Search results for: academic speed and accuracy
6430 A Comparative, Epidemiological Study of Acute Renal Colic Presentations to Major Academic Emergency Departments in Doha, Qatar and Melbourne, Australia
Authors: Sameer A. Pathan, Biswadev Mitra, Zain A. Bhutta, Isma Qureshi, Elle Spencer, Asmaa A. Hameed, Sana Nadeem, Ramsha Tahir, Shahzad Anjum, Peter A. Cameron
Abstract:
Background: This study aimed to compare epidemiology, clinical presentations, management and outcomes of renal colic presentations in two major academic centers and discuss potential implications of these results for the applicability of current evidence in the management of renal colic. Methods: We undertook a retrospective cohort study of patients with renal colic who presented to the Hamad General Hospital Emergency Department (HGH-ED), Qatar, and The Alfred ED, Melbourne, Australia, during a period of one year from August 1, 2012, to July 3, 2013. Cases were identified using ICD-9-CM codes, and an electronic template was used to record the data on predefined clinical variables. Results: A total of 12,223 from the HGH-ED and 384 from The Alfred ED were identified as renal colic presentations during the study period. The rate of renal colic presentations at the HGH-ED was 27.9 per 1000 ED visits compared to 6.7 per 1000 ED visits at The Alfred ED. Patients presenting to the HGH-ED were significantly younger [34.9 years (29.0- 43.4) than The Alfred ED [48 years (37-60); P < 0.001]. The median stone size was larger in the HGH-ED group [6 (4-8) mm] versus The Alfred ED group [4 (3-6) mm, P < 0.001]. The intervention rate in the stone-positive population was significantly higher in the HGH-ED group as opposed to The Alfred ED group (38.7% versus 11.9%, p<0.001). At the time of discharge, The Alfred ED group received less analgesic prescriptions (55.8% versus 83.5%, P < 0.001) and more tamsulosin prescriptions (25.3% versus 11.7%, P < 0.001). Conclusions: Renal colic presentations to the HGH-ED, Qatar, were younger, with larger stone size, compared to The Alfred ED, whereas, medical expulsion therapy use was higher at the Alfred ED. Differences in epidemiology should be considered while tailoring strategies for effective management of patients with renal colic in the given setting.Keywords: kidney stones, urolithiasis, nephrolithiasis, renal colic, epidemiology
Procedia PDF Downloads 2426429 Improving the Technology of Assembly by Use of Computer Calculations
Authors: Mariya V. Yanyukina, Michael A. Bolotov
Abstract:
Assembling accuracy is the degree of accordance between the actual values of the parameters obtained during assembly, and the values specified in the assembly drawings and technical specifications. However, the assembling accuracy depends not only on the quality of the production process but also on the correctness of the assembly process. Therefore, preliminary calculations of assembly stages are carried out to verify the correspondence of real geometric parameters to their acceptable values. In the aviation industry, most calculations involve interacting dimensional chains. This greatly complicates the task. Solving such problems requires a special approach. The purpose of this article is to carry out the problem of improving the technology of assembly of aviation units by use of computer calculations. One of the actual examples of the assembly unit, in which there is an interacting dimensional chain, is the turbine wheel of gas turbine engine. Dimensional chain of turbine wheel is formed by geometric parameters of disk and set of blades. The interaction of the dimensional chain consists in the formation of two chains. The first chain is formed by the dimensions that determine the location of the grooves for the installation of the blades, and the dimensions of the blade roots. The second dimensional chain is formed by the dimensions of the airfoil shroud platform. The interaction of the dimensional chain of the turbine wheel is the interdependence of the first and second chains by means of power circuits formed by a plurality of middle parts of the turbine blades. The timeliness of the calculation of the dimensional chain of the turbine wheel is the need to improve the technology of assembly of this unit. The task at hand contains geometric and mathematical components; therefore, its solution can be implemented following the algorithm: 1) research and analysis of production errors by geometric parameters; 2) development of a parametric model in the CAD system; 3) creation of set of CAD-models of details taking into account actual or generalized distributions of errors of geometrical parameters; 4) calculation model in the CAE-system, loading of various combinations of models of parts; 5) the accumulation of statistics and analysis. The main task is to pre-simulate the assembly process by calculating the interacting dimensional chains. The article describes the approach to the solution from the point of view of mathematical statistics, implemented in the software package Matlab. Within the framework of the study, there are data on the measurement of the components of the turbine wheel-blades and disks, as a result of which it is expected that the assembly process of the unit will be optimized by solving dimensional chains.Keywords: accuracy, assembly, interacting dimension chains, turbine
Procedia PDF Downloads 3756428 Validation of Electrical Field Effect on Electrostatic Desalter Modeling with Experimental Laboratory Data
Authors: Fatemeh Yazdanmehr, Iulian Nistor
Abstract:
The scope of the current study is the evaluation of the electric field effect on electrostatic desalting mathematical modeling with laboratory data. This research study was focused on developing a model for an existing operation desalting unit of one of the Iranian heavy oil field with a 75 MBPD production capacity. The high temperature of inlet oil to dehydration unit reduces the oil recovery, so the mathematical modeling of desalter operation parameters is very significant. The existing production unit operating data has been used for the accuracy of the mathematical desalting plant model. The inlet oil temperature to desalter was decreased from 110 to 80°C, and the desalted electrical field was increased from 0.75 to 2.5 Kv/cm. The model result shows that the desalter parameter changes meet the water-oil specification and also the oil production and consequently annual income is increased. In addition to that, changing desalter operation conditions reduces environmental footprint because of flare gas reduction. Following to specify the accuracy of selected electrostatic desalter electrical field, laboratory data has been used. Experimental data are used to ensure the effect of electrical field change on desalter. Therefore, the lab test is done on a crude oil sample. The results include the dehydration efficiency in the presence of a demulsifier and under electrical field (0.75 Kv) conditions at various temperatures. Comparing lab experimental and electrostatic desalter mathematical model results shows 1-3 percent acceptable error which confirms the validity of desalter specification and operation conditions changes.Keywords: desalter, electrical field, demulsification, mathematical modeling, water-oil separation
Procedia PDF Downloads 1476427 [Keynote Talk]: sEMG Interface Design for Locomotion Identification
Authors: Rohit Gupta, Ravinder Agarwal
Abstract:
Surface electromyographic (sEMG) signal has the potential to identify the human activities and intention. This potential is further exploited to control the artificial limbs using the sEMG signal from residual limbs of amputees. The paper deals with the development of multichannel cost efficient sEMG signal interface for research application, along with evaluation of proposed class dependent statistical approach of the feature selection method. The sEMG signal acquisition interface was developed using ADS1298 of Texas Instruments, which is a front-end interface integrated circuit for ECG application. Further, the sEMG signal is recorded from two lower limb muscles for three locomotions namely: Plane Walk (PW), Stair Ascending (SA), Stair Descending (SD). A class dependent statistical approach is proposed for feature selection and also its performance is compared with 12 preexisting feature vectors. To make the study more extensive, performance of five different types of classifiers are compared. The outcome of the current piece of work proves the suitability of the proposed feature selection algorithm for locomotion recognition, as compared to other existing feature vectors. The SVM Classifier is found as the outperformed classifier among compared classifiers with an average recognition accuracy of 97.40%. Feature vector selection emerges as the most dominant factor affecting the classification performance as it holds 51.51% of the total variance in classification accuracy. The results demonstrate the potentials of the developed sEMG signal acquisition interface along with the proposed feature selection algorithm.Keywords: classifiers, feature selection, locomotion, sEMG
