Search results for: image semantic segmentation
956 The Use of Remote Sensing in the Study of Vegetation Jebel Boutaleb, Setif, Algeria
Authors: Khaled Missaoui, Amina Beldjazia, Rachid Gharzouli, Yamna Djellouli
Abstract:
Optical remote sensing makes use of visible, near infrared and short-wave infrared sensors to form images of the earth's surface by detecting the solar radiation reflected from targets on the ground. Different materials reflect and absorb differently at different wavelengths. Thus, the targets can be differentiated by their spectral reflectance signatures in the remotely sensed images. In this work, we are interested to study the distribution of vegetation in the massif forest of Boutaleb (North East of Algeria) which suffered between 1998 and 1999 very large fires. In this case, we use remote sensing with Landsat images from two dates (1984 and 2000) to see the results of these fires. Vegetation has a unique spectral signature which enables it to be distinguished readily from other types of land cover in an optical/near-infrared image. Normalized Difference Vegetation Index (NDVI) is calculated with ENVI 4.7 from Band 3 and 4. The results showed a very important floristic diversity in this forest. The comparison of NDVI from the two dates confirms that there is a decrease of the density of vegetation in this area due to repeated fires.Keywords: remote sensing, boutaleb, diversity, forest
Procedia PDF Downloads 558955 Movement of the Viscous Elastic Fixed Vertically Located Cylinder in Liquid with the Free Surface Under the Influence of Waves
Authors: T. J. Hasanova, C. N. Imamalieva
Abstract:
The problem about the movement of the rigid cylinder keeping the vertical position under the influence of running superficial waves in a liquid is considered. The indignation of a falling wave caused by the presence of the cylinder which moves is thus considered. Special decomposition on a falling harmonious wave is used. The problem dares an operational method. For a finding of the original decision, Considering that the image denominator represents a tabular function, Voltaire's integrated equation of the first sort which dares a numerical method is used. Cylinder movement in the continuous environment under the influence of waves is considered in work. Problems are solved by an operational method, thus originals of required functions are looked for by the numerical definition of poles of combinations of transcendental functions and calculation of not own integrals. Using specificity of a task below, Decisions are under construction the numerical solution of the integrated equation of Volter of the first sort that does not create computing problems of the complex roots of transcendental functions connected with search.Keywords: rigid cylinder, linear interpolation, fluctuations, Voltaire's integrated equation, harmonious wave
Procedia PDF Downloads 317954 Attendance Management System Implementation Using Face Recognition
Authors: Zainab S. Abdullahi, Zakariyya H. Abdullahi, Sahnun Dahiru
Abstract:
Student attendance in schools is a very important aspect in school management record. In recent years, security systems have become one of the most demanding systems in school. Every institute have its own method of taking attendance, many schools in Nigeria use the old fashion way of taking attendance. That is writing the students name and registration number in a paper and submitting it to the lecturer at the end of the lecture which is time-consuming and insecure, because some students can write for their friends without the lecturer’s knowledge. In this paper, we propose a system that takes attendance using face recognition. There are many automatic methods available for this purpose i.e. biometric attendance, but they all waste time, because the students have to follow a queue to put their thumbs on a scanner which is time-consuming. This attendance is recorded by using a camera attached in front of the class room and capturing the student images, detect the faces in the image and compare the detected faces with database and mark the attendance. The principle component analysis was used to recognize the faces detected with a high accuracy rate. The paper reviews the related work in the field of attendance system, then describe the system architecture, software algorithm and result.Keywords: attendance system, face detection, face recognition, PCA
Procedia PDF Downloads 363953 A Review of Different Studies on Hidden Markov Models for Multi-Temporal Satellite Images: Stationarity and Non-Stationarity Issues
Authors: Ali Ben Abbes, Imed Riadh Farah
Abstract:
Due to the considerable advances in Multi-Temporal Satellite Images (MTSI), remote sensing application became more accurate. Recently, many advances in modeling MTSI are developed using various models. The purpose of this article is to present an overview of studies using Hidden Markov Model (HMM). First of all, we provide a background of using HMM and their applications in this context. A comparison of the different works is discussed, and possible areas and challenges are highlighted. Secondly, we discussed the difference on vegetation monitoring as well as urban growth. Nevertheless, most research efforts have been used only stationary data. From another point of view, in this paper, we describe a new non-stationarity HMM, that is defined with a set of parts of the time series e.g. seasonal, trend and random. In addition, a new approach giving more accurate results and improve the applicability of the HMM in modeling a non-stationary data series. In order to assess the performance of the HMM, different experiments are carried out using Moderate Resolution Imaging Spectroradiometer (MODIS) NDVI time series of the northwestern region of Tunisia and Landsat time series of tres Cantos-Madrid in Spain.Keywords: multi-temporal satellite image, HMM , nonstationarity, vegetation, urban
