Search results for: neural perception.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3795

Search results for: neural perception.

1335 Motivations and Obstacles in the Implementation of Public Policies Encouraging the Sorting of Organic Waste: The Case of a Metropolis of 400,000 Citizens

Authors: Enola Lamy, Jean Paul Mereaux, Jean Claude Lopez

Abstract:

In the face of new regulations related to waste management, it has become essential to understand the organizational process that accompanies this change. Through an experiment on the sorting of food waste in the community of Grand Reims, this research explores the acceptability, behavior, and tools needed to manage the change. Our position within a private company, SUEZ, a key player in the waste management sector, has allowed us to set up a driven team with concerned public organizations. The research was conducted through a theoretical study combined with semi-structured interviews. This qualitative method allowed us to conduct exchanges with users to assess the motivations and obstacles linked to the sorting of bio-waste. The results revealed the action levers necessary for the project's sustainability. Making the sorting gestures accessible and simplified makes it possible to target all populations. Playful communication adapted to each type of persona allows the user and stakeholders to be placed at the heart of the strategy. These recommendations are spotlighted thanks to the combination of theoretical and operational contributions, with the aim of facilitating the new public management and inducing the notion of performance while providing an example of added value.

Keywords: bio-waste, CSR approach, stakeholders, users, perception

Procedia PDF Downloads 83
1334 A Brain Controlled Robotic Gait Trainer for Neurorehabilitation

Authors: Qazi Umer Jamil, Abubakr Siddique, Mubeen Ur Rehman, Nida Aziz, Mohsin I. Tiwana

Abstract:

This paper discusses a brain controlled robotic gait trainer for neurorehabilitation of Spinal Cord Injury (SCI) patients. Patients suffering from Spinal Cord Injuries (SCI) become unable to execute motion control of their lower proximities due to degeneration of spinal cord neurons. The presented approach can help SCI patients in neuro-rehabilitation training by directly translating patient motor imagery into walkers motion commands and thus bypassing spinal cord neurons completely. A non-invasive EEG based brain-computer interface is used for capturing patient neural activity. For signal processing and classification, an open source software (OpenVibe) is used. Classifiers categorize the patient motor imagery (MI) into a specific set of commands that are further translated into walker motion commands. The robotic walker also employs fall detection for ensuring safety of patient during gait training and can act as a support for SCI patients. The gait trainer is tested with subjects, and satisfactory results were achieved.

Keywords: brain computer interface (BCI), gait trainer, spinal cord injury (SCI), neurorehabilitation

Procedia PDF Downloads 161
1333 Optimizing Machine Learning Algorithms for Defect Characterization and Elimination in Liquids Manufacturing

Authors: Tolulope Aremu

Abstract:

The key process steps to produce liquid detergent products will introduce potential defects, such as formulation, mixing, filling, and packaging, which might compromise product quality, consumer safety, and operational efficiency. Real-time identification and characterization of such defects are of prime importance for maintaining high standards and reducing waste and costs. Usually, defect detection is performed by human inspection or rule-based systems, which is very time-consuming, inconsistent, and error-prone. The present study overcomes these limitations in dealing with optimization in defect characterization within the process for making liquid detergents using Machine Learning algorithms. Performance testing of various machine learning models was carried out: Support Vector Machine, Decision Trees, Random Forest, and Convolutional Neural Network on defect detection and classification of those defects like wrong viscosity, color deviations, improper filling of a bottle, packaging anomalies. These algorithms have significantly benefited from a variety of optimization techniques, including hyperparameter tuning and ensemble learning, in order to greatly improve detection accuracy while minimizing false positives. Equipped with a rich dataset of defect types and production parameters consisting of more than 100,000 samples, our study further includes information from real-time sensor data, imaging technologies, and historic production records. The results are that optimized machine learning models significantly improve defect detection compared to traditional methods. Take, for instance, the CNNs, which run at 98% and 96% accuracy in detecting packaging anomaly detection and bottle filling inconsistency, respectively, by fine-tuning the model with real-time imaging data, through which there was a reduction in false positives of about 30%. The optimized SVM model on detecting formulation defects gave 94% in viscosity variation detection and color variation. These values of performance metrics correspond to a giant leap in defect detection accuracy compared to the usual 80% level achieved up to now by rule-based systems. Moreover, this optimization with models can hasten defect characterization, allowing for detection time to be below 15 seconds from an average of 3 minutes using manual inspections with real-time processing of data. With this, the reduction in time will be combined with a 25% reduction in production downtime because of proactive defect identification, which can save millions annually in recall and rework costs. Integrating real-time machine learning-driven monitoring drives predictive maintenance and corrective measures for a 20% improvement in overall production efficiency. Therefore, the optimization of machine learning algorithms in defect characterization optimum scalability and efficiency for liquid detergent companies gives improved operational performance to higher levels of product quality. In general, this method could be conducted in several industries within the Fast moving consumer Goods industry, which would lead to an improved quality control process.