Procedia PDF Downloads 2966426 Exploring Help Seeking Attitude among Muslim Students in a School with a Dual Education System in Brunei Darussalam
Authors: Aziz Zulazmi Samsudin, Siti Norhedayah Abdul Latif
Abstract:
The lack of normalization of mental health as a conversational topic is becoming increasingly evident in certain cultures. The fact that students underutilize mental health services in schools can be attributed to the presence of various barriers that impede their willingness to seek for help. Stigma surrounding mental health services continue to be the most prevalent barrier for help seeking behavior. Alternative barriers have emerged that are both personal and public in nature that can have a substantial impact on students’ preference to seek for help in schools. A sequential explanatory study was carried out among 256 Muslim students in a school with dual education system in exploring both their Self-Stigma of Seeking Help (SSOSH) and Mental Health Help-Seeking Attitude (MHSA). In addition, 12 students were interviewed in a focus group setting to explore further the phenomena of help seeking approach by students to understand the initial quantitative analysis. Preliminary findings indicated that the students’ level of self-stigma was only moderate, but they had a favorable attitude towards counselling help. There was no significant difference on gender for both variables; however, the lower the self-stigma, the higher the mental help-seeking attitude for this current study, which is a common trend of relationship between the two variables. The interview revealed that, apart from public stigma, the absence of a qualified counsellor, a lack of ethical principles of counselling, a confidentiality issue, and the emotional openness of the students were identified as other barriers to their help-seeking attitudes. This paper also discussed the recommendation made by students in addressing barriers to counselling and facilitating their counselling needs for the improvement of students' mental and academic well-being. Additionally, this research offers the most recent data about mental health in the context of schools with a dual education system in Brunei Darussalam. It is hoped to serve as a guide for policy makers to consider the provision of mental health services that is more appealing to the students’ mental and academic well-being.Keywords: mental health help-seeking attitude (MHSA), public stigma, school counselling, self-stigma, self-stigma of seeking help (SSOSH), well-being.
Procedia PDF Downloads 1006425 Integration of Educational Data Mining Models to a Web-Based Support System for Predicting High School Student Performance
Authors: Sokkhey Phauk, Takeo Okazaki
Abstract:
The challenging task in educational institutions is to maximize the high performance of students and minimize the failure rate of poor-performing students. An effective method to leverage this task is to know student learning patterns with highly influencing factors and get an early prediction of student learning outcomes at the timely stage for setting up policies for improvement. Educational data mining (EDM) is an emerging disciplinary field of data mining, statistics, and machine learning concerned with extracting useful knowledge and information for the sake of improvement and development in the education environment. The study is of this work is to propose techniques in EDM and integrate it into a web-based system for predicting poor-performing students. A comparative study of prediction models is conducted. Subsequently, high performing models are developed to get higher performance. The hybrid random forest (Hybrid RF) produces the most successful classification. For the context of intervention and improving the learning outcomes, a feature selection method MICHI, which is the combination of mutual information (MI) and chi-square (CHI) algorithms based on the ranked feature scores, is introduced to select a dominant feature set that improves the performance of prediction and uses the obtained dominant set as information for intervention. By using the proposed techniques of EDM, an academic performance prediction system (APPS) is subsequently developed for educational stockholders to get an early prediction of student learning outcomes for timely intervention. Experimental outcomes and evaluation surveys report the effectiveness and usefulness of the developed system. The system is used to help educational stakeholders and related individuals for intervening and improving student performance.Keywords: academic performance prediction system, educational data mining, dominant factors, feature selection method, prediction model, student performance
Procedia PDF Downloads 1116424 Effect of Needle Height on Discharge Coefficient and Cavitation Number
Authors: Mohammadreza Nezamirad, Sepideh Amirahmadian, Nasim Sabetpour, Azadeh Yazdi, Amirmasoud Hamedi
Abstract:
Cavitation inside diesel injector nozzle is investigated using Reynolds-Stress-Navier Stokes equations. Schnerr-Sauer cavitation model is used for modeling cavitation inside diesel injector nozzle. The carrying fluid utilized in the current study is diesel fuel. The flow is verified at the beginning by comparing with the previous experimental data, and it was found that K-Epsilon turbulent model could lead to a better accuracy comparing to K-Omega turbulent model. Moreover, the mass flow rate obtained numerically is compared with the experimental value, and the discrepancy was found to be less than 5 percent which shows the accuracy of the current results. Finally, a real-size four-hole nozzle is investigated, and the flow inside it is visualized based on velocity profile, discharge coefficient, and cavitation number. It was found that the mesh density could be reduced significantly by utilizing periodic boundary conditions. Velocity contour at the mid nozzle showed that the maximum value of velocity occurs at the end of the needle before entering the orifice area. Last but not least, at the same boundary conditions, when different needle heights were utilized, it was found that as needle height increases with an increase in cavitation number, discharge coefficient increases, while the mentioned increases are more tangible at smaller values of needle heights.Keywords: cavitation, diesel fuel, CFD, real size nozzle, mass flow rate
Procedia PDF Downloads 1536423 Diagnostic Accuracy of the Tuberculin Skin Test for Tuberculosis Diagnosis: Interest of Using ROC Curve and Fagan’s Nomogram
Authors: Nouira Mariem, Ben Rayana Hazem, Ennigrou Samir
Abstract:
Background and aim: During the past decade, the frequency of extrapulmonary forms of tuberculosis has increased. These forms are under-diagnosed using conventional tests. The aim of this study was to evaluate the performance of the Tuberculin Skin Test (TST) for the diagnosis of tuberculosis, using the ROC curve and Fagan’s Nomogram methodology. Methods: This was a case-control, multicenter study in 11 anti-tuberculosis centers in Tunisia, during the period from June to November2014. The cases were adults aged between 18 and 55 years with confirmed tuberculosis. Controls were free from tuberculosis. A data collection sheet was filled out and a TST was performed for each participant. Diagnostic accuracy measures of TST were estimated using ROC curve and Area Under Curve to estimate sensitivity and specificity of a determined cut-off point. Fagan’s nomogram was used to estimate its predictive values. Results: Overall, 1053 patients were enrolled, composed of 339 cases (sex-ratio (M/F)=0.87) and 714 controls (sex-ratio (M/F)=0.99). The mean age was 38.3±11.8 years for cases and 33.6±11 years for controls. The mean diameter of the TST induration was significantly higher among cases than controls (13.7mm vs.6.2mm;p=10-6). Area Under Curve was 0.789 [95% CI: 0.758-0.819; p=0.01], corresponding to a moderate discriminating power for this test. The most discriminative cut-off value of the TST, which were associated with the best sensitivity (73.7%) and specificity (76.6%) couple was about 11 mm with a Youden index of 0.503. Positive and Negative predictive values were 3.11% and 99.52%, respectively. Conclusion: In view of these results, we can conclude that the TST can be used for tuberculosis diagnosis with a good sensitivity and specificity. However, the skin induration measurement and its interpretation is operator dependent and remains difficult and subjective. The combination of the TST with another test such as the Quantiferon test would be a good alternative.Keywords: tuberculosis, tuberculin skin test, ROC curve, cut-off
