Search results for: computer assisted classification
2558 Using Bidirectional Encoder Representations from Transformers to Extract Topic-Independent Sentiment Features for Social Media Bot Detection
Authors: Maryam Heidari, James H. Jones Jr.
Abstract:
Millions of online posts about different topics and products are shared on popular social media platforms. One use of this content is to provide crowd-sourced information about a specific topic, event or product. However, this use raises an important question: what percentage of information available through these services is trustworthy? In particular, might some of this information be generated by a machine, i.e., a bot, instead of a human? Bots can be, and often are, purposely designed to generate enough volume to skew an apparent trend or position on a topic, yet the consumer of such content cannot easily distinguish a bot post from a human post. In this paper, we introduce a model for social media bot detection which uses Bidirectional Encoder Representations from Transformers (Google Bert) for sentiment classification of tweets to identify topic-independent features. Our use of a Natural Language Processing approach to derive topic-independent features for our new bot detection model distinguishes this work from previous bot detection models. We achieve 94\% accuracy classifying the contents of data as generated by a bot or a human, where the most accurate prior work achieved accuracy of 92\%.Keywords: bot detection, natural language processing, neural network, social media
Procedia PDF Downloads 1162557 Diabetes Diagnosis Model Using Rough Set and K- Nearest Neighbor Classifier
Authors: Usiobaifo Agharese Rosemary, Osaseri Roseline Oghogho
Abstract:
Diabetes is a complex group of disease with a variety of causes; it is a disorder of the body metabolism in the digestion of carbohydrates food. The application of machine learning in the field of medical diagnosis has been the focus of many researchers and the use of recognition and classification model as a decision support tools has help the medical expert in diagnosis of diseases. Considering the large volume of medical data which require special techniques, experience, and high diagnostic skill in the diagnosis of diseases, the application of an artificial intelligent system to assist medical personnel in order to enhance their efficiency and accuracy in diagnosis will be an invaluable tool. In this study will propose a diabetes diagnosis model using rough set and K-nearest Neighbor classifier algorithm. The system consists of two modules: the feature extraction module and predictor module, rough data set is used to preprocess the attributes while K-nearest neighbor classifier is used to classify the given data. The dataset used for this model was taken for University of Benin Teaching Hospital (UBTH) database. Half of the data was used in the training while the other half was used in testing the system. The proposed model was able to achieve over 80% accuracy.Keywords: classifier algorithm, diabetes, diagnostic model, machine learning
Procedia PDF Downloads 3362556 Renewable Energy and Ecosystem Services: A Geographi̇cal Classification in Azerbaijan
Authors: Nijat S. İmamverdiyev
Abstract:
The transition to renewable energy sources has become a critical component of global efforts to mitigate climate change and promote sustainable development. However, the deployment of renewable energy technologies can also have significant impacts on ecosystems and the services they provide, such as carbon sequestration, soil fertility, water quality, and biodiversity. It also highlights the potential co-benefits of renewable energy deployment for ecosystem services, such as reducing greenhouse gas emissions and improving air and water quality. Renewable energy sources, such as wind, solar, hydro, and biomass, are increasingly being used to meet the world's energy needs due to their environmentally friendly nature and the desire to reduce greenhouse gas emissions. However, the expansion of renewable energy infrastructure can also impact ecosystem services, which are the benefits that humans derive from nature, such as clean water, air, and food. This geographical assessment aims to evaluate the relationship between renewable energy infrastructure and ecosystem services. Here, also explores potential solutions to mitigate the negative effects of renewable energy infrastructure on ecosystem services, such as the use of ecological compensation measures, biodiversity-friendly design of renewable energy infrastructure, and stakeholder involvement in decision-making processes.Keywords: renewable energy, solar energy, climate change, energy production
Procedia PDF Downloads 642555 Moving Object Detection Using Histogram of Uniformly Oriented Gradient
Authors: Wei-Jong Yang, Yu-Siang Su, Pau-Choo Chung, Jar-Ferr Yang
Abstract:
Moving object detection (MOD) is an important issue in advanced driver assistance systems (ADAS). There are two important moving objects, pedestrians and scooters in ADAS. In real-world systems, there exist two important challenges for MOD, including the computational complexity and the detection accuracy. The histogram of oriented gradient (HOG) features can easily detect the edge of object without invariance to changes in illumination and shadowing. However, to reduce the execution time for real-time systems, the image size should be down sampled which would lead the outlier influence to increase. For this reason, we propose the histogram of uniformly-oriented gradient (HUG) features to get better accurate description of the contour of human body. In the testing phase, the support vector machine (SVM) with linear kernel function is involved. Experimental results show the correctness and effectiveness of the proposed method. With SVM classifiers, the real testing results show the proposed HUG features achieve better than classification performance than the HOG ones.Keywords: moving object detection, histogram of oriented gradient, histogram of uniformly-oriented gradient, linear support vector machine
Procedia PDF Downloads 5942554 Development of Automatic Laser Scanning Measurement Instrument
Authors: Chien-Hung Liu, Yu-Fen Chen
Abstract:
This study used triangular laser probe and three-axial direction mobile platform for surface measurement, programmed it and applied it to real-time analytic statistics of different measured data. This structure was used to design a system integration program: using triangular laser probe for scattering or reflection non-contact measurement, transferring the captured signals to the computer through RS-232, and using RS-485 to control the three-axis platform for a wide range of measurement. The data captured by the laser probe are formed into a 3D surface. This study constructed an optical measurement application program in the concept of visual programming language. First, the signals are transmitted to the computer through RS-232/RS-485, and then the signals are stored and recorded in graphic interface timely. This programming concept analyzes various messages, and makes proper presentation graphs and data processing to provide the users with friendly graphic interfaces and data processing state monitoring, and identifies whether the present data are normal in graphic concept. The major functions of the measurement system developed by this study are thickness measurement, SPC, surface smoothness analysis, and analytical calculation of trend line. A result report can be made and printed promptly. This study measured different heights and surfaces successfully, performed on-line data analysis and processing effectively, and developed a man-machine interface for users to operate.Keywords: laser probe, non-contact measurement, triangulation measurement principle, statistical process control, labVIEW