Keywords: liquid detergent manufacturing, defect detection, machine learning, support vector machines, convolutional neural networks, defect characterization, predictive maintenance, quality control, fast-moving consumer goods

Procedia PDF Downloads 18
1332 The Role of Community Forestry to Combat Climate Change Impacts in Nepal

Authors: Ravi Kumar Pandit

Abstract:

Climate change is regarded as one of the most fundamental threats to sustainable livelihood and global development. There is growing a global concern in linking community-managed forests as potential climate change mitigation projects. This study was conducted to explore the local people’s perception on climate change and the role of community forestry (CF) to combat climate change impacts. Two active community forest user groups (CFUGs) from Kaski and Syangja Districts in Nepal were selected as study sites, and various participatory tools were applied to collect primary data. Although most of the respondents were unaware about the words “Climate Change” in study sites, they were quite familiar with the irregularities in rainfall season and other weather extremities. 60% of the respondents had the idea that, due to increase in precipitation, there is a frequent occurrence of erosion, floods and landslide. Around 85% of the people agreed that community forests help in stabilizing soil, reducing the natural hazards like erosion, landslide. Biogas as an alternative source of cooking energy, and changes in crops and their varieties are the common adaptation measures that local people start practicing in both CFUGs in Nepal.

Keywords: climate change, community forestry, global warming, adaptation in Nepal

Procedia PDF Downloads 254
1331 Satellite Imagery Classification Based on Deep Convolution Network

Authors: Zhong Ma, Zhuping Wang, Congxin Liu, Xiangzeng Liu

Abstract:

Satellite imagery classification is a challenging problem with many practical applications. In this paper, we designed a deep convolution neural network (DCNN) to classify the satellite imagery. The contributions of this paper are twofold — First, to cope with the large-scale variance in the satellite image, we introduced the inception module, which has multiple filters with different size at the same level, as the building block to build our DCNN model. Second, we proposed a genetic algorithm based method to efficiently search the best hyper-parameters of the DCNN in a large search space. The proposed method is evaluated on the benchmark database. The results of the proposed hyper-parameters search method show it will guide the search towards better regions of the parameter space. Based on the found hyper-parameters, we built our DCNN models, and evaluated its performance on satellite imagery classification, the results show the classification accuracy of proposed models outperform the state of the art method.

Keywords: satellite imagery classification, deep convolution network, genetic algorithm, hyper-parameter optimization

Procedia PDF Downloads 300
1330 The Neurofunctional Dissociation between Animal and Tool Concepts: A Network-Based Model

Authors: Skiker Kaoutar, Mounir Maouene

Abstract:

Neuroimaging studies have shown that animal and tool concepts rely on distinct networks of brain areas. Animal concepts depend predominantly on temporal areas while tool concepts rely on fronto-temporo-parietal areas. However, the origin of this neurofunctional distinction for processing animal and tool concepts remains still unclear. Here, we address this question from a network perspective suggesting that the neural distinction between animals and tools might reflect the differences in their structural semantic networks. We build semantic networks for animal and tool concepts derived from McRae and colleagues’s behavioral study conducted on a large number of participants. These two networks are thus analyzed through a large number of graph theoretical measures for small-worldness: centrality, clustering coefficient, average shortest path length, as well as resistance to random and targeted attacks. The results indicate that both animal and tool networks have small-world properties. More importantly, the animal network is more vulnerable to targeted attacks compared to the tool network a result that correlates with brain lesions studies.

Keywords: animals, tools, network, semantics, small-worls, resilience to damage

Procedia PDF Downloads 543
1329 Using Machine-Learning Methods for Allergen Amino Acid Sequence's Permutations

Authors: Kuei-Ling Sun, Emily Chia-Yu Su

Abstract:

Allergy is a hypersensitive overreaction of the immune system to environmental stimuli, and a major health problem. These overreactions include rashes, sneezing, fever, food allergies, anaphylaxis, asthmatic, shock, or other abnormal conditions. Allergies can be caused by food, insect stings, pollen, animal wool, and other allergens. Their development of allergies is due to both genetic and environmental factors. Allergies involve immunoglobulin E antibodies, a part of the body’s immune system. Immunoglobulin E antibodies will bind to an allergen and then transfer to a receptor on mast cells or basophils triggering the release of inflammatory chemicals such as histamine. Based on the increasingly serious problem of environmental change, changes in lifestyle, air pollution problem, and other factors, in this study, we both collect allergens and non-allergens from several databases and use several machine learning methods for classification, including logistic regression (LR), stepwise regression, decision tree (DT) and neural networks (NN) to do the model comparison and determine the permutations of allergen amino acid’s sequence.