Procedia PDF Downloads 726422 Change Detection Analysis on Support Vector Machine Classifier of Land Use and Land Cover Changes: Case Study on Yangon
Authors: Khin Mar Yee, Mu Mu Than, Kyi Lint, Aye Aye Oo, Chan Mya Hmway, Khin Zar Chi Winn
Abstract:
The dynamic changes of Land Use and Land Cover (LULC) changes in Yangon have generally resulted the improvement of human welfare and economic development since the last twenty years. Making map of LULC is crucially important for the sustainable development of the environment. However, the exactly data on how environmental factors influence the LULC situation at the various scales because the nature of the natural environment is naturally composed of non-homogeneous surface features, so the features in the satellite data also have the mixed pixels. The main objective of this study is to the calculation of accuracy based on change detection of LULC changes by Support Vector Machines (SVMs). For this research work, the main data was satellite images of 1996, 2006 and 2015. Computing change detection statistics use change detection statistics to compile a detailed tabulation of changes between two classification images and Support Vector Machines (SVMs) process was applied with a soft approach at allocation as well as at a testing stage and to higher accuracy. The results of this paper showed that vegetation and cultivated area were decreased (average total 29 % from 1996 to 2015) because of conversion to the replacing over double of the built up area (average total 30 % from 1996 to 2015). The error matrix and confidence limits led to the validation of the result for LULC mapping.Keywords: land use and land cover change, change detection, image processing, support vector machines
Procedia PDF Downloads 1446421 Profiling Risky Code Using Machine Learning
Authors: Zunaira Zaman, David Bohannon
Abstract:
This study explores the application of machine learning (ML) for detecting security vulnerabilities in source code. The research aims to assist organizations with large application portfolios and limited security testing capabilities in prioritizing security activities. ML-based approaches offer benefits such as increased confidence scores, false positives and negatives tuning, and automated feedback. The initial approach using natural language processing techniques to extract features achieved 86% accuracy during the training phase but suffered from overfitting and performed poorly on unseen datasets during testing. To address these issues, the study proposes using the abstract syntax tree (AST) for Java and C++ codebases to capture code semantics and structure and generate path-context representations for each function. The Code2Vec model architecture is used to learn distributed representations of source code snippets for training a machine-learning classifier for vulnerability prediction. The study evaluates the performance of the proposed methodology using two datasets and compares the results with existing approaches. The Devign dataset yielded 60% accuracy in predicting vulnerable code snippets and helped resist overfitting, while the Juliet Test Suite predicted specific vulnerabilities such as OS-Command Injection, Cryptographic, and Cross-Site Scripting vulnerabilities. The Code2Vec model achieved 75% accuracy and a 98% recall rate in predicting OS-Command Injection vulnerabilities. The study concludes that even partial AST representations of source code can be useful for vulnerability prediction. The approach has the potential for automated intelligent analysis of source code, including vulnerability prediction on unseen source code. State-of-the-art models using natural language processing techniques and CNN models with ensemble modelling techniques did not generalize well on unseen data and faced overfitting issues. However, predicting vulnerabilities in source code using machine learning poses challenges such as high dimensionality and complexity of source code, imbalanced datasets, and identifying specific types of vulnerabilities. Future work will address these challenges and expand the scope of the research.Keywords: code embeddings, neural networks, natural language processing, OS command injection, software security, code properties
Procedia PDF Downloads 1126420 Effect of Cutting Tools and Working Conditions on the Machinability of Ti-6Al-4V Using Vegetable Oil-Based Cutting Fluids
Authors: S. Gariani, I. Shyha
Abstract:
Cutting titanium alloys are usually accompanied with low productivity, poor surface quality, short tool life and high machining costs. This is due to the excessive generation of heat at the cutting zone and difficulties in heat dissipation due to relatively low heat conductivity of this metal. The cooling applications in machining processes are crucial as many operations cannot be performed efficiently without cooling. Improving machinability, increasing productivity, enhancing surface integrity and part accuracy are the main advantages of cutting fluids. Conventional fluids such as mineral oil-based, synthetic and semi-synthetic are the most common cutting fluids in the machining industry. Although, these cutting fluids are beneficial in the industries, they pose a great threat to human health and ecosystem. Vegetable oils (VOs) are being investigated as a potential source of environmentally favourable lubricants, due to a combination of biodegradability, good lubricous properties, low toxicity, high flash points, low volatility, high viscosity indices and thermal stability. Fatty acids of vegetable oils are known to provide thick, strong, and durable lubricant films. These strong lubricating films give the vegetable oil base stock a greater capability to absorb pressure and high load carrying capacity. This paper details preliminary experimental results when turning Ti-6Al-4V. The impact of various VO-based cutting fluids, cutting tool materials, working conditions was investigated. The full factorial experimental design was employed involving 24 tests to evaluate the influence of process variables on average surface roughness (Ra), tool wear and chip formation. In general, Ra varied between 0.5 and 1.56 µm and Vasco1000 cutting fluid presented comparable performance with other fluids in terms of surface roughness while uncoated coarse grain WC carbide tool achieved lower flank wear at all cutting speeds. On the other hand, all tools tips were subjected to uniform flank wear during whole cutting trails. Additionally, formed chip thickness ranged between 0.1 and 0.14 mm with a noticeable decrease in chip size when higher cutting speed was used.Keywords: cutting fluids, turning, Ti-6Al-4V, vegetable oils, working conditions
Procedia PDF Downloads 2816419 Biotechnology Sector in the Context of National Innovation System: The Case of Norway
Authors: Parisa Afshin, Terje Grønning
Abstract:
Norway, similar to many other countries, has set the focus of its policies in creating new strong and highly innovative sectors in recent years, as the oil and gas sector profitability is declining. Biotechnology sector in Norway has a great potential, especially in marine-biotech and cancer medicine. However, Norway being a periphery faces especial challenges in the path of creating internationally well-known biotech sector and an international knowledge hub. The aim of this article is to analyze the progress of the Norwegian biotechnology industry, its pathway to build up an innovation network and conduct collaborative innovation based on its initial conditions and its own advantage and disadvantages. The findings have important implications not only for politicians and academic in understanding the infrastructure of biotechnology sector in the country, but it has important lessons for other periphery countries or regions aiming in creating strong biotechnology sector and catching up with the strong internationally-recognized regions. Data and methodology: To achieve the main goal of this study, information has been collected via secondary resources such as web pages and annual reports published by the officials and mass media along with interviews were used. The data were collected with the goal to shed light on a brief history and current status of Norway biotechnology sector, as well as geographic distribution of biotech industry, followed by the role of academic and industry collaboration and public policies in Norway biotech. As knowledge is the key input in innovation, knowledge perspective of the system such as knowledge flow in the sector regarding the national and regional innovation system has been studied. Primary results: The internationalization has been an important element in development of periphery regions' innovativeness enabling them to overcome their weakness while putting more weight on the importance of regional policies. Following such findings, suggestions on policy decision and international collaboration, regarding national and regional system of innovation, has been offered as means of promoting strong innovative sector.Keywords: biotechnology sector, knowledge-based industry, national innovation system, regional innovation system
Procedia PDF Downloads 2286418 Generative Adversarial Network Based Fingerprint Anti-Spoofing Limitations
Authors: Yehjune Heo
Abstract:
Fingerprint Anti-Spoofing approaches have been actively developed and applied in real-world applications. One of the main problems for Fingerprint Anti-Spoofing is not robust to unseen samples, especially in real-world scenarios. A possible solution will be to generate artificial, but realistic fingerprint samples and use them for training in order to achieve good generalization. This paper contains experimental and comparative results with currently popular GAN based methods and uses realistic synthesis of fingerprints in training in order to increase the performance. Among various GAN models, the most popular StyleGAN is used for the experiments. The CNN models were first trained with the dataset that did not contain generated fake images and the accuracy along with the mean average error rate were recorded. Then, the fake generated images (fake images of live fingerprints and fake images of spoof fingerprints) were each combined with the original images (real images of live fingerprints and real images of spoof fingerprints), and various CNN models were trained. The best performances for each CNN model, trained with the dataset of generated fake images and each time the accuracy and the mean average error rate, were recorded. We observe that current GAN based approaches need significant improvements for the Anti-Spoofing performance, although the overall quality of the synthesized fingerprints seems to be reasonable. We include the analysis of this performance degradation, especially with a small number of samples. In addition, we suggest several approaches towards improved generalization with a small number of samples, by focusing on what GAN based approaches should learn and should not learn.Keywords: anti-spoofing, CNN, fingerprint recognition, GAN
Procedia PDF Downloads 1926417 Design and Optimization of a Small Hydraulic Propeller Turbine
Authors: Dario Barsi, Marina Ubaldi, Pietro Zunino, Robert Fink
Abstract:
A design and optimization procedure is proposed and developed to provide the geometry of a high efficiency compact hydraulic propeller turbine for low head. For the preliminary design of the machine, classic design criteria, based on the use of statistical correlations for the definition of the fundamental geometric parameters and the blade shapes are used. These relationships are based on the fundamental design parameters (i.e., specific speed, flow coefficient, work coefficient) in order to provide a simple yet reliable procedure. Particular attention is paid, since from the initial steps, on the correct conformation of the meridional channel and on the correct arrangement of the blade rows. The preliminary geometry thus obtained is used as a starting point for the hydrodynamic optimization procedure, carried out using a CFD calculation software coupled with a genetic algorithm that generates and updates a large database of turbine geometries. The optimization process is performed using a commercial approach that solves the turbulent Navier Stokes equations (RANS) by exploiting the axial-symmetric geometry of the machine. The geometries generated within the database are therefore calculated in order to determine the corresponding overall performance. In order to speed up the optimization calculation, an artificial neural network (ANN) based on the use of an objective function is employed. The procedure was applied for the specific case of a propeller turbine with an innovative design of a modular type, specific for applications characterized by very low heads. The procedure is tested in order to verify its validity and the ability to automatically obtain the targeted net head and the maximum for the total to total internal efficiency.Keywords: renewable energy conversion, hydraulic turbines, low head hydraulic energy, optimization design
Procedia PDF Downloads 1546416 Modelling Conceptual Quantities Using Support Vector Machines
Authors: Ka C. Lam, Oluwafunmibi S. Idowu
Abstract:
Uncertainty in cost is a major factor affecting performance of construction projects. To our knowledge, several conceptual cost models have been developed with varying degrees of accuracy. Incorporating conceptual quantities into conceptual cost models could improve the accuracy of early predesign cost estimates. Hence, the development of quantity models for estimating conceptual quantities of framed reinforced concrete structures using supervised machine learning is the aim of the current research. Using measured quantities of structural elements and design variables such as live loads and soil bearing pressures, response and predictor variables were defined and used for constructing conceptual quantities models. Twenty-four models were developed for comparison using a combination of non-parametric support vector regression, linear regression, and bootstrap resampling techniques. R programming language was used for data analysis and model implementation. Gross soil bearing pressure and gross floor loading were discovered to have a major influence on the quantities of concrete and reinforcement used for foundations. Building footprint and gross floor loading had a similar influence on beams and slabs. Future research could explore the modelling of other conceptual quantities for walls, finishes, and services using machine learning techniques. Estimation of conceptual quantities would assist construction planners in early resource planning and enable detailed performance evaluation of early cost predictions.Keywords: bootstrapping, conceptual quantities, modelling, reinforced concrete, support vector regression
Procedia PDF Downloads 2136415 Evaluation of Mechanical Behavior of Laser Cladding in Various Tilting Pad Bearing Materials
Authors: Si-Geun Choi, Hoon-Jae Park, Jung-Woo Cho, Jin-Ho Lim, Jin-Young Park, Joo-Young Oh, Jae-Il Jeong Seock-Sam Kim, Young Tae Cho, Chan Gyu Kim, Jong-Hyoung Kim
Abstract:
The tilting pad bearing is a kind of the fluid film bearing and it can contribute to the high speed and the high load performance compared to other bearings including the rolling element bearing. Furthermore, the tilting bearing has many advantages such as high stability at high-speed performance, long life, high damping, high impact resistance and low noise. Therefore, it mostly used in mid to large size turbomachines, despite the high price disadvantage. Recently, manufacture and process employing laser techniques advancing at a fast-growing rate in mechanical industry, the dissimilar metal weld process employing laser techniques is actively studied. Moreover, also, Industry fields try to apply for welding the white metal and the back metal using laser cladding method for high durability. Furthermore, it has followed that laser cladding method has a lot better bond strength, toughness, anti-abrasion and environment-friendly than centrifugal casting method through preceding research. Therefore, the laser cladding method has a lot better quality, cost reduction, eco-friendliness and permanence of technology than the centrifugal casting method or the gravity casting method. In this study, we compare the mechanical properties of different bearing materials by evaluating the behavior of laser cladding layer with various materials (i.e. SS400, SCM440, S20C) under the same parameters. Furthermore, we analyze the porosity of various tilting pad bearing materials which white metal treated on samples. SEM, EDS analysis and hardness tests of three materials are shown to understand the mechanical properties and tribological behavior. W/D ratio, surface roughness results with various materials are performed in this study.Keywords: laser cladding, tilting pad bearing, white metal, mechanical properties
Procedia PDF Downloads 3826414 Introduction, Establishment, and Transformation: An Initial Exploration of the Cultural Shifts and Influence of Fa Yi Chong De, Yi-Kuan-Tao in Malaysian Chinese Community
Authors: Lim Pey Huan
Abstract:
Yi-Kuan-Tao has been developing in Malaysia for nearly 60 years. It was initially introduced from mainland China and later from Taiwan starting from the 1970s. Yi-Kuan-Tao was considered a 'new religion' for the local Chinese community in Malaysia in its early stages, as Chinese immigrants primarily practiced Taoism, Buddhism, Christianity, or Catholicism upon settling in the region. The overseas propagation and development of Yi-Kuan-Tao today primarily occur through Taiwanese temples, which began spreading abroad as early as 1949. Particularly since the 1970s, with the rapid economic growth of Taiwan, various branches of Taiwanese Yi-Kuan-Tao have gained economic strength to propagate abroad, further expanding the influence of Yi-Kuan-Tao overseas. Southeast Asia is the region out from Taiwan where the propagation and development of Yi-Kuan-Tao are fastest and most concentrated. With approximately over 6 million Chinese inhabitants, Malaysia's pursuit of traditional Chinese culture has led to a flourishing interest in Yi-Kuan-Tao, particularly its advocacy of the unity of Confucianism, Buddhism, and Taoism, with an emphasis on promoting Confucian thought. Moreover, Taiwan's rapid economic development since the 1970s has enabled Yi-Kuan-Tao to allocate significant human and financial resources for external propagation efforts. Additionally, Malaysia's government has adopted a relatively tolerant policy towards religion since that time, further fostering the flourishing development of Yi-Kuan-Tao in Malaysia. Furthermore, this thesis aims to strengthen the lineage and continuity of the Yi-Kuan-Tao tradition, particularly the branch of Fa Yi Chong De, through the perspective of Heavenly Mandate (天命). By examining the different origins and ethnic backgrounds, it investigates how the Malaysian Chinese community has experienced different changes through the cultural baptism of religion, thus delving into the religious influence of Yi-Kuan-Tao. Given that the Fa Yi Chong De Academy in Taiwan is currently in an active development and construction phase, academic works related to Yi-Kuan-Tao will lay a more solid academic foundation for the future establishment of the academy.Keywords: initial exploration, cultural shifts, Yi-Kuan-Tao, Malaysian Chinese community
Procedia PDF Downloads 886413 Satellite LiDAR-Based Digital Terrain Model Correction using Gaussian Process Regression
Authors: Keisuke Takahata, Hiroshi Suetsugu
Abstract:
Forest height is an important parameter for forest biomass estimation, and precise elevation data is essential for accurate forest height estimation. There are several globally or nationally available digital elevation models (DEMs) like SRTM and ASTER. However, its accuracy is reported to be low particularly in mountainous areas where there are closed canopy or steep slope. Recently, space-borne LiDAR, such as the Global Ecosystem Dynamics Investigation (GEDI), have started to provide sparse but accurate ground elevation and canopy height estimates. Several studies have reported the high degree of accuracy in their elevation products on their exact footprints, while it is not clear how this sparse information can be used for wider area. In this study, we developed a digital terrain model correction algorithm by spatially interpolating the difference between existing DEMs and GEDI elevation products by using Gaussian Process (GP) regression model. The result shows that our GP-based methodology can reduce the mean bias of the elevation data from 3.7m to 0.3m when we use airborne LiDAR-derived elevation information as ground truth. Our algorithm is also capable of quantifying the elevation data uncertainty, which is critical requirement for biomass inventory. Upcoming satellite-LiDAR missions, like MOLI (Multi-footprint Observation Lidar and Imager), are expected to contribute to the more accurate digital terrain model generation.Keywords: digital terrain model, satellite LiDAR, gaussian processes, uncertainty quantification
Procedia PDF Downloads 1886412 Indigenizing Social Work Practice: Best Practice of Family Service Agency (LK3) State Islamic University (UIN) Syarif Hidayatullah Jakarta
Authors: Siti Napsiyah, Ismet Firdaus, Lisma Dyawati Fuaida, Ellies Sukmawati
Abstract:
This paper examines the existence, role, and challenge of Family Service Agency, in Bahasa Indonesia known as Lembaga Konsultasi Kesejahteraan Keluarga (LK3) of Syarif Hidayatullah State Islamic University (UIN) Jakarta. It has been established since 2012. It is an official agency under the Ministry of Social Affairs of Indonesia. The establishment of LK3 aims to provide psychosocial services for families of students who has psychosocial problem in their life. The study also aims to explore the trend of psychosocial problems of its client (student) for the past three years (2014-2016). The research method of the study is using a qualitative social work research method. A review of selected data of the client of LK3 UIN Syarif Hidayatullah Jakarta around five main issues: Family background, psychosocial mapping, potential resources, student coping mechanism strategy, client strength and network. The study also uses a review of academic performance report as well as an interview and observation. The findings show that the trend of psychosocial problems of the client of LK3 UIN Syarif Hidayatullah Jakarta vary as follow: bad academic performance, low income family, broken home, domestic violence, disability, mental disorder, sexual abuse, and the like. LK3 UIN Syarif Hidayatullah Jakarta has significant roles to provide psychosocial support and services for the survival of the students to deal with their psychosocial problems. Social worker of LK3 performs indigenous social work practice: individual counseling, family counseling, group therapy, home visit, case conference, Islamic Spiritual Approach, and Spiritual Emotional Freedom Technique (SEPT).Keywords: psychosocial, indigenizing social work, resiliency, coping mechanism
Procedia PDF Downloads 2666411 INRAM-3DCNN: Multi-Scale Convolutional Neural Network Based on Residual and Attention Module Combined with Multilayer Perceptron for Hyperspectral Image Classification
Authors: Jianhong Xiang, Rui Sun, Linyu Wang
Abstract:
In recent years, due to the continuous improvement of deep learning theory, Convolutional Neural Network (CNN) has played a great superior performance in the research of Hyperspectral Image (HSI) classification. Since HSI has rich spatial-spectral information, only utilizing a single dimensional or single size convolutional kernel will limit the detailed feature information received by CNN, which limits the classification accuracy of HSI. In this paper, we design a multi-scale CNN with MLP based on residual and attention modules (INRAM-3DCNN) for the HSI classification task. We propose to use multiple 3D convolutional kernels to extract the packet feature information and fully learn the spatial-spectral features of HSI while designing residual 3D convolutional branches to avoid the decline of classification accuracy due to network degradation. Secondly, we also design the 2D Inception module with a joint channel attention mechanism to quickly extract key spatial feature information at different scales of HSI and reduce the complexity of the 3D model. Due to the high parallel processing capability and nonlinear global action of the Multilayer Perceptron (MLP), we use it in combination with the previous CNN structure for the final classification process. The experimental results on two HSI datasets show that the proposed INRAM-3DCNN method has superior classification performance and can perform the classification task excellently.Keywords: INRAM-3DCNN, residual, channel attention, hyperspectral image classification