Procedia PDF Downloads 353952 Vibration-Based Data-Driven Model for Road Health Monitoring
Authors: Guru Prakash, Revanth Dugalam
Abstract:
A road’s condition often deteriorates due to harsh loading such as overload due to trucks, and severe environmental conditions such as heavy rain, snow load, and cyclic loading. In absence of proper maintenance planning, this results in potholes, wide cracks, bumps, and increased roughness of roads. In this paper, a data-driven model will be developed to detect these damages using vibration and image signals. The key idea of the proposed methodology is that the road anomaly manifests in these signals, which can be detected by training a machine learning algorithm. The use of various machine learning techniques such as the support vector machine and Radom Forest method will be investigated. The proposed model will first be trained and tested with artificially simulated data, and the model architecture will be finalized by comparing the accuracies of various models. Once a model is fixed, the field study will be performed, and data will be collected. The field data will be used to validate the proposed model and to predict the future road’s health condition. The proposed will help to automate the road condition monitoring process, repair cost estimation, and maintenance planning process.Keywords: SVM, data-driven, road health monitoring, pot-hole
Procedia PDF Downloads 84951 Flood Monitoring in the Vietnamese Mekong Delta Using Sentinel-1 SAR with Global Flood Mapper
Authors: Ahmed S. Afifi, Ahmed Magdy
Abstract:
Satellite monitoring is an essential tool to study, understand, and map large-scale environmental changes that affect humans, climate, and biodiversity. The Sentinel-1 Synthetic Aperture Radar (SAR) instrument provides a high collection of data in all-weather, short revisit time, and high spatial resolution that can be used effectively in flood management. Floods occur when an overflow of water submerges dry land that requires to be distinguished from flooded areas. In this study, we use global flood mapper (GFM), a new google earth engine application that allows users to quickly map floods using Sentinel-1 SAR. The GFM enables the users to adjust manually the flood map parameters, e.g., the threshold for Z-value for VV and VH bands and the elevation and slope mask threshold. The composite R:G:B image results by coupling the bands of Sentinel-1 (VH:VV:VH) reduces false classification to a large extent compared to using one separate band (e.g., VH polarization band). The flood mapping algorithm in the GFM and the Otsu thresholding are compared with Sentinel-2 optical data. And the results show that the GFM algorithm can overcome the misclassification of a flooded area in An Giang, Vietnam.Keywords: SAR backscattering, Sentinel-1, flood mapping, disaster
Procedia PDF Downloads 103950 New Insights Into Fog Role In Atmospheric Deposition Using Satellite Images
Authors: Suruchi
Abstract:
This study aims to examine the spatial and temporal patterns of fog occurrences across Czech Republic. It utilizes satellite imagery and other data sources to achieve this goal. The main objective is to understand the role of fog in atmospheric deposition processes and its potential impact on the environment and ecosystems. Through satellite image analysis, the study will identify and categorize different types of fog, including radiation fog, orographic fog, and mountain fog. Fog detection algorithms and cloud type products will be evaluated to assess the frequency and distribution of fog events throughout the Czech Republic. Furthermore, the regions covered by fog will be classified based on their fog type and associated pollution levels. This will provide insights into the variability in fog characteristics and its implications for atmospheric deposition. Spatial analysis techniques will be used to pinpoint areas prone to frequent fog events and evaluate their pollution levels. Statistical methods will be employed to analyze patterns in fog occurrence over time and its connection with environmental factors. The ultimate goal of this research is to offer fresh perspectives on fog's role in atmospheric deposition processes, enhancing our understanding of its environmental significance and informing future research and environmental management initiatives.Keywords: pollution, GIS, FOG, satellie, atmospheric deposition
Procedia PDF Downloads 19949 Multimodal Direct Neural Network Positron Emission Tomography Reconstruction
Authors: William Whiteley, Jens Gregor
Abstract:
In recent developments of direct neural network based positron emission tomography (PET) reconstruction, two prominent architectures have emerged for converting measurement data into images: 1) networks that contain fully-connected layers; and 2) networks that primarily use a convolutional encoder-decoder architecture. In this paper, we present a multi-modal direct PET reconstruction method called MDPET, which is a hybrid approach that combines the advantages of both types of networks. MDPET processes raw data in the form of sinograms and histo-images in concert with attenuation maps to produce high quality multi-slice PET images (e.g., 8x440x440). MDPET is trained on a large whole-body patient data set and evaluated both quantitatively and qualitatively against target images reconstructed with the standard PET reconstruction benchmark of iterative ordered subsets expectation maximization. The results show that MDPET outperforms the best previously published direct neural network methods in measures of bias, signal-to-noise ratio, mean absolute error, and structural similarity.Keywords: deep learning, image reconstruction, machine learning, neural network, positron emission tomography
Procedia PDF Downloads 109948 Logistic Model Tree and Expectation-Maximization for Pollen Recognition and Grouping
Authors: Endrick Barnacin, Jean-Luc Henry, Jack Molinié, Jimmy Nagau, Hélène Delatte, Gérard Lebreton
Abstract:
Palynology is a field of interest for many disciplines. It has multiple applications such as chronological dating, climatology, allergy treatment, and even honey characterization. Unfortunately, the analysis of a pollen slide is a complicated and time-consuming task that requires the intervention of experts in the field, which is becoming increasingly rare due to economic and social conditions. So, the automation of this task is a necessity. Pollen slides analysis is mainly a visual process as it is carried out with the naked eye. That is the reason why a primary method to automate palynology is the use of digital image processing. This method presents the lowest cost and has relatively good accuracy in pollen retrieval. In this work, we propose a system combining recognition and grouping of pollen. It consists of using a Logistic Model Tree to classify pollen already known by the proposed system while detecting any unknown species. Then, the unknown pollen species are divided using a cluster-based approach. Success rates for the recognition of known species have been achieved, and automated clustering seems to be a promising approach.Keywords: pollen recognition, logistic model tree, expectation-maximization, local binary pattern
Procedia PDF Downloads 180947 Machine Learning for Disease Prediction Using Symptoms and X-Ray Images
Authors: Ravija Gunawardana, Banuka Athuraliya
Abstract:
Machine learning has emerged as a powerful tool for disease diagnosis and prediction. The use of machine learning algorithms has the potential to improve the accuracy of disease prediction, thereby enabling medical professionals to provide more effective and personalized treatments. This study focuses on developing a machine-learning model for disease prediction using symptoms and X-ray images. The importance of this study lies in its potential to assist medical professionals in accurately diagnosing diseases, thereby improving patient outcomes. Respiratory diseases are a significant cause of morbidity and mortality worldwide, and chest X-rays are commonly used in the diagnosis of these diseases. However, accurately interpreting X-ray images requires significant expertise and can be time-consuming, making it difficult to diagnose respiratory diseases in a timely manner. By incorporating machine learning algorithms, we can significantly enhance disease prediction accuracy, ultimately leading to better patient care. The study utilized the Mask R-CNN algorithm, which is a state-of-the-art method for object detection and segmentation in images, to process chest X-ray images. The model was trained and tested on a large dataset of patient information, which included both symptom data and X-ray images. The performance of the model was evaluated using a range of metrics, including accuracy, precision, recall, and F1-score. The results showed that the model achieved an accuracy rate of over 90%, indicating that it was able to accurately detect and segment regions of interest in the X-ray images. In addition to X-ray images, the study also incorporated symptoms as input data for disease prediction. The study used three different classifiers, namely Random Forest, K-Nearest Neighbor and Support Vector Machine, to predict diseases based on symptoms. These classifiers were trained and tested using the same dataset of patient information as the X-ray model. The results showed promising accuracy rates for predicting diseases using symptoms, with the ensemble learning techniques significantly improving the accuracy of disease prediction. The study's findings indicate that the use of machine learning algorithms can significantly enhance disease prediction accuracy, ultimately leading to better patient care. The model developed in this study has the potential to assist medical professionals in diagnosing respiratory diseases more accurately and efficiently. However, it is important to note that the accuracy of the model can be affected by several factors, including the quality of the X-ray images, the size of the dataset used for training, and the complexity of the disease being diagnosed. In conclusion, the study demonstrated the potential of machine learning algorithms for disease prediction using symptoms and X-ray images. The use of these algorithms can improve the accuracy of disease diagnosis, ultimately leading to better patient care. Further research is needed to validate the model's accuracy and effectiveness in a clinical setting and to expand its application to other diseases.Keywords: K-nearest neighbor, mask R-CNN, random forest, support vector machine
Procedia PDF Downloads 153946 Tracing the Developmental Repertoire of the Progressive: Evidence from L2 Construction Learning