Keywords: allergy, classification, decision tree, logistic regression, machine learning

Procedia PDF Downloads 303
1328 Ensemble of Deep CNN Architecture for Classifying the Source and Quality of Teff Cereal

Authors: Belayneh Matebie, Michael Melese

Abstract:

The study focuses on addressing the challenges in classifying and ensuring the quality of Eragrostis Teff, a small and round grain that is the smallest cereal grain. Employing a traditional classification method is challenging because of its small size and the similarity of its environmental characteristics. To overcome this, this study employs a machine learning approach to develop a source and quality classification system for Teff cereal. Data is collected from various production areas in the Amhara regions, considering two types of cereal (high and low quality) across eight classes. A total of 5,920 images are collected, with 740 images for each class. Image enhancement techniques, including scaling, data augmentation, histogram equalization, and noise removal, are applied to preprocess the data. Convolutional Neural Network (CNN) is then used to extract relevant features and reduce dimensionality. The dataset is split into 80% for training and 20% for testing. Different classifiers, including FVGG16, FINCV3, QSCTC, EMQSCTC, SVM, and RF, are employed for classification, achieving accuracy rates ranging from 86.91% to 97.72%. The ensemble of FVGG16, FINCV3, and QSCTC using the Max-Voting approach outperforms individual algorithms.

Keywords: Teff, ensemble learning, max-voting, CNN, SVM, RF

Procedia PDF Downloads 53
1327 Application of Data Mining Techniques for Tourism Knowledge Discovery

Authors: Teklu Urgessa, Wookjae Maeng, Joong Seek Lee

Abstract:

Application of five implementations of three data mining classification techniques was experimented for extracting important insights from tourism data. The aim was to find out the best performing algorithm among the compared ones for tourism knowledge discovery. Knowledge discovery process from data was used as a process model. 10-fold cross validation method is used for testing purpose. Various data preprocessing activities were performed to get the final dataset for model building. Classification models of the selected algorithms were built with different scenarios on the preprocessed dataset. The outperformed algorithm tourism dataset was Random Forest (76%) before applying information gain based attribute selection and J48 (C4.5) (75%) after selection of top relevant attributes to the class (target) attribute. In terms of time for model building, attribute selection improves the efficiency of all algorithms. Artificial Neural Network (multilayer perceptron) showed the highest improvement (90%). The rules extracted from the decision tree model are presented, which showed intricate, non-trivial knowledge/insight that would otherwise not be discovered by simple statistical analysis with mediocre accuracy of the machine using classification algorithms.

Keywords: classification algorithms, data mining, knowledge discovery, tourism

Procedia PDF Downloads 295
1326 Use of Computer and Machine Learning in Facial Recognition

Authors: Neha Singh, Ananya Arora

Abstract:

Facial expression measurement plays a crucial role in the identification of emotion. Facial expression plays a key role in psychophysiology, neural bases, and emotional disorder, to name a few. The Facial Action Coding System (FACS) has proven to be the most efficient and widely used of the various systems used to describe facial expressions. Coders can manually code facial expressions with FACS and, by viewing video-recorded facial behaviour at a specified frame rate and slow motion, can decompose into action units (AUs). Action units are the most minor visually discriminable facial movements. FACS explicitly differentiates between facial actions and inferences about what the actions mean. Action units are the fundamental unit of FACS methodology. It is regarded as the standard measure for facial behaviour and finds its application in various fields of study beyond emotion science. These include facial neuromuscular disorders, neuroscience, computer vision, computer graphics and animation, and face encoding for digital processing. This paper discusses the conceptual basis for FACS, a numerical listing of discrete facial movements identified by the system, the system's psychometric evaluation, and the software's recommended training requirements.

Keywords: facial action, action units, coding, machine learning

Procedia PDF Downloads 106
1325 Daylightophil Approach towards High-Performance Architecture for Hybrid-Optimization of Visual Comfort and Daylight Factor in BSk

Authors: Mohammadjavad Mahdavinejad, Hadi Yazdi

Abstract:

The greatest influence we have from the world is shaped through the visual form, thus light is an inseparable element in human life. The use of daylight in visual perception and environment readability is an important issue for users. With regard to the hazards of greenhouse gas emissions from fossil fuels, and in line with the attitudes on the reduction of energy consumption, the correct use of daylight results in lower levels of energy consumed by artificial lighting, heating and cooling systems. Windows are usually the starting points for analysis and simulations to achieve visual comfort and energy optimization; therefore, attention should be paid to the orientation of buildings to minimize electrical energy and maximize the use of daylight. In this paper, by using the Design Builder Software, the effect of the orientation of an 18m2(3m*6m) room with 3m height in city of Tehran has been investigated considering the design constraint limitations. In these simulations, the dimensions of the building have been changed with one degree and the window is located on the smaller face (3m*3m) of the building with 80% ratio. The results indicate that the orientation of building has a lot to do with energy efficiency to meet high-performance architecture and planning goals and objectives.