Procedia PDF Downloads 3602553 Using ePortfolios to Mapping Social Work Graduate Competencies
Authors: Cindy Davis
Abstract:
Higher education is changing globally and there is increasing pressure from professional social work accreditation bodies for academic programs to demonstrate how students have successfully met mandatory graduate competencies. As professional accreditation organizations increase their demand for evidence of graduate competencies, strategies to document and recording learning outcomes becomes increasingly challenging for academics and students. Studies in higher education have found support for the pedagogical value of ePortfolios, a flexible personal learning space that is owned by the student and include opportunity for assessment, feedback and reflection as well as a virtual space to store evidence of demonstration of professional competencies and graduate attributes. Examples of institutional uses of ePortfolios include e-administration of a diverse student population, assessment of student learning, and the demonstration of graduate attributes attained and future student career preparation. The current paper presents a case study on the introduction of ePortfolios for social work graduates in Australia as part of an institutional approach to technology-enhanced learning and e-learning. Social work graduates were required to submit an ePortfolio hosted on PebblePad. The PebblePad platform was selected because it places the student at the center of their learning whilst providing powerful tools for staff to structure, guide and assess that learning. The ePortofolio included documentation and evidence of how the student met each graduate competency as set out by the social work accreditation body in Australia (AASW). This digital resource played a key role in the process of external professional accreditation by clearly documenting and evidencing how students met required graduate competencies. In addition, student feedback revealed a positive outcome on how this resource provided them with a consolidation of their learning experiences and assisted them in obtaining employment post-graduation. There were also significant institutional factors that were key to successful implementation such as investment in the digital technology, capacity building amongst academics, and technical support for staff and students.Keywords: accreditation, social work, teaching, technology
Procedia PDF Downloads 1392552 Track Initiation Method Based on Multi-Algorithm Fusion Learning of 1DCNN And Bi-LSTM
Abstract:
Aiming at the problem of high-density clutter and interference affecting radar detection target track initiation in ECM and complex radar mission, the traditional radar target track initiation method has been difficult to adapt. To this end, we propose a multi-algorithm fusion learning track initiation algorithm, which transforms the track initiation problem into a true-false track discrimination problem, and designs an algorithm based on 1DCNN(One-Dimensional CNN)combined with Bi-LSTM (Bi-Directional Long Short-Term Memory )for fusion classification. The experimental dataset consists of real trajectories obtained from a certain type of three-coordinate radar measurements, and the experiments are compared with traditional trajectory initiation methods such as rule-based method, logical-based method and Hough-transform-based method. The simulation results show that the overall performance of the multi-algorithm fusion learning track initiation algorithm is significantly better than that of the traditional method, and the real track initiation rate can be effectively improved under high clutter density with the average initiation time similar to the logical method.Keywords: track initiation, multi-algorithm fusion, 1DCNN, Bi-LSTM
Procedia PDF Downloads 952551 Machine Learning Strategies for Data Extraction from Unstructured Documents in Financial Services
Authors: Delphine Vendryes, Dushyanth Sekhar, Baojia Tong, Matthew Theisen, Chester Curme
Abstract:
Much of the data that inform the decisions of governments, corporations and individuals are harvested from unstructured documents. Data extraction is defined here as a process that turns non-machine-readable information into a machine-readable format that can be stored, for instance, in a database. In financial services, introducing more automation in data extraction pipelines is a major challenge. Information sought by financial data consumers is often buried within vast bodies of unstructured documents, which have historically required thorough manual extraction. Automated solutions provide faster access to non-machine-readable datasets, in a context where untimely information quickly becomes irrelevant. Data quality standards cannot be compromised, so automation requires high data integrity. This multifaceted task is broken down into smaller steps: ingestion, table parsing (detection and structure recognition), text analysis (entity detection and disambiguation), schema-based record extraction, user feedback incorporation. Selected intermediary steps are phrased as machine learning problems. Solutions leveraging cutting-edge approaches from the fields of computer vision (e.g. table detection) and natural language processing (e.g. entity detection and disambiguation) are proposed.Keywords: computer vision, entity recognition, finance, information retrieval, machine learning, natural language processing
Procedia PDF Downloads 1132550 Mn3O4 anchored Broccoli-Flower like Nickel Manganese Selenide Composite for Ultra-efficient Solid-State Hybrid Supercapacitors with Extended Durability
Authors: Siddhant Srivastav, Shilpa Singh, Sumanta Kumar Meher
Abstract:
Innovative renewable energy sources for energy storage/conversion is the demand of the current scenario in electrochemical machinery. In this context, choosing suitable organic precipitants for tuning the crystal characteristics and microstructures is a challenge. On the same note, herein we report broccoli flower-like porous Mn3O4/NiSe2−MnSe2 composite synthesized using a simple two step hydrothermal synthesis procedure assisted by sluggish precipitating agent and an effective cappant followed by intermediated anion exchange. The as-synthesized material was exposed to physical and chemical measurements depicting poly-crystallinity, stronger bonding and broccoli flower-like porous arrangement. The material was assessed electrochemically by cyclic voltammetry (CV), chronopotentiometry (CP) and electrochemical impedance spectroscopy (EIS) measurements. The Electrochemical studies reveal redox behavior, supercapacitive charge-discharge shape and extremely low charge transfer resistance. Further, the fabricated Mn3O4/NiSe2−MnSe2 composite based solid-state hybrid supercapacitor (Mn3O4/NiSe2−MnSe2 ||N-rGO) delivers excellent rate specific capacity, very low internal resistance, with energy density (~34 W h kg–1) of a typical rechargeable battery and power density (11995 W kg–1) of an ultra-supercapacitor. Consequently, it can be a favorable contender for supercapacitor applications for high performance energy storage utilizations. A definitive exhibition of the supercapacitor device is credited to electrolyte-ion buffering reservior alike behavior of broccoli flower like Mn3O4/NiSe2−MnSe2, enhanced by upgraded electronic and ionic conductivities of N- doped rGO (negative electrode) and PVA/KOH gel (electrolyte separator), respectivelyKeywords: electrolyte-ion buffering reservoir, intermediated-anion exchange, solid-state hybrid supercapacitor, supercapacitive charge-dischargesupercapacitive charge-discharge