Procedia PDF Downloads 866410 Low-Cost, Portable Optical Sensor with Regression Algorithm Models for Accurate Monitoring of Nitrites in Environments
Authors: David X. Dong, Qingming Zhang, Meng Lu
Abstract:
Nitrites enter waterways as runoff from croplands and are discharged from many industrial sites. Excessive nitrite inputs to water bodies lead to eutrophication. On-site rapid detection of nitrite is of increasing interest for managing fertilizer application and monitoring water source quality. Existing methods for detecting nitrites use spectrophotometry, ion chromatography, electrochemical sensors, ion-selective electrodes, chemiluminescence, and colorimetric methods. However, these methods either suffer from high cost or provide low measurement accuracy due to their poor selectivity to nitrites. Therefore, it is desired to develop an accurate and economical method to monitor nitrites in environments. We report a low-cost optical sensor, in conjunction with a machine learning (ML) approach to enable high-accuracy detection of nitrites in water sources. The sensor works under the principle of measuring molecular absorptions of nitrites at three narrowband wavelengths (295 nm, 310 nm, and 357 nm) in the ultraviolet (UV) region. These wavelengths are chosen because they have relatively high sensitivity to nitrites; low-cost light-emitting devices (LEDs) and photodetectors are also available at these wavelengths. A regression model is built, trained, and utilized to minimize cross-sensitivities of these wavelengths to the same analyte, thus achieving precise and reliable measurements with various interference ions. The measured absorbance data is input to the trained model that can provide nitrite concentration prediction for the sample. The sensor is built with i) a miniature quartz cuvette as the test cell that contains a liquid sample under test, ii) three low-cost UV LEDs placed on one side of the cell as light sources, with each LED providing a narrowband light, and iii) a photodetector with a built-in amplifier and an analog-to-digital converter placed on the other side of the test cell to measure the power of transmitted light. This simple optical design allows measuring the absorbance data of the sample at the three wavelengths. To train the regression model, absorbances of nitrite ions and their combination with various interference ions are first obtained at the three UV wavelengths using a conventional spectrophotometer. Then, the spectrophotometric data are inputs to different regression algorithm models for training and evaluating high-accuracy nitrite concentration prediction. Our experimental results show that the proposed approach enables instantaneous nitrite detection within several seconds. The sensor hardware costs about one hundred dollars, which is much cheaper than a commercial spectrophotometer. The ML algorithm helps to reduce the average relative errors to below 3.5% over a concentration range from 0.1 ppm to 100 ppm of nitrites. The sensor has been validated to measure nitrites at three sites in Ames, Iowa, USA. This work demonstrates an economical and effective approach to the rapid, reagent-free determination of nitrites with high accuracy. The integration of the low-cost optical sensor and ML data processing can find a wide range of applications in environmental monitoring and management.Keywords: optical sensor, regression model, nitrites, water quality
Procedia PDF Downloads 766409 Automated Transformation of 3D Point Cloud to BIM Model: Leveraging Algorithmic Modeling for Efficient Reconstruction
Authors: Radul Shishkov, Orlin Davchev
Abstract:
The digital era has revolutionized architectural practices, with building information modeling (BIM) emerging as a pivotal tool for architects, engineers, and construction professionals. However, the transition from traditional methods to BIM-centric approaches poses significant challenges, particularly in the context of existing structures. This research introduces a technical approach to bridge this gap through the development of algorithms that facilitate the automated transformation of 3D point cloud data into detailed BIM models. The core of this research lies in the application of algorithmic modeling and computational design methods to interpret and reconstruct point cloud data -a collection of data points in space, typically produced by 3D scanners- into comprehensive BIM models. This process involves complex stages of data cleaning, feature extraction, and geometric reconstruction, which are traditionally time-consuming and prone to human error. By automating these stages, our approach significantly enhances the efficiency and accuracy of creating BIM models for existing buildings. The proposed algorithms are designed to identify key architectural elements within point clouds, such as walls, windows, doors, and other structural components, and to translate these elements into their corresponding BIM representations. This includes the integration of parametric modeling techniques to ensure that the generated BIM models are not only geometrically accurate but also embedded with essential architectural and structural information. Our methodology has been tested on several real-world case studies, demonstrating its capability to handle diverse architectural styles and complexities. The results showcase a substantial reduction in time and resources required for BIM model generation while maintaining high levels of accuracy and detail. This research contributes significantly to the field of architectural technology by providing a scalable and efficient solution for the integration of existing structures into the BIM framework. It paves the way for more seamless and integrated workflows in renovation and heritage conservation projects, where the accuracy of existing conditions plays a critical role. The implications of this study extend beyond architectural practices, offering potential benefits in urban planning, facility management, and historic preservation.Keywords: BIM, 3D point cloud, algorithmic modeling, computational design, architectural reconstruction
Procedia PDF Downloads 706408 A Communication Signal Recognition Algorithm Based on Holder Coefficient Characteristics
Authors: Hui Zhang, Ye Tian, Fang Ye, Ziming Guo
Abstract:
Communication signal modulation recognition technology is one of the key technologies in the field of modern information warfare. At present, communication signal automatic modulation recognition methods are mainly divided into two major categories. One is the maximum likelihood hypothesis testing method based on decision theory, the other is a statistical pattern recognition method based on feature extraction. Now, the most commonly used is a statistical pattern recognition method, which includes feature extraction and classifier design. With the increasingly complex electromagnetic environment of communications, how to effectively extract the features of various signals at low signal-to-noise ratio (SNR) is a hot topic for scholars in various countries. To solve this problem, this paper proposes a feature extraction algorithm for the communication signal based on the improved Holder cloud feature. And the extreme learning machine (ELM) is used which aims at the problem of the real-time in the modern warfare to classify the extracted features. The algorithm extracts the digital features of the improved cloud model without deterministic information in a low SNR environment, and uses the improved cloud model to obtain more stable Holder cloud features and the performance of the algorithm is improved. This algorithm addresses the problem that a simple feature extraction algorithm based on Holder coefficient feature is difficult to recognize at low SNR, and it also has a better recognition accuracy. The results of simulations show that the approach in this paper still has a good classification result at low SNR, even when the SNR is -15dB, the recognition accuracy still reaches 76%.Keywords: communication signal, feature extraction, Holder coefficient, improved cloud model