Keywords: daylight, window, orientation, energy consumption, design builder

Procedia PDF Downloads 233
1324 Employability Skills: Students' Perspectives Post Work Placement Experience

Authors: Mamie Y. Griffin, Pedro Coelhoso

Abstract:

Employability skills of university graduates remain an ongoing topic for discussion and debate. Numerous studies highlight the expressed concerns of governments and industries about higher education’s ability to develop workforce-ready graduates. An often cited solution is the use of internships to equip students with necessary employability skills. The literature is well documented with studies from the perspectives of multiple entities including employers and university faculty, mostly in the western world. Fewer studies examine the perception of students, and even fewer studies are based on students in Gulf countries. This paper assesses the status of employability skills from the perspective of students within a United Arab Emirates (UAE) institution based on their completion of a semester-long work placement experience. Using a largely qualitative instrument, students reported the essential skills needed in the workplace, classroom activities that most prepared students to use such skills in the workplace, and the various challenges they encountered. Implications for academic and professional practitioners are discussed. Findings and recommendations are informative for curriculum development as well as economic and workforce development agencies.

Keywords: employability skills, work placement experience, Gulf countries, workforce preparedness, work placement

Procedia PDF Downloads 349
1323 Design Systems and the Need for a Usability Method: Assessing the Fitness of Components and Interaction Patterns in Design Systems Using Atmosphere Methodology

Authors: Patrik Johansson, Selina Mardh

Abstract:

The present study proposes a usability test method, Atmosphere, to assess the fitness of components and interaction patterns of design systems. The method covers the user’s perception of the components of the system, the efficiency of the logic of the interaction patterns, perceived ease of use as well as the user’s understanding of the intended outcome of interactions. These aspects are assessed by combining measures of first impression, visual affordance and expectancy. The method was applied to a design system developed for the design of an electronic health record system. The study was conducted involving 15 healthcare personnel. It could be concluded that the Atmosphere method provides tangible data that enable human-computer interaction practitioners to analyze and categorize components and patterns based on perceived usability, success rate of identifying interactive components and success rate of understanding components and interaction patterns intended outcome.

Keywords: atomic design, atmosphere methodology, design system, expectancy testing, first impression testing, usability testing, visual affordance testing

Procedia PDF Downloads 180
1322 Aspect-Level Sentiment Analysis with Multi-Channel and Graph Convolutional Networks

Authors: Jiajun Wang, Xiaoge Li

Abstract:

The purpose of the aspect-level sentiment analysis task is to identify the sentiment polarity of aspects in a sentence. Currently, most methods mainly focus on using neural networks and attention mechanisms to model the relationship between aspects and context, but they ignore the dependence of words in different ranges in the sentence, resulting in deviation when assigning relationship weight to other words other than aspect words. To solve these problems, we propose a new aspect-level sentiment analysis model that combines a multi-channel convolutional network and graph convolutional network (GCN). Firstly, the context and the degree of association between words are characterized by Long Short-Term Memory (LSTM) and self-attention mechanism. Besides, a multi-channel convolutional network is used to extract the features of words in different ranges. Finally, a convolutional graph network is used to associate the node information of the dependency tree structure. We conduct experiments on four benchmark datasets. The experimental results are compared with those of other models, which shows that our model is better and more effective.

Keywords: aspect-level sentiment analysis, attention, multi-channel convolution network, graph convolution network, dependency tree

Procedia PDF Downloads 218
1321 Operator Optimization Based on Hardware Architecture Alignment Requirements

Authors: Qingqing Gai, Junxing Shen, Yu Luo

Abstract:

Due to the hardware architecture characteristics, some operators tend to acquire better performance if the input/output tensor dimensions are aligned to a certain minimum granularity, such as convolution and deconvolution commonly used in deep learning. Furthermore, if the requirements are not met, the general strategy is to pad with 0 to satisfy the requirements, potentially leading to the under-utilization of the hardware resources. Therefore, for the convolution and deconvolution whose input and output channels do not meet the minimum granularity alignment, we propose to transfer the W-dimensional data to the C-dimension for computation (W2C) to enable the C-dimension to meet the hardware requirements. This scheme also reduces the number of computations in the W-dimension. Although this scheme substantially increases computation, the operator’s speed can improve significantly. It achieves remarkable speedups on multiple hardware accelerators, including Nvidia Tensor cores, Qualcomm digital signal processors (DSPs), and Huawei neural processing units (NPUs). All you need to do is modify the network structure and rearrange the operator weights offline without retraining. At the same time, for some operators, such as the Reducemax, we observe that transferring the Cdimensional data to the W-dimension(C2W) and replacing the Reducemax with the Maxpool can accomplish acceleration under certain circumstances.

Keywords: convolution, deconvolution, W2C, C2W, alignment, hardware accelerator

Procedia PDF Downloads 104
1320 Thai Perception on Litecoin Value

Authors: Toby Gibbs, Suwaree Yordchim

Abstract:

This research analyzes factors affecting the success of Litecoin Value within Thailand and develops a guideline for self-reliance for effective business implementation. Samples in this study included 119 people through surveys. The results revealed four main factors affecting the success as follows: 1) Future Career training should be pursued in applied Litecoin development. 2) Didn't grasp the concept of a digital currency or see the benefit of a digital currency. 3) There is a great need to educate the next generation of learners on the benefits of Litecoin within the community. 4) A great majority didn't know what Litecoin was. The guideline for self-reliance planning consisted of 4 aspects: 1) Development planning: by arranging meet up groups to conduct further education on Litecoin and share solutions on adoption into every day usage. Local communities need to develop awareness of the usefulness of Litecoin and share the value of Litecoin among friends and family. 2) Computer Science and Business Management staff should develop skills to expand on the benefits of Litecoin within their departments. 3) Further research should be pursued on how Litecoin Value can improve business and tourism within Thailand. 4) Local communities should focus on developing Litecoin awareness by encouraging street vendors to accept Litecoin as another form of payment for services rendered.