Procedia PDF Downloads 752549 Ultrasensitive Detection and Discrimination of Cancer-Related Single Nucleotide Polymorphisms Using Poly-Enzyme Polymer Bead Amplification
Authors: Lorico D. S. Lapitan Jr., Yihan Xu, Yuan Guo, Dejian Zhou
Abstract:
The ability of ultrasensitive detection of specific genes and discrimination of single nucleotide polymorphisms is important for clinical diagnosis and biomedical research. Herein, we report the development of a new ultrasensitive approach for label-free DNA detection using magnetic nanoparticle (MNP) assisted rapid target capture/separation in combination with signal amplification using poly-enzyme tagged polymer nanobead. The sensor uses an MNP linked capture DNA and a biotin modified signal DNA to sandwich bind the target followed by ligation to provide high single-nucleotide polymorphism discrimination. Only the presence of a perfect match target DNA yields a covalent linkage between the capture and signal DNAs for subsequent conjugation of a neutravidin-modified horseradish peroxidase (HRP) enzyme through the strong biotin-nuetravidin interaction. This converts each captured DNA target into an HRP which can convert millions of copies of a non-fluorescent substrate (amplex red) to a highly fluorescent product (resorufin), for great signal amplification. The use of polymer nanobead each tagged with thousands of copies of HRPs as the signal amplifier greatly improves the signal amplification power, leading to greatly improved sensitivity. We show our biosensing approach can specifically detect an unlabeled DNA target down to 10 aM with a wide dynamic range of 5 orders of magnitude (from 0.001 fM to 100.0 fM). Furthermore, our approach has a high discrimination between a perfectly matched gene and its cancer-related single-base mismatch targets (SNPs): It can positively detect the perfect match DNA target even in the presence of 100 fold excess of co-existing SNPs. This sensing approach also works robustly in clinical relevant media (e.g. 10% human serum) and gives almost the same SNP discrimination ratio as that in clean buffers. Therefore, this ultrasensitive SNP biosensor appears to be well-suited for potential diagnostic applications of genetic diseases.Keywords: DNA detection, polymer beads, signal amplification, single nucleotide polymorphisms
Procedia PDF Downloads 2492548 Classification Method for Turnover While Sleeping Using Multi-Point Unconstrained Sensing Devices
Authors: K. Shiba, T. Kobayashi, T. Kaburagi, Y. Kurihara
Abstract:
Elderly population in the world is increasing, and consequently, their nursing burden is also increasing. In such situations, monitoring and evaluating their daily action facilitates efficient nursing care. Especially, we focus on an unconscious activity during sleep, i.e. turnover. Monitoring turnover during sleep is essential to evaluate various conditions related to sleep. Bedsores are considered as one of the monitoring conditions. Changing patient’s posture every two hours is required for caregivers to prevent bedsore. Herein, we attempt to develop an unconstrained nocturnal monitoring system using a sensing device based on piezoelectric ceramics that can detect the vibrations owing to human body movement on the bed. In the proposed method, in order to construct a multi-points sensing, we placed two sensing devices under the right and left legs at the head-side of an ordinary bed. Using this equipment, when a subject lies on the bed, feature is calculated from the output voltages of the sensing devices. In order to evaluate our proposed method, we conducted an experiment with six healthy male subjects. Consequently, the period during which turnover occurs can be correctly classified as the turnover period with 100% accuracy.Keywords: turnover, piezoelectric ceramics, multi-points sensing, unconstrained monitoring system
Procedia PDF Downloads 1942547 Highly Glazed Office Spaces: Simulated Visual Comfort vs Real User Experiences
Authors: Zahra Hamedani, Ebrahim Solgi, Henry Skates, Gillian Isoardi
Abstract:
Daylighting plays a pivotal role in promoting productivity and user satisfaction in office spaces. There is an ongoing trend in designing office buildings with a high proportion of glazing which relatively increases the risk of high visual discomfort. Providing a more realistic lighting analysis can be of high value at the early stages of building design when necessary changes can be made at a very low cost. This holistic approach can be achieved by incorporating subjective evaluation and user behaviour in computer simulation and provide a comprehensive lighting analysis. In this research, a detailed computer simulation model has been made using Radiance and Daysim. Afterwards, this model was validated by measurements and user feedback. The case study building is the school of science at Griffith University, Gold Coast, Queensland, which features highly glazed office spaces. In this paper, the visual comfort predicted by the model is compared with a preliminary survey of the building users to evaluate how user behaviour such as desk position, orientation selection, and user movement caused by daylight changes and other visual variations can inform perceptions of visual comfort. This work supports preliminary design analysis of visual comfort incorporating the effects of gaze shift patterns and views with the goal of designing effective layout for office spaces.Keywords: lighting simulation, office buildings, user behaviour, validation, visual comfort
Procedia PDF Downloads 2132546 Laparoscopic Uterovaginal Anastomosis in Cervicovaginal Agenesis
Authors: Anamika Choudhary, Neha Qurrat Ain
Abstract:
Background: Congenital agenesis of uterine cervix is a rare anomaly often associated with partial or complete agenesis of vagina. Here is a case report of a 14 year old girl who presented with primary amenorrhea and cyclical abdominal pain since last one year with suprapubic mass palpable. On examination complete absence of a vagina was found, and ultrasound along with magnetic resonance imaging (MRI) suggested cervicovaginal agenesis associated with cryptomenorrhea, which resulted in hematometra and b/l hematosalpinx with pelvic endometriosis. After proper counseling regarding anastomosis failure and the need for future laprotomy or hysterectomy, the patient planned for laparoscopic uterovaginal anastomosis with modified McIndoe vaginoplasty with split skin graft. Case Summary: Chief complaint: The 14 year old girl presented with primary amenorrhea and cyclical abdominal pain. Diagnosis:On history, examination and investigations we made differential diagnoses of cervicovaginal agenesis, cervicovaginal atresia. Post operatively, we concluded it’s a cervicovaginal agenesis. Intervention: Laparoscopic uterovaginal anastomosis was done, and neovagina was created using split skin graft from the thigh and silicone stent. The graft was kept patent, and restenosis was prevented using a dental mould as vaginal dilator. Outcome: Postoperatively 1 year follow-up has been done. We have observed successful uterovaginal anastomosis and good uptake of graft. We also observed the resumption of normal menstrual bleeding. Currently, there has been no restenosis, abnormal vaginal discharge and decreased dysmenorrhea. Conclusion: Laparoscopic-assisted uterovaginal anastomosis can be the treatment of choice in patients with cervical agenesis and atresia instead of hysterectomy, thereby preserving the reproductive function. This conservative approach has better outcomes, as stated in the procedure below. The procedure is successful insofar as the resumption of menstrual function. However, long-term reproductive outcomes, progression of endometriosis, functioning of fallopian tubes, and sexual life in these girls will require further follow-up.Keywords: cervicovaginal agenesis, uterovaginal anastomosis, dental mould, silicon stent
Procedia PDF Downloads 242545 Cut-Out Animation as an Technic and Development inside History Process
Authors: Armagan Gokcearslan
Abstract:
The art of animation has developed very rapidly from the aspects of script, sound and music, motion, character design, techniques being used and technological tools being developed since the first years until today. Technical variety attracts a particular attention in the art of animation. Being perceived as a kind of illusion in the beginning; animations commonly used the Flash Sketch technique. Animations artists using the Flash Sketch technique created scenes by drawing them on a blackboard with chalk. The Flash Sketch technique was used by primary animation artists like Emile Cohl, Winsor McCay ande Blackton. And then tools like Magical Lantern, Thaumatrope, Phenakisticope, and Zeotrap were developed and started to be used intensely in the first years of the art of animation. Today, on the other hand, the art of animation is affected by developments in the computer technology. It is possible to create three-dimensional and two-dimensional animations with the help of various computer software. Cut-out technique is among the important techniques being used in the art of animation. Cut-out animation technique is based on the art of paper cutting. Examining cut-out animations; it is observed that they technically resemble the art of paper cutting. The art of paper cutting has a rooted history. It is possible to see the oldest samples of paper cutting in the People’s Republic of China in the period after the 2. century B.C. when the Chinese invented paper. The most popular artist using the cut-out animation technique is the German artist Lotte Reiniger. This study titled “Cut-out Animation as a Technic and Development Inside History Process” will embrace the art of paper cutting, the relationship between the art of paper cutting and cut-out animation, its development within the historical process, animation artists producing artworks in this field, important cut-out animations, and their technical properties.Keywords: cut-out, paper art, animation, technic
Procedia PDF Downloads 2752544 Sexual Health And Male Fertility: Improving Sperm Health With Focus On Technology
Authors: Diana Peninger
Abstract:
Over 10% of couples in the U.S. have infertility problems, with roughly 40% traceable to the male partner. Yet, little attention has been given to improving men’s contribution to the conception process. One solution that is showing promise in increasing conception rates for IVF and other assisted reproductive technology treatments is a first-of-its-kind semen collection that has been engineered to mitigate sperm damage caused by traditional collection methods. Patients are able to collect semen at home and deliver to clinics within 48 hours for use in fertility analysis and treatment, with less stress and improved specimen viability. This abstract will share these findings along with expert insight and tips to help attendees understand the key role sperm collection plays in addressing and treating reproductive issues, while helping to improve patient outcomes and success. Our research was to determine if male reproductive outcomes can be increased by improving sperm specimen health with a focus on technology. We utilized a redesigned semen collection cup (patented as the Device for Improved Semen Collection/DISC—U.S. Patent 6864046 – known commercially as a ProteX) that met a series of physiological parameters. Previous research demonstrated significant improvement in semen perimeters (motility forward, progression, viability, and longevity) and overall sperm biochemistry when the DISC is used for collection. Animal studies have also shown dramatic increases in pregnancy rates. Our current study compares samples collected in the DISC, next-generation DISC (DISCng), and a standard specimen cup (SSC), dry, with the 1 mL measured amount of media and media in excess ( 5mL). Both human and animal testing will be included. With sperm counts declining at alarming rates due to environmental, lifestyle, and other health factors, accurate evaluations of sperm health are critical to understanding reproductive health, origins, and treatments of infertility. An increase in the health of the sperm as measured by extensive semen parameter analysis and improved semen parameters stable for 48 hours, expanding the processing time from 1 hour to 48 hours were also demonstrated.Keywords: reprodutive, sperm, male, infertility
Procedia PDF Downloads 1292543 Automatic Product Identification Based on Deep-Learning Theory in an Assembly Line
Authors: Fidel Lòpez Saca, Carlos Avilés-Cruz, Miguel Magos-Rivera, José Antonio Lara-Chávez
Abstract:
Automated object recognition and identification systems are widely used throughout the world, particularly in assembly lines, where they perform quality control and automatic part selection tasks. This article presents the design and implementation of an object recognition system in an assembly line. The proposed shapes-color recognition system is based on deep learning theory in a specially designed convolutional network architecture. The used methodology involve stages such as: image capturing, color filtering, location of object mass centers, horizontal and vertical object boundaries, and object clipping. Once the objects are cut out, they are sent to a convolutional neural network, which automatically identifies the type of figure. The identification system works in real-time. The implementation was done on a Raspberry Pi 3 system and on a Jetson-Nano device. The proposal is used in an assembly course of bachelor’s degree in industrial engineering. The results presented include studying the efficiency of the recognition and processing time.Keywords: deep-learning, image classification, image identification, industrial engineering.