Abstract:
Research investigating language acquisition from a constructionist perspective has demonstrated that language is learned as constructions at various linguistic levels, which is related to factors of frequency, semantic prototypicality, and form-meaning contingency. However, previous research on construction learning tended to focus on clause-level constructions such as verb argument constructions but few attempts were made to study morpheme-level constructions such as the progressive construction, which is regarded as a source of acquisition problems for English learners from diverse L1 backgrounds, especially for those whose L1 do not have an equivalent construction such as German and Chinese. To trace the developmental trajectory of Chinese EFL learners’ use of the progressive with respect to verb frequency, verb-progressive contingency, and verbal prototypicality and generality, a learner corpus consisting of three sub-corpora representing three different English proficiency levels was extracted from the Chinese Learners of English Corpora (CLEC). As the reference point, a native speakers’ corpus extracted from the Louvain Corpus of Native English Essays was also established. All the texts were annotated with C7 tagset by part-of-speech tagging software. After annotation all valid progressive hits were retrieved with AntConc 3.4.3 followed by a manual check. Frequency-related data showed that from the lowest to the highest proficiency level, (1) the type token ratio increased steadily from 23.5% to 35.6%, getting closer to 36.4% in the native speakers’ corpus, indicating a wider use of verbs in the progressive; (2) the normalized entropy value rose from 0.776 to 0.876, working towards the target score of 0.886 in native speakers’ corpus, revealing that upper-intermediate learners exhibited a more even distribution and more productive use of verbs in the progressive; (3) activity verbs (i.e., verbs with prototypical progressive meanings like running and singing) dropped from 59% to 34% but non-prototypical verbs such as state verbs (e.g., being and living) and achievement verbs (e.g., dying and finishing) were increasingly used in the progressive. Apart from raw frequency analyses, collostructional analyses were conducted to quantify verb-progressive contingency and to determine what verbs were distinctively associated with the progressive construction. Results were in line with raw frequency findings, which showed that contingency between the progressive and non-prototypical verbs represented by light verbs (e.g., going, doing, making, and coming) increased as English proficiency proceeded. These findings altogether suggested that beginning Chinese EFL learners were less productive in using the progressive construction: they were constrained by a small set of verbs which had concrete and typical progressive meanings (e.g., the activity verbs). But with English proficiency increasing, their use of the progressive began to spread to marginal members such as the light verbs.Keywords: Construction learning, Corpus-based, Progressives, Prototype
Procedia PDF Downloads 127945 Emotion Recognition Using Artificial Intelligence
Authors: Rahul Mohite, Lahcen Ouarbya
Abstract:
This paper focuses on the interplay between humans and computer systems and the ability of these systems to understand and respond to human emotions, including non-verbal communication. Current emotion recognition systems are based solely on either facial or verbal expressions. The limitation of these systems is that it requires large training data sets. The paper proposes a system for recognizing human emotions that combines both speech and emotion recognition. The system utilizes advanced techniques such as deep learning and image recognition to identify facial expressions and comprehend emotions. The results show that the proposed system, based on the combination of facial expression and speech, outperforms existing ones, which are based solely either on facial or verbal expressions. The proposed system detects human emotion with an accuracy of 86%, whereas the existing systems have an accuracy of 70% using verbal expression only and 76% using facial expression only. In this paper, the increasing significance and demand for facial recognition technology in emotion recognition are also discussed.Keywords: facial reputation, expression reputation, deep gaining knowledge of, photo reputation, facial technology, sign processing, photo type
Procedia PDF Downloads 117944 The Image of Future Spouse in Indonesian Folktale: Man's Acceptance of Woman and vice Versa
Authors: Titik Wahyuningsih
Abstract:
The folktale to discuss is Ande-Ande Lumut, a story that is believed to be a history of two kingdoms in East Java, Indonesia. The title refers to the main male character in the story. This research is a library research which aims to know the patriarchal values in Indonesia. The data for the research is the song in the story that is actually the conversation between Ande-Ande Lumut and a mom who adopts him. It is told in the lines that many beautiful girls come to propose Ande-Ande Lumut but he does not want to accept them and keeps on staying in his upstairs room. Finally, he says yes for Klething Kuning to whom his mom describes as a girl with ugly face. Ande-Ande Lumut's decision is taken as Klething Kuning is the only girl who doesn't let Yuyu Kangkang help her. Yuyu Kangkang is described as a very big crab that helps the girls to cross the river but ask them to kiss him. Through the lense of feminist approach, Ande-Ande Lumut shows the men’s preference and dominance to make final decision over women. Even though the girls are actively propose their future husband, but they do it without giving any requirements. Meanwhile, the future husband chooses a girl with a criterion that no male has ever touched her, although the male is a crab.Keywords: future spouse, Indonesian folktale, acceptance, patriarchal