Keywords: litecoin, mining, confirmations, payment method

Procedia PDF Downloads 184
1319 Deep Learning Approaches for Accurate Detection of Epileptic Seizures from Electroencephalogram Data

Authors: Ramzi Rihane, Yassine Benayed

Abstract:

Epilepsy is a chronic neurological disorder characterized by recurrent, unprovoked seizures resulting from abnormal electrical activity in the brain. Timely and accurate detection of these seizures is essential for improving patient care. In this study, we leverage the UK Bonn University open-source EEG dataset and employ advanced deep-learning techniques to automate the detection of epileptic seizures. By extracting key features from both time and frequency domains, as well as Spectrogram features, we enhance the performance of various deep learning models. Our investigation includes architectures such as Long Short-Term Memory (LSTM), Bidirectional LSTM (Bi-LSTM), 1D Convolutional Neural Networks (1D-CNN), and hybrid CNN-LSTM and CNN-BiLSTM models. The models achieved impressive accuracies: LSTM (98.52%), Bi-LSTM (98.61%), CNN-LSTM (98.91%), CNN-BiLSTM (98.83%), and CNN (98.73%). Additionally, we utilized a data augmentation technique called SMOTE, which yielded the following results: CNN (97.36%), LSTM (97.01%), Bi-LSTM (97.23%), CNN-LSTM (97.45%), and CNN-BiLSTM (97.34%). These findings demonstrate the effectiveness of deep learning in capturing complex patterns in EEG signals, providing a reliable and scalable solution for real-time seizure detection in clinical environments.

Keywords: electroencephalogram, epileptic seizure, deep learning, LSTM, CNN, BI-LSTM, seizure detection

Procedia PDF Downloads 12
1318 Man Eaters and the Eaten Men: A Study of the Portrayal of Indians in the Writings of Jim Corbett

Authors: Iti Roychowdhury

Abstract:

India to the Colonial mind was a crazy quilt of multicoloured patchwork- a land of untold wealth and bejewelled maharajas, of snake charmers and tight rope walkers. India was also the land that offered unparalled game. Indeed Shikar (hunting) was de rigueur for the Raj experience. Tales of shootings and trophies were told and retold in clubs and in company. Foremost among the writers of this genre is Jim Corbett – tracker, hunter, writer, conservationist. Corbett is best known for the killing of man eating tigers and his best known books are Man eaters of Kumaon, The Temple Tiger, Man eating Leopard of Rudraprayag etc. The stories of Jim Corbett are stories of hunting, with no palpable design, no subtext of hegemony, or white man’s burden. The protagonists are the cats. Nevertheless from his writings emerge a vibrant picture of Indian villages, of men, women and children toiling for a livelihood under the constant shadow of the man eaters. Corbett shared a symbiotic relationship with the villagers. They needed him to kill the predators while Corbett needed the support of the locals as drum beaters, coolies and runners to accomplish his tasks. The aim of the present paper is to study the image of Indians in the writings of Jim Corbett and to examine them in the light of colonial perception of Indians.

Keywords: hegemony, orientalism, Shikar literature, White Man's Burden

Procedia PDF Downloads 277
1317 Using Bidirectional Encoder Representations from Transformers to Extract Topic-Independent Sentiment Features for Social Media Bot Detection

Authors: Maryam Heidari, James H. Jones Jr.

Abstract:

Millions of online posts about different topics and products are shared on popular social media platforms. One use of this content is to provide crowd-sourced information about a specific topic, event or product. However, this use raises an important question: what percentage of information available through these services is trustworthy? In particular, might some of this information be generated by a machine, i.e., a bot, instead of a human? Bots can be, and often are, purposely designed to generate enough volume to skew an apparent trend or position on a topic, yet the consumer of such content cannot easily distinguish a bot post from a human post. In this paper, we introduce a model for social media bot detection which uses Bidirectional Encoder Representations from Transformers (Google Bert) for sentiment classification of tweets to identify topic-independent features. Our use of a Natural Language Processing approach to derive topic-independent features for our new bot detection model distinguishes this work from previous bot detection models. We achieve 94\% accuracy classifying the contents of data as generated by a bot or a human, where the most accurate prior work achieved accuracy of 92\%.