Procedia PDF Downloads 1602542 An Orphan Software Engineering Course: Supportive Ways toward a True Software Engineer
Authors: Haya Sammana
Abstract:
A well-defined curricula must be adopted to meet the increasing complexity and diversity in the software applications. In reality, some IT majors such as computer science and computer engineering receive the software engineering education in a single course which is considered as a big challenged for the instructors and universities. Also, it requires students to gain the most of practical experiences that simulate the real work in software companies. Furthermore, we have noticed that there is no consensus on how, when and what to teach in that introductory course to gain the practical experiences that are required by the software companies. Because all of software engineering disciplines will not fit in just one course, so the course needs reasonable choices in selecting its topics. This arises an important question which is an essential one to ask: Is this course has the ability to formulate a true software engineer that meets the needs of industry? This question arises a big challenge in selecting the appropriate topics. So answering this question is very important for the next undergraduate students. During teaching this course in the curricula, the feedbacks from an undergraduate students and the keynotes of the annual meeting for an advisory committee from industrial side provide a probable answer for the proposed question: it is impossible to build a true software engineer who possesses all the essential elements of software engineering education such teamwork, communications skills, project management skills and contemporary industrial practice from one course and it is impossible to have a one course covering all software engineering topics. Besides the used teaching approach, the author proposes an implemented three supportive ways aiming for mitigating the expected risks and increasing the opportunity to build a true software engineer.Keywords: software engineering course, software engineering education, software experience, supportive approach
Procedia PDF Downloads 3592541 A Feminist/Queer Global Bioethics’Perspective on Reproduction: Abortion, MAR and Surrogacy
Authors: Tamara Roma, Emma Capulli
Abstract:
Pregnancy and fertility, in other words, reproduction, has become, in the last half of the century, increasingly and globally controlled, medicalized, and regulated. The reflection proposed starts from the consequences of the inscription of reproduction into the neoliberal economic paradigm. The new biotechnologies developments have raised a new patriarchal justification for State’s control of uterus bodies and a new construction of knowledge about reproductive health. Moral discussion and juridification remove reproduction and non-reproduction from their personal and intimate context and frame them under words like “duties”, “rights”, “family planning”, “demography”, and “population policy”, reinvent them as “States business” and ultimately help to re/confirm a specific construct of fertility, motherhood, and family. Moreover, the interaction between the neoliberal economy and medical biotechnologies brought about a new formulation of the connection between feminine generative potential and value production. The widespread and contemporary debates on Medically Assisted Reproduction (MAR), surrogacy and abortion suggest the need for a “feminist/queer global bioethical discourse” capable of inserting itself into the official bioethical debate characterized by the traditional dichotomy of laic bioethics/Catholic bioethics. The contribution moves from a feminist bioethics perspective on reproductive technologies to introduce a feminist/queer global bioethics point of view on reproductive health. The comparison between reproduction and non-reproduction debates is useful to analyze and demonstrate how restrictive legislations, dichotomic bioethical discussion and medical control confirm and strengthens gender injustice in reproductive life. In fact, MAR, surrogacy, and abortion restrictions stem from a shared social and legal paradigm that depends on traditional gender roles revealing how the stratification of reproduction is based on multiple discrimination along the lines of gender, race, and class. In conclusion, the perspective of feminist/queer global bioethics tries to read the concept of universal reproductive justice, introducing an original point of view on reproductive health access.Keywords: queer bioethics, reproductive health, reproductive justice, reproductive technologies
Procedia PDF Downloads 1252540 Content Based Video Retrieval System Using Principal Object Analysis
Authors: Van Thinh Bui, Anh Tuan Tran, Quoc Viet Ngo, The Bao Pham
Abstract:
Video retrieval is a searching problem on videos or clips based on content in which they are relatively close to an input image or video. The application of this retrieval consists of selecting video in a folder or recognizing a human in security camera. However, some recent approaches have been in challenging problem due to the diversity of video types, frame transitions and camera positions. Besides, that an appropriate measures is selected for the problem is a question. In order to overcome all obstacles, we propose a content-based video retrieval system in some main steps resulting in a good performance. From a main video, we process extracting keyframes and principal objects using Segmentation of Aggregating Superpixels (SAS) algorithm. After that, Speeded Up Robust Features (SURF) are selected from those principal objects. Then, the model “Bag-of-words” in accompanied by SVM classification are applied to obtain the retrieval result. Our system is performed on over 300 videos in diversity from music, history, movie, sports, and natural scene to TV program show. The performance is evaluated in promising comparison to the other approaches.Keywords: video retrieval, principal objects, keyframe, segmentation of aggregating superpixels, speeded up robust features, bag-of-words, SVM
Procedia PDF Downloads 3012539 Candida antartica Lipase Assisted Enrichment of n-3 PUFA in Indian Sardine Oil
Authors: Prasanna Belur, P. R. Ashwini, Sampath Charanyaa, I. Regupathi
Abstract:
Indian oil sardine (Sardinella longiceps) are one of the richest and cheapest sources of n-3 polyunsaturated fatty acids (n-3 PUFA) such as Eicosapentaenoic acid (EPA) and Docosahexaenoic acid (DHA). The health benefits conferred by n-3 PUFA upon consumption, in the prevention and treatment of coronary, neuromuscular, immunological disorders and allergic conditions are well documented. Natural refined Indian Sardine oil generally contain about 25% (w/w) n-3 PUFA along with various unsaturated and saturated fatty acids in the form of mono, di, and triglycerides. Having high concentration of n-3 PUFA content in the glyceride form is most desirable for human consumption to avail maximum health benefits. Thus, enhancing the n-3 PUFA content while retaining it in the glyceride form with green technology is the need of the hour. In this study, refined Indian Sardine oil was subjected to selective hydrolysis by Candida antartica lipase to enhance n-3 PUFA content. The degree of hydrolysis and enhancement of n-3 PUFA content was estimated by determining acid value, Iodine value, EPA and DHA content (by Gas Chromatographic methods after derivitization) before and after hydrolysis. Various reaction parameters such as pH, temperature, enzyme load, lipid to aqueous phase volume ratio and incubation time were optimized by conducting trials with one parameter at a time approach. Incubating enzyme solution with refined sardine oil with a volume ratio of 1:1, at pH 7.0, for 60 minutes at 50 °C, with an enzyme load of 60 mg/ml was found to be optimum. After enzymatic treatment, the oil was subjected to refining to remove free fatty acids and moisture content using previously optimized refining technology. Enzymatic treatment at the optimal conditions resulted in 12.11 % enhancement in Degree of hydrolysis. Iodine number had increased by 9.7 % and n-3 PUFA content was enhanced by 112 % (w/w). Selective enhancement of n-3 PUFA glycerides, eliminating saturated and unsaturated fatty acids from the oil using enzyme is an interesting preposition as this technique is environment-friendly, cost effective and provide natural source of n-3 PUFA rich oil.Keywords: Candida antartica, lipase, n-3 polyunsaturated fatty acids, sardine oil
Procedia PDF Downloads 2332538 Ligandless Extraction and Determination of Trace Amounts of Lead in Pomegranate, Zucchini and Lettuce Samples after Dispersive Liquid-Liquid Microextraction with Ultrasonic Bath and Optimization of Extraction Condition with RSM Design
Authors: Fariba Tadayon, Elmira Hassanlou, Hasan Bagheri, Mostafa Jafarian
Abstract:
Heavy metals are released into water, plants, soil, and food by natural and human activities. Lead has toxic roles in the human body and may cause serious problems even in low concentrations, since it may have several adverse effects on human. Therefore, determination of lead in different samples is an important procedure in the studies of environmental pollution. In this work, an ultrasonic assisted-ionic liquid based-liquid-liquid microextraction (UA-IL-DLLME) procedure for the determination of lead in zucchini, pomegranate, and lettuce has been established and developed by using flame atomic absorption spectrometer (FAAS). For UA-IL-DLLME procedure, 10 mL of the sample solution containing Pb2+ was adjusted to pH=5 in a glass test tube with a conical bottom; then, 120 μL of 1-Hexyl-3-methylimidazolium hexafluoro phosphate (CMIM)(PF6) was rapidly injected into the sample solution with a microsyringe. After that, the resulting cloudy mixture was treated by ultrasonic for 5 min, then the separation of two phases was obtained by centrifugation for 5 min at 3000 rpm and IL-phase diluted with 1 cc ethanol, and the analytes were determined by FAAS. The effect of different experimental parameters in the extraction step including: ionic liquid volume, sonication time and pH was studied and optimized simultaneously by using Response Surface Methodology (RSM) employing a central composite design (CCD). The optimal conditions were determined to be an ionic liquid volume of 120 μL, sonication time of 5 min, and pH=5. The linear ranges of the calibration curve for the determination by FAAS of lead were 0.1-4 ppm with R2=0.992. Under optimized conditions, the limit of detection (LOD) for lead was 0.062 μg.mL-1, the enrichment factor (EF) was 93, and the relative standard deviation (RSD) for lead was calculated as 2.29%. The levels of lead for pomegranate, zucchini, and lettuce were calculated as 2.88 μg.g-1, 1.54 μg.g-1, 2.18 μg.g-1, respectively. Therefore, this method has been successfully applied for the analysis of the content of lead in different food samples by FAAS.Keywords: Dispersive liquid-liquid microextraction, Central composite design, Food samples, Flame atomic absorption spectrometry.
Procedia PDF Downloads 2832537 Unleashing the Power of Cerebrospinal System for a Better Computer Architecture
Authors: Lakshmi N. Reddi, Akanksha Varma Sagi
Abstract:
Studies on biomimetics are largely developed, deriving inspiration from natural processes in our objective world to develop novel technologies. Recent studies are diverse in nature, making their categorization quite challenging. Based on an exhaustive survey, we developed categorizations based on either the essential elements of nature - air, water, land, fire, and space, or on form/shape, functionality, and process. Such diverse studies as aircraft wings inspired by bird wings, a self-cleaning coating inspired by a lotus petal, wetsuits inspired by beaver fur, and search algorithms inspired by arboreal ant path networks lend themselves to these categorizations. Our categorizations of biomimetic studies allowed us to define a different dimension of biomimetics. This new dimension is not restricted to inspiration from the objective world. It is based on the premise that the biological processes observed in the objective world find their reflections in our human bodies in a variety of ways. For example, the lungs provide the most efficient example for liquid-gas phase exchange, the heart exemplifies a very efficient pumping and circulatory system, and the kidneys epitomize the most effective cleaning system. The main focus of this paper is to bring out the magnificence of the cerebro-spinal system (CSS) insofar as it relates to our current computer architecture. In particular, the paper uses four key measures to analyze the differences between CSS and human- engineered computational systems. These are adaptability, sustainability, energy efficiency, and resilience. We found that the cerebrospinal system reveals some important challenges in the development and evolution of our current computer architectures. In particular, the myriad ways in which the CSS is integrated with other systems/processes (circulatory, respiration, etc) offer useful insights on how the human-engineered computational systems could be made more sustainable, energy-efficient, resilient, and adaptable. In our paper, we highlight the energy consumption differences between CSS and our current computational designs. Apart from the obvious differences in materials used between the two, the systemic nature of how CSS functions provides clues to enhance life-cycles of our current computational systems. The rapid formation and changes in the physiology of dendritic spines and their synaptic plasticity causing memory changes (ex., long-term potentiation and long-term depression) allowed us to formulate differences in the adaptability and resilience of CSS. In addition, the CSS is sustained by integrative functions of various organs, and its robustness comes from its interdependence with the circulatory system. The paper documents and analyzes quantifiable differences between the two in terms of the four measures. Our analyses point out the possibilities in the development of computational systems that are more adaptable, sustainable, energy efficient, and resilient. It concludes with the potential approaches for technological advancement through creation of more interconnected and interdependent systems to replicate the effective operation of cerebro-spinal system.Keywords: cerebrospinal system, computer architecture, adaptability, sustainability, resilience, energy efficiency
Procedia PDF Downloads 972536 Peculiarities of Microflora of Odontogenic Inflammatory Processes in the Central Kazakhstan Region