Procedia PDF Downloads 1626407 Determination of Optimal Stress Locations in 2D–9 Noded Element in Finite Element Technique
Authors: Nishant Shrivastava, D. K. Sehgal
Abstract:
In Finite Element Technique nodal stresses are calculated through displacement as nodes. In this process, the displacement calculated at nodes is sufficiently good enough but stresses calculated at nodes are not sufficiently accurate. Therefore, the accuracy in the stress computation in FEM models based on the displacement technique is obviously matter of concern for computational time in shape optimization of engineering problems. In the present work same is focused to find out unique points within the element as well as the boundary of the element so, that good accuracy in stress computation can be achieved. Generally, major optimal stress points are located in domain of the element some points have been also located at boundary of the element where stresses are fairly accurate as compared to nodal values. Then, it is subsequently concluded that there is an existence of unique points within the element, where stresses have higher accuracy than other points in the elements. Therefore, it is main aim is to evolve a generalized procedure for the determination of the optimal stress location inside the element as well as at the boundaries of the element and verify the same with results from numerical experimentation. The results of quadratic 9 noded serendipity elements are presented and the location of distinct optimal stress points is determined inside the element, as well as at the boundaries. The theoretical results indicate various optimal stress locations are in local coordinates at origin and at a distance of 0.577 in both directions from origin. Also, at the boundaries optimal stress locations are at the midpoints of the element boundary and the locations are at a distance of 0.577 from the origin in both directions. The above findings were verified through experimentation and findings were authenticated. For numerical experimentation five engineering problems were identified and the numerical results of 9-noded element were compared to those obtained by using the same order of 25-noded quadratic Lagrangian elements, which are considered as standard. Then root mean square errors are plotted with respect to various locations within the elements as well as the boundaries and conclusions were drawn. After numerical verification it is noted that in a 9-noded element, origin and locations at a distance of 0.577 from origin in both directions are the best sampling points for the stresses. It was also noted that stresses calculated within line at boundary enclosed by 0.577 midpoints are also very good and the error found is very less. When sampling points move away from these points, then it causes line zone error to increase rapidly. Thus, it is established that there are unique points at boundary of element where stresses are accurate, which can be utilized in solving various engineering problems and are also useful in shape optimizations.Keywords: finite elements, Lagrangian, optimal stress location, serendipity
Procedia PDF Downloads 1096406 Decades of Educational Excellence: Case Studies of Successful Family-Owned Higher Educational Institutions
Authors: Maria Luz Macasinag
Abstract:
This study aims to determine and to examine critically successful family-owned higher educational institutions towards identifying the attributes and practices that may likely have led to their success. This research is confined to private, non-sectarian, family-owned higher institutions of learning that have been operating for more than fifty years, had only one founder and had at least two transitions in terms of generation. The criteria for selecting family-owned universities to be part of the cases under investigation include institutions (1) with increasing enrollment over the past five years, with level III accreditation status, (3) with good performance in the Board examinations in most of its programs and (4) with high employability of graduates. The study uses the multiple case study method. A model based on the cross-case analysis of the attributes and practices of all the case studies of successful family- owned higher institutions of learning is the output. The paper provides insights to current and future school owners and administrators in the management of their institutions for competitiveness, sustainability and advancement. This research encourages the evaluation of how the ideas that may lead to the success of schools owned by families in developing a sense of community, a reciprocal relationship among colleagues, the students and other stakeholders will result to the attainment of the vision and mission of the school. The study is beneficial to entrepreneurs and to business students whose know-how may provide insights that would be helpful in guiding prospective school owners. The commission on higher education and the Department of Education stand to benefit from this academic paper for the guidance that they provide to family-owned educational institutions. Banks and other financial institutions may find valuable ideas from this academic paper for the purpose of providing financial assistance to colleges and universities that are family-owned. Researchers in the field of educational management and administration may be able to extract from this study related topics for future research.Keywords: administration practices, attributes, family-owned schools, success factors
Procedia PDF Downloads 2776405 Deregulation of Turkish State Railways Based on Public-Private Partnership Approaches
Authors: S. Shakibaei, P. Alpkokin
Abstract:
The railway network is one of the major components of a transportation system in a country which may be an indicator of the country’s level of economic improvement. Since 2000s on, revival of national railways and development of High Speed Rail (HSR) lines are one of the most remarkable policies of Turkish government in railway sector. Within this trend, the railway age is to be revived and coming decades will be a golden opportunity. Indubitably, major infrastructures such as road and railway networks require sizeable investment capital, precise maintenance and reparation. Traditionally, governments are held responsible for funding, operating and maintaining these infrastructures. However, lack or shortage of financial resources, risk responsibilities (particularly cost and time overrun), and in some cases inefficacy in constructional, operational and management phases persuade governments to find alternative options. Financial power, efficient experiences and background of private sector are the factors convincing the governments to make a collaboration with private parties to develop infrastructures. Public-Private Partnerships (PPP or 3P or P3) and related regulatory issues are born considering these collaborations. In Turkey, PPP approaches have attracted attention particularly during last decade and these types of investments have been accelerated by government to overcome budget limitations and cope with inefficacy of public sector in improving transportation network and its operation. This study mainly tends to present a comprehensive overview of PPP concept, evaluate the regulatory procedure in Europe and propose a general framework for Turkish State Railways (TCDD) as an outlook on privatization, liberalization and deregulation of railway network.Keywords: deregulation, high-speed railway, liberalization, privatization, public-private partnership
Procedia PDF Downloads 1766404 Experimental and Numerical Study on the Effects of Oxygen Methane Flames with Water Dilution for Different Pressures
Authors: J. P. Chica Cano, G. Cabot, S. de Persis, F. Foucher
Abstract:
Among all possibilities to combat global warming, CO2 capture and sequestration (CCS) is presented as a great alternative to reduce greenhouse gas (GHG) emission. Several strategies for CCS from industrial and power plants are being considered. The concept of combined oxy-fuel combustion has been the most alternative solution. Nevertheless, due to the high cost of pure O2 production, additional ways recently emerged. In this paper, an innovative combustion process for a gas turbine cycle was studied: it was composed of methane combustion with oxygen enhanced air (OEA), exhaust gas recirculation (EGR) and H2O issuing from STIG (Steam Injection Gas Turbine), and the CO2 capture was realized by membrane separator. The effect on this combustion process was emphasized, and it was shown that a study of the influence of H2O dilution on the combustion parameters by experimental and numerical approaches had to be carried out. As a consequence, the laminar burning velocities measurements were performed in a stainless steel spherical combustion from atmospheric pressure to high pressure (up to 0.5 MPa), at 473 K for an equivalence ratio at 1. These experimental results were satisfactorily compared with Chemical Workbench v.4.1 package in conjunction with GRIMech 3.0 reaction mechanism. The good correlations so obtained between experimental and calculated flame speed velocities showed the validity of the GRIMech 3.0 mechanism in this domain of combustion: high H2O dilution, low N2, medium pressure. Finally, good estimations of flame speed and pollutant emissions were determined in other conditions compatible with real gas turbine. In particular, mixtures (composed of CH4/O2/N2/H2O/ or CO2) leading to the same adiabatic temperature were investigated. Influences of oxygen enrichment and H2O dilution (compared to CO2) were disused.Keywords: CO₂ capture, oxygen enrichment, water dilution, laminar burning velocity, pollutants emissions
Procedia PDF Downloads 1686403 Performance Study of Classification Algorithms for Consumer Online Shopping Attitudes and Behavior Using Data Mining
Authors: Rana Alaa El-Deen Ahmed, M. Elemam Shehab, Shereen Morsy, Nermeen Mekawie
Abstract:
With the growing popularity and acceptance of e-commerce platforms, users face an ever increasing burden in actually choosing the right product from the large number of online offers. Thus, techniques for personalization and shopping guides are needed by users. For a pleasant and successful shopping experience, users need to know easily which products to buy with high confidence. Since selling a wide variety of products has become easier due to the popularity of online stores, online retailers are able to sell more products than a physical store. The disadvantage is that the customers might not find products they need. In this research the customer will be able to find the products he is searching for, because recommender systems are used in some ecommerce web sites. Recommender system learns from the information about customers and products and provides appropriate personalized recommendations to customers to find the needed product. In this paper eleven classification algorithms are comparatively tested to find the best classifier fit for consumer online shopping attitudes and behavior in the experimented dataset. The WEKA knowledge analysis tool, which is an open source data mining workbench software used in comparing conventional classifiers to get the best classifier was used in this research. In this research by using the data mining tool (WEKA) with the experimented classifiers the results show that decision table and filtered classifier gives the highest accuracy and the lowest accuracy classification via clustering and simple cart.Keywords: classification, data mining, machine learning, online shopping, WEKA
Procedia PDF Downloads 3546402 Blending Synchronous with Asynchronous Learning Tools: Students’ Experiences and Preferences for Online Learning Environment in a Resource-Constrained Higher Education Situations in Uganda
Authors: Stephen Kyakulumbye, Vivian Kobusingye
Abstract:
Generally, World over, COVID-19 has had adverse effects on all sectors but with more debilitating effects on the education sector. After reactive lockdowns, education institutions that could continue teaching and learning had to go a distance mediated by digital technological tools. In Uganda, the Ministry of Education thereby issued COVID-19 Online Distance E-learning (ODeL) emergent guidelines. Despite such guidelines, academic institutions in Uganda and similar developing contexts with academically constrained resource environments were caught off-guard and ill-prepared to transform from face-to-face learning to online distance learning mode. Most academic institutions that migrated spontaneously did so with no deliberate tools, systems, strategies, or software to cause active, meaningful, and engaging learning for students. By experience, most of these academic institutions shifted to Zoom and WhatsApp and instead conducted online teaching in real-time than blended synchronous and asynchronous tools. This paper provides students’ experiences while blending synchronous and asynchronous content-creating and learning tools within a technological resource-constrained environment to navigate in such a challenging Uganda context. These conceptual case-based findings, using experience from Uganda Christian University (UCU), point at the design of learning activities with two certain characteristics, the enhancement of synchronous learning technologies with asynchronous ones to mitigate the challenge of system breakdown, passive learning to active learning, and enhances the types of presence (social, cognitive and facilitatory). The paper, both empirical and experiential in nature, uses online experiences from third-year students in Bachelor of Business Administration student lectured using asynchronous text, audio, and video created with Open Broadcaster Studio software and compressed with Handbrake, all open-source software to mitigate disk space and bandwidth usage challenges. The synchronous online engagements with students were a blend of zoom or BigBlueButton, to ensure that students had an alternative just in case one failed due to excessive real-time traffic. Generally, students report that compared to their previous face-to-face lectures, the pre-recorded lectures via Youtube provided them an opportunity to reflect on content in a self-paced manner, which later on enabled them to engage actively during the live zoom and/or BigBlueButton real-time discussions and presentations. The major recommendation is that lecturers and teachers in a resource-constrained environment with limited digital resources like the internet and digital devices should harness this approach to offer students access to learning content in a self-paced manner and thereby enabling reflective active learning through reflective and high-order thinking.Keywords: synchronous learning, asynchronous learning, active learning, reflective learning, resource-constrained environment
Procedia PDF Downloads 1426401 Enabling Oral Communication and Accelerating Recovery: The Creation of a Novel Low-Cost Electroencephalography-Based Brain-Computer Interface for the Differently Abled
Authors: Rishabh Ambavanekar
Abstract:
Expressive Aphasia (EA) is an oral disability, common among stroke victims, in which the Broca’s area of the brain is damaged, interfering with verbal communication abilities. EA currently has no technological solutions and its only current viable solutions are inefficient or only available to the affluent. This prompts the need for an affordable, innovative solution to facilitate recovery and assist in speech generation. This project proposes a novel concept: using a wearable low-cost electroencephalography (EEG) device-based brain-computer interface (BCI) to translate a user’s inner dialogue into words. A low-cost EEG device was developed and found to be 10 to 100 times less expensive than any current EEG device on the market. As part of the BCI, a machine learning (ML) model was developed and trained using the EEG data. Two stages of testing were conducted to analyze the effectiveness of the device: a proof-of-concept and a final solution test. The proof-of-concept test demonstrated an average accuracy of above 90% and the final solution test demonstrated an average accuracy of above 75%. These two successful tests were used as a basis to demonstrate the viability of BCI research in developing lower-cost verbal communication devices. Additionally, the device proved to not only enable users to verbally communicate but has the potential to also assist in accelerated recovery from the disorder.Keywords: neurotechnology, brain-computer interface, neuroscience, human-machine interface, BCI, HMI, aphasia, verbal disability, stroke, low-cost, machine learning, ML, image recognition, EEG, signal analysis
Procedia PDF Downloads 122