Keywords: bot detection, natural language processing, neural network, social media

Procedia PDF Downloads 116
1316 Service Quality in Thai Tourism: An Experience of Inbound Tourists Visited Bangkok, Thailand

Authors: Sudawan Somjai

Abstract:

The purposes of this research were to investigate the five important perceptions of service quality from inbound tourists who visited Bangkok, Thailand in the first quarter of 2014. Data were collected from over 10 important tourist destinations in Bangkok. The independent variables of this study included gender, age, levels of education, occupation, income, and country of origin while the dependent variables included their experience, opinion, and comment on the service received during visited tourist destinations. A simple random sampling method was performed to obtain 400 respondents. The respondents were both male and female in the same proportion. However, the majority were between 31-40 years old. Most were married with an undergraduate degree. Most were considered themselves as middle income with an average income of the respondents was between $30,001-40,000 per year. The findings revealed that the majority of respondents came to Bangkok because of low cost and high quality of tourism. The majority came to Bangkok for the first time and spent about 10 days in Thailand. The five important service perceptions that were observed by the inbound tourists in descending order according to mean were reliable of service provider, proper time of service provider, competency of service provider, neat and clean of service provider, and politeness of service provider.

Keywords: experience, inbound tourists, perception, service quality

Procedia PDF Downloads 358
1315 Artificial Intelligence Methods for Returns Expectations in Financial Markets

Authors: Yosra Mefteh Rekik, Younes Boujelbene

Abstract:

We introduce in this paper a new conceptual model representing the stock market dynamics. This model is essentially based on cognitive behavior of the intelligence investors. In order to validate our model, we build an artificial stock market simulation based on agent-oriented methodologies. The proposed simulator is composed of market supervisor agent essentially responsible for executing transactions via an order book and various kinds of investor agents depending to their profile. The purpose of this simulation is to understand the influence of psychological character of an investor and its neighborhood on its decision-making and their impact on the market in terms of price fluctuations. Therefore, the difficulty of the prediction is due to several features: the complexity, the non-linearity and the dynamism of the financial market system, as well as the investor psychology. The Artificial Neural Networks learning mechanism take on the role of traders, who from their futures return expectations and place orders based on their expectations. The results of intensive analysis indicate that the existence of agents having heterogeneous beliefs and preferences has provided a better understanding of price dynamics in the financial market.

Keywords: artificial intelligence methods, artificial stock market, behavioral modeling, multi-agent based simulation

Procedia PDF Downloads 445
1314 Challenges of Women Leadership in a Patriarchy Society: Implications for Development of African Women

Authors: Catherine Oluyemo

Abstract:

In Africa, patriarchy has manifested itself in the socio-cultural, political, economic and legal institutions. The decree of the father as the male head of the family has contributed to the powerlessness of women in African nations. To buttress this perception, in his work Meno, Plato made a declaration in the platonic dialogue that the desirable quality of a man should be the capacity to administer the state, and in the administration of it to benefit his friends and harm his enemies; and he must also be careful not to suffer harm himself. Furthermore, he said: a woman's good worth may also be easily described as ordering her house, keep what is indoors, and obey her husband. The works of Aristotle portrayed women as morally, intellectually, and physically inferior to men; they saw women as the property of men; claimed that women's role in society was to reproduce and serve men in the household; and saw male domination of women as natural and virtuous. This has been sustained for ages and is incessantly impinging on the involvement of women in African leadership positions. The purpose of this paper is to make sense of the concept of patriarchy in relations to women participation in Africa leadership, and its challenges in the participation of women in the leadership positions of Africa. It seeks to discover what women should do to make their voices heard, to participate in leadership arrangements so as to actualize their potentials in contributing to the development of Africa.

Keywords: women, leadership, patriarchy, development, actualize, potentials

Procedia PDF Downloads 349
1313 Youths, Gender and Media Portrayal: An Examination of the Relationship between Youths’ Perceptions and the Perceived Portrayal of Female Artistes in Nigerian Hip Hop Music Videos

Authors: Aminat Sheriff Owolabi

Abstract:

This study focused on what and how viewers perceive female portrayal in Nigerian Hip Hop music video based on scholars’ submission that Hip Hop music video is one of the media contents that objectifies women the most. However, this study examined how female artistes are portrayed sexually in Nigerian Hip Hop music videos. A model was developed in this study to examine the relationship between viewers’ perceptions and female portrayal in Nigerian Hip Hop music videos and from this model; three hypotheses were formulated and tested. Objectification theory of the psychology was also used to examine the manner at which women are portrayed in Nigerian Hip Hop Music as well as the relationship between the perceived portrayal and viewers’ perceptions. Survey research method was equally employed to gather data from 300 undergraduates in Kwara State and two Nigerian Hip Hop music producers who form the population of this study. From the result of the analyzed data and the tested hypotheses, it was discovered that there is a significant relationship between portrayal of female artistes in Nigerian Hip Hop music and viewers’ perception. As part of the suggestions, further study should include examination of how other media content portrays women.