Authors: Aliya Tokbergenova, Maida Tusupbekova, Daulet Dzhangaliyev, Alena Lavrinenko
Abstract:
Background: Odontogenic phlegmons are ranked the first among pyoinflammatory processes in the frequency of hospitalization in maxillofacial surgery in the post-Soviet countries. The main role in etiology is played by obligate anaerobes and aerobes. According to numerous data, the structure of aerobic pathogens is dominated by staphylococci and gram-negative bacteria. Aim: The research aim is to study the microflora of the purulent discharge odontogenic inflammatory processes. Materials and methods: A total of 220 patients have been examined, of which 120 patients aged 25-59 years have been included in the research who did not have comorbidity hospitalized in the maxillofacial hospital in Karaganda (Kazakhstan) from January 2016 to July 2017. The bacteriological research has been carried out on the basis of the multiaccess laboratory of the KSMU, through the Matrix Assisted Laser Desorption/Ionization (MALDI) apparatus. The material sample was pus from the inflammation focus, taken during the operating period. Results: According to the research among 120 patients (100%), 15 patients (12.5%) have had microorganisms not grown. From 105 (87.5%) bacteriological results, it has been revealed the following 1) Streptococcus: 51 (42.5%): Streptococcus beta-haemolytic: 17 (14.2%), Streptococcus pneumoniae: 12 (10%), Streptococcus anginosus: 8 (6.6%), Streptococcus oralis: 8 (6.6%), Streptococcus constellatus: 6 (5.0%); 2) Staphylococci: 27 (22.5%): Staphylococci aureus: 14 (11.7%) and Staphylococci epidermidis: 13 (10.8%); 3) Pseudomonas aeruginosa: 12 (10%); 4) Neisseria: 11 (9.1%): Neisseria mucosa: 5 (4.1%) and Neisseria macacae: 6 (5.0%); 5) Klebsiella pneumoniae: 2 (1.7%); 6) Stenotrophomonas maltophilia: 2 (1.7%). 15 patients (12.5%) experienced complications in the form of 1) The dissemination of the process in 10 patients (8.4%). 2) Osteomyelitis in 3 (2.5%). 3) Mediastinitis in 1 (0.8%). 4) Sinusitis in 1 (0.8%). 15 patients (100%) were carried out repeated bacteriological examination, the following was revealed: 1) Streptococcus: 10 (66.7%): Streptococcus beta-haemolytic: 4 (26.7%), Streptococcus pneumoniae: 2 (13.3%), Streptococcus аnginosus: 2 (13.3%), Streptococcus oralis: 1 (6.7%), Streptococcus constellatus: 1 (6.7%); 2) Staphylococci: 4 (26.7%): Staphylococci aureus: 3 (20%) and Staphylococci epidermidis: 1 (6.7%); 3) Pseudomonas aeruginosa: 1 (6.7%). Conclusions: Thus, according to our research data, streptococci predominate in the odontogenic processes microflora in aerobic flora in the central Kazakhstan region, which refutes the leading role of staphylococci in the development of odontogenic inflammatory processes, thus creating prerequisites for studying new treatment approaches.Keywords: maxillofacial surgery, microflora, odontogenic phlegmons, pyo-inflammatory
Procedia PDF Downloads 1942535 Supervised/Unsupervised Mahalanobis Algorithm for Improving Performance for Cyberattack Detection over Communications Networks
Authors: Radhika Ranjan Roy
Abstract:
Deployment of machine learning (ML)/deep learning (DL) algorithms for cyberattack detection in operational communications networks (wireless and/or wire-line) is being delayed because of low-performance parameters (e.g., recall, precision, and f₁-score). If datasets become imbalanced, which is the usual case for communications networks, the performance tends to become worse. Complexities in handling reducing dimensions of the feature sets for increasing performance are also a huge problem. Mahalanobis algorithms have been widely applied in scientific research because Mahalanobis distance metric learning is a successful framework. In this paper, we have investigated the Mahalanobis binary classifier algorithm for increasing cyberattack detection performance over communications networks as a proof of concept. We have also found that high-dimensional information in intermediate features that are not utilized as much for classification tasks in ML/DL algorithms are the main contributor to the state-of-the-art of improved performance of the Mahalanobis method, even for imbalanced and sparse datasets. With no feature reduction, MD offers uniform results for precision, recall, and f₁-score for unbalanced and sparse NSL-KDD datasets.Keywords: Mahalanobis distance, machine learning, deep learning, NS-KDD, local intrinsic dimensionality, chi-square, positive semi-definite, area under the curve
Procedia PDF Downloads 782534 Evaluation of Features Extraction Algorithms for a Real-Time Isolated Word Recognition System
Authors: Tomyslav Sledevič, Artūras Serackis, Gintautas Tamulevičius, Dalius Navakauskas
Abstract:
This paper presents a comparative evaluation of features extraction algorithm for a real-time isolated word recognition system based on FPGA. The Mel-frequency cepstral, linear frequency cepstral, linear predictive and their cepstral coefficients were implemented in hardware/software design. The proposed system was investigated in the speaker-dependent mode for 100 different Lithuanian words. The robustness of features extraction algorithms was tested recognizing the speech records at different signals to noise rates. The experiments on clean records show highest accuracy for Mel-frequency cepstral and linear frequency cepstral coefficients. For records with 15 dB signal to noise rate the linear predictive cepstral coefficients give best result. The hard and soft part of the system is clocked on 50 MHz and 100 MHz accordingly. For the classification purpose, the pipelined dynamic time warping core was implemented. The proposed word recognition system satisfies the real-time requirements and is suitable for applications in embedded systems.Keywords: isolated word recognition, features extraction, MFCC, LFCC, LPCC, LPC, FPGA, DTW
Procedia PDF Downloads 4962533 A Different Approach to Smart Phone-Based Wheat Disease Detection System Using Deep Learning for Ethiopia
Authors: Nathenal Thomas Lambamo
Abstract:
Based on the fact that more than 85% of the labor force and 90% of the export earnings are taken by agriculture in Ethiopia and it can be said that it is the backbone of the overall socio-economic activities in the country. Among the cereal crops that the agriculture sector provides for the country, wheat is the third-ranking one preceding teff and maize. In the present day, wheat is in higher demand related to the expansion of industries that use them as the main ingredient for their products. The local supply of wheat for these companies covers only 35 to 40% and the rest 60 to 65% percent is imported on behalf of potential customers that exhaust the country’s foreign currency reserves. The above facts show that the need for this crop in the country is too high and in reverse, the productivity of the crop is very less because of these reasons. Wheat disease is the most devastating disease that contributes a lot to this unbalance in the demand and supply status of the crop. It reduces both the yield and quality of the crop by 27% on average and up to 37% when it is severe. This study aims to detect the most frequent and degrading wheat diseases, Septoria and Leaf rust, using the most efficiently used subset of machine learning technology, deep learning. As a state of the art, a deep learning class classification technique called Convolutional Neural Network (CNN) has been used to detect diseases and has an accuracy of 99.01% is achieved.Keywords: septoria, leaf rust, deep learning, CNN
