 0.38) ×10-2 m/s, respectively. The numerical results indicated the difference between the predicted deposition rates by the three deposition models was less than 2%. The experimental and numerical aerosol concentrations were compared in the emission period and decay period. In both periods, the prediction accuracy of the modified model improved in comparison with the classic WMR model. However, there is still a difference between the actual value and the predicted value. In the emission period, the modified WMR results closely follow the experimental data. However, the model significantly overestimates the experimental results during the decay period. This finding is mainly due to an underestimation of the deposition rate in the model and uncertainty related to measurement devices and particle size distribution. Comparing the experimental and numerical deposition rates revealed that the actual particle deposition rate is significant, but the deposition mechanisms considered in the model were ten times lower than the experimental value. Thus, particle deposition was significant and will affect the airborne concentration in occupational settings, and it should be considered in the airborne exposure prediction model. The role of other removal mechanisms should be investigated.

Keywords: aerosol, CFD, exposure assessment, occupational settings, well-mixed room model, zonal model

Procedia PDF Downloads 103
176 Application of Industrial Ecology to the INSPIRA Zone: Territory Planification and New Activities

Authors: Mary Hanhoun, Jilla Bamarni, Anne-Sophie Bougard

Abstract:

INSPIR’ECO is a 18-month research and innovation project that aims to specify and develop a tool to offer new services for industrials and territorial planners/managers based on Industrial Ecology Principles. This project is carried out on the territory of Salaise Sablons and the services are designed to be deployed on other territories. Salaise-Sablons area is located in the limit of 5 departments on a major European economic axis multimodal traffic (river, rail and road). The perimeter of 330 ha includes 90 hectares occupied by 20 companies, with a total of 900 jobs, and represents a significant potential basin of development. The project involves five multi-disciplinary partners (Syndicat Mixte INSPIRA, ENGIE, IDEEL, IDEAs Laboratory and TREDI). INSPIR’ECO project is based on the principles that local stakeholders need services to pool, share their activities/equipment/purchases/materials. These services aims to : 1. initiate and promote exchanges between existing companies and 2. identify synergies between pre-existing industries and future companies that could be implemented in INSPIRA. These eco-industrial synergies can be related to: the recovery / exchange of industrial flows (industrial wastewater, waste, by-products, etc.); the pooling of business services (collective waste management, stormwater collection and reuse, transport, etc.); the sharing of equipments (boiler, steam production, wastewater treatment unit, etc.) or resources (splitting jobs cost, etc.); and the creation of new activities (interface activities necessary for by-product recovery, development of products or services from a newly identified resource, etc.). These services are based on IT tool used by the interested local stakeholders that intends to allow local stakeholders to take decisions. Thus, this IT tool: - include an economic and environmental assessment of each implantation or pooling/sharing scenarios for existing or further industries; - is meant for industrial and territorial manager/planners - is designed to be used for each new industrial project. - The specification of the IT tool is made through an agile process all along INSPIR’ECO project fed with: - Users expectations thanks to workshop sessions where mock-up interfaces are displayed; - Data availability based on local and industrial data inventory. These input allow to specify the tool not only with technical and methodological constraints (notably the ones from economic and environmental assessments) but also with data availability and users expectations. A feedback on innovative resource management initiatives in port areas has been realized in the beginning of the project to feed the designing services step.

Keywords: development opportunities, INSPIR’ECO, INSPIRA, industrial ecology, planification, synergy identification

Procedia PDF Downloads 165
175 Pre-Cooling Strategies for the Refueling of Hydrogen Cylinders in Vehicular Transport

Authors: C. Hall, J. Ramos, V. Ramasamy

Abstract:

Hydrocarbon-based fuel vehicles are a major contributor to air pollution due to harmful emissions produced, leading to a demand for cleaner fuel types. A leader in this pursuit is hydrogen, with its application in vehicles producing zero harmful emissions and the only by-product being water. To compete with the performance of conventional vehicles, hydrogen gas must be stored on-board of vehicles in cylinders at high pressures (35–70 MPa) and have a short refueling duration (approximately 3 mins). However, the fast-filling of hydrogen cylinders causes a significant rise in temperature due to the combination of the negative Joule-Thompson effect and the compression of the gas. This can lead to structural failure and therefore, a maximum allowable internal temperature of 85°C has been imposed by the International Standards Organization. The technological solution to tackle the issue of rapid temperature rise during the refueling process is to decrease the temperature of the gas entering the cylinder. Pre-cooling of the gas uses a heat exchanger and requires energy for its operation. Thus, it is imperative to determine the least amount of energy input that is required to lower the gas temperature for cost savings. A validated universal thermodynamic model is used to identify an energy-efficient pre-cooling strategy. The model requires negligible computational time and is applied to previously validated experimental cases to optimize pre-cooling requirements. The pre-cooling characteristics include the location within the refueling timeline and its duration. A constant pressure-ramp rate is imposed to eliminate the effects of rapid changes in mass flow rate. A pre-cooled gas temperature of -40°C is applied, which is the lowest allowable temperature. The heat exchanger is assumed to be ideal with no energy losses. The refueling of the cylinders is modeled with the pre-cooling split in ten percent time intervals. Furthermore, varying burst durations are applied in both the early and late stages of the refueling procedure. The model shows that pre-cooling in the later stages of the refuelling process is more energy-efficient than early pre-cooling. In addition, the efficiency of pre-cooling towards the end of the refueling process is independent of the pressure profile at the inlet. This leads to the hypothesis that pre-cooled gas should be applied as late as possible in the refueling timeline and at very low temperatures. The model had shown a 31% reduction in energy demand whilst achieving the same final gas temperature for a refueling scenario when pre-cooling was applied towards the end of the process. The identification of the most energy-efficient refueling approaches whilst adhering to the safety guidelines is imperative to reducing the operating cost of hydrogen refueling stations. Heat exchangers are energy-intensive and thus, reducing the energy requirement would lead to cost reduction. This investigation shows that pre-cooling should be applied as late as possible and for short durations.

Keywords: cylinder, hydrogen, pre-cooling, refueling, thermodynamic model

Procedia PDF Downloads 99
174 Understanding Project Failures in Construction: The Critical Impact of Financial Capacity

Authors: Nnadi Ezekiel Oluwaseun Ejiofor

Abstract:

This research investigates the effects of poor cost estimation, material cost variations, and payment punctuality on the financial health and execution of construction projects in Nigeria. To achieve the objectives of the study, a quantitative research approach was employed, and data was gathered through an online survey of 74 construction industry professionals consisting of quantity surveyors, contractors, and other professionals. The study surveyed input on cost estimation errors, price fluctuations, and payment delays, among other factors. The responses of the respondents were analyzed using a five-point Likert scale and the Relative Importance Index (RII). The findings demonstrated that the errors in cost estimating in the Bill of Quantity (BOQ) have a high degree of negative impact on the reputation and image of the participants in the projects. The greatest effect was experienced on the likelihood of obtaining future endeavors for contractors (mean value = 3.42), followed by the likelihood of obtaining new commissions by quantity surveyors (mean value = 3.40). The level of inaccuracy in costing that undershoots exposes them to risks was most serious in terms of easement of construction and effects of shortage of funds to pursue bankruptcy (hence fears of mean value = 3.78). There was also considerable financial damage as a result of cost underestimation, whereby contractors suffered the worst loss in profit (mean value = 3.88). Every expense comes with its own peculiar risk and uncertainty. Pressure on the cost of materials and every other expense attributed to the building and completion of a structure adds risks to the performance figures of a project. The greatest weight (mean importance score = 4.92) was attributed to issues like market inflation in building materials, while the second greatest weight (mean importance score = 4.76) was due to increased transportation charges. On the other hand, delays in payments arising from issues of the clients like poor availability of funds (RII=0.71) and contracting issues such as disagreements on the valuation of works done (RII=0.72) or other reasons were also found to lead to project delays and additional costs. The results affirm the importance of proper cost estimation on the health of organization finances and project risks and finishes within set time limits. As for the suggestions, it is proposed to progress on the methods of costing, engender better communications with the stakeholders, and manage the delays by way of contracting and financial control. This study enhances the existing literature on construction project management by suggesting ways to deal with adverse cost inaccuracies and availability of materials due to delays in payments which, if addressed, would greatly improve the economic performance of the construction business.

Keywords: cost estimation, construction project management, material price fluctuations, payment delays, financial impact

Procedia PDF Downloads 12
173 Coupling Strategy for Multi-Scale Simulations in Micro-Channels

Authors: Dahia Chibouti, Benoit Trouette, Eric Chenier

Abstract:

With the development of micro-electro-mechanical systems (MEMS), understanding fluid flow and heat transfer at the micrometer scale is crucial. In the case where the flow characteristic length scale is narrowed to around ten times the mean free path of gas molecules, the classical fluid mechanics and energy equations are still valid in the bulk flow, but particular attention must be paid to the gas/solid interface boundary conditions. Indeed, in the vicinity of the wall, on a thickness of about the mean free path of the molecules, called the Knudsen layer, the gas molecules are no longer in local thermodynamic equilibrium. Therefore, macroscopic models based on the continuity of velocity, temperature and heat flux jump conditions must be applied at the fluid/solid interface to take this non-equilibrium into account. Although these macroscopic models are widely used, the assumptions on which they depend are not necessarily verified in realistic cases. In order to get rid of these assumptions, simulations at the molecular scale are carried out to study how molecule interaction with walls can change the fluid flow and heat transfers at the vicinity of the walls. The developed approach is based on a kind of heterogeneous multi-scale method: micro-domains overlap the continuous domain, and coupling is carried out through exchanges of information between both the molecular and the continuum approaches. In practice, molecular dynamics describes the fluid flow and heat transfers in micro-domains while the Navier-Stokes and energy equations are used at larger scales. In this framework, two kinds of micro-simulation are performed: i) in bulk, to obtain the thermo-physical properties (viscosity, conductivity, ...) as well as the equation of state of the fluid, ii) close to the walls to identify the relationships between the slip velocity and the shear stress or between the temperature jump and the normal temperature gradient. The coupling strategy relies on an implicit formulation of the quantities extracted from micro-domains. Indeed, using the results of the molecular simulations, a Bayesian regression is performed in order to build continuous laws giving both the behavior of the physical properties, the equation of state and the slip relationships, as well as their uncertainties. These latter allow to set up a learning strategy to optimize the number of micro simulations. In the present contribution, the first results regarding this coupling associated with the learning strategy are illustrated through parametric studies of convergence criteria, choice of basis functions and noise of input data. Anisothermic flows of a Lennard Jones fluid in micro-channels are finally presented.

Keywords: multi-scale, microfluidics, micro-channel, hybrid approach, coupling

Procedia PDF Downloads 168
172 The Lighthouse Project: Recent Initiatives to Navigate Australian Families Safely Through Parental Separation

Authors: Kathryn McMillan

Abstract:

A recent study of 8500 adult Australians aged 16 and over revealed 62% had experienced childhood maltreatment. In response to multiple recommendations by bodies such as the Australian Law Reform Commission, parliamentary reports and stakeholder input, a number of key initiatives have been developed to grapple with the difficulties of a federal-state system and to screen and triage high-risk families navigating their way through the court system. The Lighthouse Project (LHP) is a world-first initiative of the Federal Circuit and Family Courts in Australia (FCFOCA) to screen family law litigants for major risk factors, including family violence, child abuse, alcohol or substance abuse and mental ill-health at the point of filing in all applications that seek parenting orders. It commenced on 7 December 2020 on a pilot basis but has now been expanded to 15 registries across the country. A specialist risk screen, Family DOORS, Triage has been developed – focused on improving the safety and wellbeing of families involved in the family law system safety planning and service referral, and ¬ differentiated case management based on risk level, with the Evatt List specifically designed to manage the highest risk cases. Early signs are that this approach is meeting the needs of families with multiple risks moving through the Court system. Before the LHP, there was no data available about the prevalence of risk factors experienced by litigants entering the family courts and it was often assumed that it was the litigation process that was fueling family violence and other risks such as suicidality. Data from the 2022 FCFCOA annual report indicated that in parenting proceedings, 70% alleged a child had been or was at risk of abuse, 80% alleged a party had experienced Family Violence, 74 % of children had been exposed to Family Violence, 53% alleged through substance misuse by party children had caused or was at risk of causing harm to children and 58% of matters allege mental health issues of a party had caused or placed a child at risk of harm. Those figures reveal the significant overlap between child protection and family violence, both of which are under the responsibility of state and territory governments. Since 2020, a further key initiative has been the co-location of child protection and police officials amongst a number of registries of the FCFOCA. The ability to access in a time-effective way details of family violence or child protection orders, weapons licenses, criminal convictions or proceedings is key to managing issues across the state and federal divide. It ensures a more cohesive and effective response to family law, family violence and child protection systems.

Keywords: child protection, family violence, parenting, risk screening, triage.

Procedia PDF Downloads 79
171 Distribution and Ecological Risk Assessment of Trace Elements in Sediments along the Ganges River Estuary, India

Authors: Priyanka Mondal, Santosh K. Sarkar

Abstract:

The present study investigated the spatiotemporal distribution and ecological risk assessment of trace elements of surface sediments (top 0 - 5 cm; grain size ≤ 0.63 µm) in relevance to sediment quality characteristics along the Ganges River Estuary, India. Sediment samples were collected during ebb tide from intertidal regions covering seven sampling sites of diverse environmental stresses. The elements were analyzed with the help of ICPAES. This positive, mixohaline, macro-tidal estuary has global significance contributing ecological and economic services. Presence of fine-clayey particle (47.03%) enhances the adsorption as well as transportation of trace elements. There is a remarkable inter-metallic variation (mg kg-1 dry weight) in the distribution pattern in the following manner: Al (31801± 15943) > Fe (23337± 7584) > Mn (461±147) > S(381±235) > Zn(54 ±18) > V(43 ±14) > Cr(39 ±15) > As (34±15) > Cu(27 ±11) > Ni (24 ±9) > Se (17 ±8) > Co(11 ±3) > Mo(10 ± 2) > Hg(0.02 ±0.01). An overall trend of enrichment of majority of trace elements was very much pronounced at the site Lot 8, ~ 35km upstream of the estuarine mouth. In contrast, the minimum concentration was recorded at site Gangasagar, mouth of the estuary, with high energy profile. The prevalent variations in trace element distribution are being liable for a set of cumulative factors such as hydrodynamic conditions, sediment dispersion pattern and textural variations as well as non-homogenous input of contaminants from point and non-point sources. In order to gain insight into the trace elements distribution, accumulation, and their pollution status, geoaccumulation index (Igeo) and enrichment factor (EF) were used. The Igeo indicated that surface sediments were moderately polluted with As (0.60) and Mo (1.30) and strongly contaminated with Se (4.0). The EF indicated severe pollution of Se (53.82) and significant pollution of As (4.05) and Mo (6.0) and indicated the influx of As, Mo and Se in sediments from anthropogenic sources (such as industrial and municipal sewage, atmospheric deposition, agricultural run-off, etc.). The significant role of the megacity Calcutta in relevance to the untreated sewage discharge, atmospheric inputs and other anthropogenic activities is worthwhile to mention. The ecological risk for different trace elements was evaluated using sediment quality guidelines, effects range low (ERL), and effect range median (ERM). The concentration of As, Cu and Ni at 100%, 43% and 86% of the sampling sites has exceeded the ERL value while none of the element concentration exceeded ERM. The potential ecological risk index values revealed that As at 14.3% of the sampling sites would pose relatively moderate risk to benthic organisms. The effective role of finer clay particles for trace element distribution was revealed by multivariate analysis. The authors strongly recommend regular monitoring emphasizing on accurate appraisal of the potential risk of trace elements for effective and sustainable management of this estuarine environment.

Keywords: pollution assessment, sediment contamination, sediment quality, trace elements

Procedia PDF Downloads 257
170 Case Study Analysis of 2017 European Railway Traffic Management Incident: The Application of System for Investigation of Railway Interfaces Methodology

Authors: Sanjeev Kumar Appicharla

Abstract:

This paper presents the results of the modelling and analysis of the European Railway Traffic Management (ERTMS) safety-critical incident to raise awareness of biases in the systems engineering process on the Cambrian Railway in the UK using the RAIB 17/2019 as a primary input. The RAIB, the UK independent accident investigator, published the Report- RAIB 17/2019 giving the details of their investigation of the focal event in the form of immediate cause, causal factors, and underlying factors and recommendations to prevent a repeat of the safety-critical incident on the Cambrian Line. The Systems for Investigation of Railway Interfaces (SIRI) is the methodology used to model and analyze the safety-critical incident. The SIRI methodology uses the Swiss Cheese Model to model the incident and identify latent failure conditions (potentially less than adequate conditions) by means of the management oversight and risk tree technique. The benefits of the systems for investigation of railway interfaces methodology (SIRI) are threefold: first is that it incorporates the “Heuristics and Biases” approach advanced by 2002 Nobel laureate in Economic Sciences, Prof Daniel Kahneman, in the management oversight and risk tree technique to identify systematic errors. Civil engineering and programme management railway professionals are aware of the role “optimism bias” plays in programme cost overruns and are aware of bow tie (fault and event tree) model-based safety risk modelling techniques. However, the role of systematic errors due to “Heuristics and Biases” is not appreciated as yet. This overcomes the problems of omission of human and organizational factors from accident analysis. Second, the scope of the investigation includes all levels of the socio-technical system, including government, regulatory, railway safety bodies, duty holders, signaling firms and transport planners, and front-line staff such that lessons are learned at the decision making and implementation level as well. Third, the author’s past accident case studies are supplemented with research pieces of evidence drawn from the practitioner's and academic researchers’ publications as well. This is to discuss the role of system thinking to improve the decision-making and risk management processes and practices in the IEC 15288 systems engineering standard and in the industrial context such as the GB railways and artificial intelligence (AI) contexts as well.

Keywords: accident analysis, AI algorithm internal audit, bounded rationality, Byzantine failures, heuristics and biases approach

Procedia PDF Downloads 190