Keywords: female artistes, Hip Hop, objectification, portrayal

Procedia PDF Downloads 280
1312 Cellulose Acetate Nanofiber Modification for Regulating Astrocyte Activity via Simple Heat Treatment

Authors: Sang-Myung Jung, Jeong Hyun Ju, Gwang Heum Yoon, Hwa Sung Shin

Abstract:

Central nervous system (CNS) consists of neuronal cell and supporting cells. Astrocytes are the most common supporting cells and play roles in metabolism between neurons and blood vessel. For this function, engineered astrocytes have been studied as a therapeutic source for CNS injury. In neural tissue engineering, nanofiber has been suggested as an effective scaffold for providing structure and mechanical properties influencing physiology. Cellulose acetate (CA) has been investigated for material to fabricate scaffold because of its biocompatibility, biodegradability and fine thermal stability. In this research, CA nanofiber was modified via heat treatment and its effect on astrocyte activity was evaluated. Adhesion and viability of astrocyte were increased in proportion to stiffness. Additionally, expression of GFAP, a marker of astrocyte activation, was increased via stiffness of scaffold. This research suggests a simple modification method to change stiffness of CA nanofiber and shows cellular behavior affecting stiffness of three-dimensional scaffold independently. For the results, we highlight that the stiffness is a factor to regulate astrocyte activity.

Keywords: astrocyte, cellulose acetate, cell therapy, stiffness of scaffold

Procedia PDF Downloads 477
1311 Proposing an Architecture for Drug Response Prediction by Integrating Multiomics Data and Utilizing Graph Transformers

Authors: Nishank Raisinghani

Abstract:

Efficiently predicting drug response remains a challenge in the realm of drug discovery. To address this issue, we propose four model architectures that combine graphical representation with varying positions of multiheaded self-attention mechanisms. By leveraging two types of multi-omics data, transcriptomics and genomics, we create a comprehensive representation of target cells and enable drug response prediction in precision medicine. A majority of our architectures utilize multiple transformer models, one with a graph attention mechanism and the other with a multiheaded self-attention mechanism, to generate latent representations of both drug and omics data, respectively. Our model architectures apply an attention mechanism to both drug and multiomics data, with the goal of procuring more comprehensive latent representations. The latent representations are then concatenated and input into a fully connected network to predict the IC-50 score, a measure of cell drug response. We experiment with all four of these architectures and extract results from all of them. Our study greatly contributes to the future of drug discovery and precision medicine by looking to optimize the time and accuracy of drug response prediction.

Keywords: drug discovery, transformers, graph neural networks, multiomics

Procedia PDF Downloads 153
1310 Automatic Product Identification Based on Deep-Learning Theory in an Assembly Line

Authors: Fidel Lòpez Saca, Carlos Avilés-Cruz, Miguel Magos-Rivera, José Antonio Lara-Chávez

Abstract:

Automated object recognition and identification systems are widely used throughout the world, particularly in assembly lines, where they perform quality control and automatic part selection tasks. This article presents the design and implementation of an object recognition system in an assembly line. The proposed shapes-color recognition system is based on deep learning theory in a specially designed convolutional network architecture. The used methodology involve stages such as: image capturing, color filtering, location of object mass centers, horizontal and vertical object boundaries, and object clipping. Once the objects are cut out, they are sent to a convolutional neural network, which automatically identifies the type of figure. The identification system works in real-time. The implementation was done on a Raspberry Pi 3 system and on a Jetson-Nano device. The proposal is used in an assembly course of bachelor’s degree in industrial engineering. The results presented include studying the efficiency of the recognition and processing time.

Keywords: deep-learning, image classification, image identification, industrial engineering.

Procedia PDF Downloads 160
1309 Quasi-Photon Monte Carlo on Radiative Heat Transfer: An Importance Sampling and Learning Approach

Authors: Utkarsh A. Mishra, Ankit Bansal

Abstract:

At high temperature, radiative heat transfer is the dominant mode of heat transfer. It is governed by various phenomena such as photon emission, absorption, and scattering. The solution of the governing integrodifferential equation of radiative transfer is a complex process, more when the effect of participating medium and wavelength properties are taken into consideration. Although a generic formulation of such radiative transport problem can be modeled for a wide variety of problems with non-gray, non-diffusive surfaces, there is always a trade-off between simplicity and accuracy of the problem. Recently, solutions of complicated mathematical problems with statistical methods based on randomization of naturally occurring phenomena have gained significant importance. Photon bundles with discrete energy can be replicated with random numbers describing the emission, absorption, and scattering processes. Photon Monte Carlo (PMC) is a simple, yet powerful technique, to solve radiative transfer problems in complicated geometries with arbitrary participating medium. The method, on the one hand, increases the accuracy of estimation, and on the other hand, increases the computational cost. The participating media -generally a gas, such as CO₂, CO, and H₂O- present complex emission and absorption spectra. To model the emission/absorption accurately with random numbers requires a weighted sampling as different sections of the spectrum carries different importance. Importance sampling (IS) was implemented to sample random photon of arbitrary wavelength, and the sampled data provided unbiased training of MC estimators for better results. A better replacement to uniform random numbers is using deterministic, quasi-random sequences. Halton, Sobol, and Faure Low-Discrepancy Sequences are used in this study. They possess better space-filling performance than the uniform random number generator and gives rise to a low variance, stable Quasi-Monte Carlo (QMC) estimators with faster convergence. An optimal supervised learning scheme was further considered to reduce the computation costs of the PMC simulation. A one-dimensional plane-parallel slab problem with participating media was formulated. The history of some randomly sampled photon bundles is recorded to train an Artificial Neural Network (ANN), back-propagation model. The flux was calculated using the standard quasi PMC and was considered to be the training target. Results obtained with the proposed model for the one-dimensional problem are compared with the exact analytical and PMC model with the Line by Line (LBL) spectral model. The approximate variance obtained was around 3.14%. Results were analyzed with respect to time and the total flux in both cases. A significant reduction in variance as well a faster rate of convergence was observed in the case of the QMC method over the standard PMC method. However, the results obtained with the ANN method resulted in greater variance (around 25-28%) as compared to the other cases. There is a great scope of machine learning models to help in further reduction of computation cost once trained successfully. Multiple ways of selecting the input data as well as various architectures will be tried such that the concerned environment can be fully addressed to the ANN model. Better results can be achieved in this unexplored domain.