Procedia PDF Downloads 762532 Purification and Characterization of a Novel Extracellular Chitinase from Bacillus licheniformis LHH100
Authors: Laribi-Habchi Hasiba, Bouanane-Darenfed Amel, Drouiche Nadjib, Pausse André, Mameri Nabil
Abstract:
Chitin, a linear 1, 4-linked N-acetyl-d-glucosamine (GlcNAc) polysaccharide is the major structural component of fungal cell walls, insect exoskeletons and shells of crustaceans. It is one of the most abundant naturally occurring polysaccharides and has attracted tremendous attention in the fields of agriculture, pharmacology and biotechnology. Each year, a vast amount of chitin waste is released from the aquatic food industry, where crustaceans (prawn, crab, Shrimp and lobster) constitute one of the main agricultural products. This creates a serious environmental problem. This linear polymer can be hydrolyzed by bases, acids or enzymes such as chitinase. In this context an extracellular chitinase (ChiA-65) was produced and purified from a newly isolated LHH100. Pure protein was obtained after heat treatment and ammonium sulphate precipitation followed by Sephacryl S-200 chromatography. Based on matrix assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF/MS) analysis, the purified enzyme is a monomer with a molecular mass of 65,195.13 Da. The sequence of the 27 N-terminal residues of the mature ChiA-65 showed high homology with family-18 chitinases. Optimal activity was achieved at pH 4 and 75◦C. Among the inhibitors and metals tested p-chloromercuribenzoic acid, N-ethylmaleimide, Hg2+ and Hg + completelyinhibited enzyme activity. Chitinase activity was high on colloidal chitin, glycol chitin, glycol chitosane, chitotriose and chitooligosaccharide. Chitinase activity towards synthetic substrates in the order of p-NP-(GlcNAc) n (n = 2–4) was p-NP-(GlcNAc)2> p-NP-(GlcNAc)4> p-NP-(GlcNAc)3. Our results suggest that ChiA-65 preferentially hydrolyzed the second glycosidic link from the non-reducing end of (GlcNAc) n. ChiA-65 obeyed Michaelis Menten kinetics the Km and kcat values being 0.385 mg, colloidal chitin/ml and5000 s−1, respectively. ChiA-65 exhibited remarkable biochemical properties suggesting that this enzyme is suitable for bioconversion of chitin waste.Keywords: Bacillus licheniformis LHH100, characterization, extracellular chitinase, purification
Procedia PDF Downloads 4372531 Finite Difference Modelling of Temperature Distribution around Fire Generated Heat Source in an Enclosure
Authors: A. A. Dare, E. U. Iniegbedion
Abstract:
Industrial furnaces generally involve enclosures of fire typically initiated by the combustion of gases. The fire leads to temperature distribution inside the enclosure. A proper understanding of the temperature and velocity distribution within the enclosure is often required for optimal design and use of the furnace. This study was therefore directed at numerical modeling of temperature distribution inside an enclosure as typical in a furnace. A mathematical model was developed from the conservation of mass, momentum and energy. The stream function-vorticity formulation of the governing equations was solved by an alternating direction implicit (ADI) finite difference technique. The finite difference formulation obtained were then developed into a computer code. This was used to determine the temperature, velocities, stream function and vorticity. The effect of the wall heat conduction was also considered, by assuming a one-dimensional heat flow through the wall. The computer code (MATLAB program) developed was used for the determination of the aforementioned variables. The results obtained showed that the transient temperature distribution assumed a uniform profile which becomes more chaotic with increasing time. The vertical velocity showed increasing turbulent behavior with time, while the horizontal velocity assumed decreasing laminar behavior with time. All of these behaviours were equally reported in the literature. The developed model has provided understanding of heat transfer process in an industrial furnace.Keywords: heat source, modelling, enclosure, furnace
Procedia PDF Downloads 2552530 Epileptic Seizure Onset Detection via Energy and Neural Synchronization Decision Fusion
Authors: Marwa Qaraqe, Muhammad Ismail, Erchin Serpedin
Abstract:
This paper presents a novel architecture for a patient-specific epileptic seizure onset detector using scalp electroencephalography (EEG). The proposed architecture is based on the decision fusion calculated from energy and neural synchronization related features. Specifically, one level of the detector calculates the condition number (CN) of an EEG matrix to evaluate the amount of neural synchronization present within the EEG channels. On a parallel level, the detector evaluates the energy contained in four EEG frequency subbands. The information is then fed into two independent (parallel) classification units based on support vector machines to determine the onset of a seizure event. The decisions from the two classifiers are then combined together according to two fusion techniques to determine a global decision. Experimental results demonstrate that the detector based on the AND fusion technique outperforms existing detectors with a sensitivity of 100%, detection latency of 3 seconds, while it achieves a 2:76 false alarm rate per hour. The OR fusion technique achieves a sensitivity of 100%, and significantly improves delay latency (0:17 seconds), yet it achieves 12 false alarms per hour.Keywords: epilepsy, EEG, seizure onset, electroencephalography, neuron, detection
Procedia PDF Downloads 4772529 Theorising Chinese as a Foreign Language Curriculum Justice in the Australian School Context
Authors: Wen Xu
Abstract:
The expansion of Confucius institutes and Chinese as a Foreign Language (CFL) education is often considered as cultural invasion and part of much bigger, if not ambitious, Chinese central government agenda among Western public opinion. The CFL knowledge and teaching practice inherent in textbooks are also harshly critiqued as failing to align with Western educational principles. This paper takes up these concerns and attempts to articulate that Confucius’s idea of ‘education without discrimination’ appears to have become synonymous with social justice touted in contemporary Australian education and policy discourses. To do so, it capitalises on Bernstein's conceptualization of classification and pedagogic rights to articulate CFL curriculum's potential of drawing in and drawing out curriculum boundaries to achieve educational justice. In this way, the potential useful knowledge of CFL constitutes a worthwhile tool to engage in a peripheral Western country’s education issues, as well as to include disenfranchised students in the multicultural Australian society. It opens spaces for critically theorising CFL curricular justice in Australian educational contexts, and makes an original contribution to scholarly argumentation that CFL curriculum has the potential of including socially and economically disenfranchised students in schooling.Keywords: curriculum justice, Chinese as a Foreign Language curriculum, Bernstein, equity
Procedia PDF Downloads 144