Keywords: radiative heat transfer, Monte Carlo Method, pseudo-random numbers, low discrepancy sequences, artificial neural networks

Procedia PDF Downloads 223
1308 Exploration of Perceived Value of a Special Education Laws and Ethics’ Course Impact on Administrator Capacity

Authors: Megan Chaney

Abstract:

In the United States, research continues to show school administrators do not view themselves as adequately prepared in the area of special education. Often, special education is an omitted topic of study for school administrator preparation programs. The majority of special education teachers do not view their principals as well-prepared to support them in the educational context. Administrator preparation in the area of special education may begin at the foundational levels of understanding but is fundamentally an equity issue when serving individuals from marginalized populations with an urgent need to increase inclusionary practices. Special education and building-level administrators have a direct impact on teacher quality, instructional practices, inclusion, and equity with the opportunity to shape positive school culture. The current study was situated within an innovative IHE/LEA partnership pathway implemented with current K-12 administrators earning a Mild/Moderate Education Specialist Credential or coursework equivalent. Specifically, the study examined administrator’s perception of the Special Education Laws and Ethics’ course value and impact on the capacity to serve children with exceptionalities within the comprehensive school site context.

Keywords: special education laws and ethics, school adminstrator perspectives, school administrator training, inclusive practices

Procedia PDF Downloads 109
1307 The Influence of Wasta on Employees and Organizations in Kuwait

Authors: Abrar Al-Enzi

Abstract:

This study investigates the role of the popular utilization of Wasta within Arab societies. Wasta, by definition, is a set of personal networks based on family or kinship ties in which power and influence are utilized to get things done. As Wasta evolved, it became intensely rooted in Arab cultures, which is considered as an intrinsic tool of the culture, a method of doing business transactions and as a family obligation. However, the consequences related to Wasta in business are substantial as it impacts organizational performance, employee’s perception of the organization and the atmosphere between employees. To date, there has been little in-depth organizational research on the impact of Wasta. Hence, the question that will be addressed is: Does Wasta influence human resource management, knowledge sharing and innovation in Kuwait, which in turn affects employees’ commitment within organizations? As a result, a mixed method sequential exploratory research design will be used to examine the mentioned subject, which consists of three phases: (1) Doing some initial exploratory interviews; (2) Developing a paper-based and online survey (Quantitative method) based on the findings; (3) Lastly, following up with semi-structured interviews (Qualitative method). The rationale behind this approach is that both qualitative and quantitative methods complement each other by providing a more complete picture of the subject matter.

Keywords: commitment, HRM practices, social capital, Wasta

Procedia PDF Downloads 261
1306 Hydro-Gravimetric Ann Model for Prediction of Groundwater Level

Authors: Jayanta Kumar Ghosh, Swastik Sunil Goriwale, Himangshu Sarkar

Abstract:

Groundwater is one of the most valuable natural resources that society consumes for its domestic, industrial, and agricultural water supply. Its bulk and indiscriminate consumption affects the groundwater resource. Often, it has been found that the groundwater recharge rate is much lower than its demand. Thus, to maintain water and food security, it is necessary to monitor and management of groundwater storage. However, it is challenging to estimate groundwater storage (GWS) by making use of existing hydrological models. To overcome the difficulties, machine learning (ML) models are being introduced for the evaluation of groundwater level (GWL). Thus, the objective of this research work is to develop an ML-based model for the prediction of GWL. This objective has been realized through the development of an artificial neural network (ANN) model based on hydro-gravimetry. The model has been developed using training samples from field observations spread over 8 months. The developed model has been tested for the prediction of GWL in an observation well. The root means square error (RMSE) for the test samples has been found to be 0.390 meters. Thus, it can be concluded that the hydro-gravimetric-based ANN model can be used for the prediction of GWL. However, to improve the accuracy, more hydro-gravimetric parameter/s may be considered and tested in future.

Keywords: machine learning, hydro-gravimetry, ground water level, predictive model

Procedia PDF Downloads 127