Procedia PDF Downloads 291943 Computer-Integrated Surgery of the Human Brain, New Possibilities
Authors: Ugo Galvanetto, Pirto G. Pavan, Mirco Zaccariotto
Abstract:
The discipline of Computer-integrated surgery (CIS) will provide equipment able to improve the efficiency of healthcare systems and, which is more important, clinical results. Surgeons and machines will cooperate in new ways that will extend surgeons’ ability to train, plan and carry out surgery. Patient specific CIS of the brain requires several steps: 1 - Fast generation of brain models. Based on image recognition of MR images and equipped with artificial intelligence, image recognition techniques should differentiate among all brain tissues and segment them. After that, automatic mesh generation should create the mathematical model of the brain in which the various tissues (white matter, grey matter, cerebrospinal fluid …) are clearly located in the correct positions. 2 – Reliable and fast simulation of the surgical process. Computational mechanics will be the crucial aspect of the entire procedure. New algorithms will be used to simulate the mechanical behaviour of cutting through cerebral tissues. 3 – Real time provision of visual and haptic feedback A sophisticated human-machine interface based on ergonomics and psychology will provide the feedback to the surgeon. The present work will address in particular point 2. Modelling the cutting of soft tissue in a structure as complex as the human brain is an extremely challenging problem in computational mechanics. The finite element method (FEM), that accurately represents complex geometries and accounts for material and geometrical nonlinearities, is the most used computational tool to simulate the mechanical response of soft tissues. However, the main drawback of FEM lies in the mechanics theory on which it is based, classical continuum Mechanics, which assumes matter is a continuum with no discontinuity. FEM must resort to complex tools such as pre-defined cohesive zones, external phase-field variables, and demanding remeshing techniques to include discontinuities. However, all approaches to equip FEM computational methods with the capability to describe material separation, such as interface elements with cohesive zone models, X-FEM, element erosion, phase-field, have some drawbacks that make them unsuitable for surgery simulation. Interface elements require a-priori knowledge of crack paths. The use of XFEM in 3D is cumbersome. Element erosion does not conserve mass. The Phase Field approach adopts a diffusive crack model instead of describing true tissue separation typical of surgical procedures. Modelling discontinuities, so difficult when using computational approaches based on classical continuum Mechanics, is instead easy for novel computational methods based on Peridynamics (PD). PD is a non-local theory of mechanics formulated with no use of spatial derivatives. Its governing equations are valid at points or surfaces of discontinuity, and it is, therefore especially suited to describe crack propagation and fragmentation problems. Moreover, PD does not require any criterium to decide the direction of crack propagation or the conditions for crack branching or coalescence; in the PD-based computational methods, cracks develop spontaneously in the way which is the most convenient from an energy point of view. Therefore, in PD computational methods, crack propagation in 3D is as easy as it is in 2D, with a remarkable advantage with respect to all other computational techniques.Keywords: computational mechanics, peridynamics, finite element, biomechanics
Procedia PDF Downloads 80942 Unraveling Language Contact through Syntactic Dynamics of ‘Also’ in Hong Kong and Britain English
Authors: Xu Zhang
Abstract:
This article unveils an indicator of language contact between English and Cantonese in one of the Outer Circle Englishes, Hong Kong (HK) English, through an empirical investigation into 1000 tokens from the Global Web-based English (GloWbE) corpus, employing frequency analysis and logistic regression analysis. It is perceived that Cantonese and general Chinese are contextually marked by an integral underlying thinking pattern. Chinese speakers exhibit a reliance on semantic context over syntactic rules and lexical forms. This linguistic trait carries over to their use of English, affording greater flexibility to formal elements in constructing English sentences. The study focuses on the syntactic positioning of the focusing subjunct ‘also’, a linguistic element used to add new or contrasting prominence to specific sentence constituents. The English language generally allows flexibility in the relative position of 'also’, while there is a preference for close marking relationships. This article shifts attention to Hong Kong, where Cantonese and English converge, and 'also' finds counterparts in Cantonese ‘jaa’ and Mandarin ‘ye’. Employing a corpus-based data-driven method, we investigate the syntactic position of 'also' in both HK and GB English. The study aims to ascertain whether HK English exhibits a greater 'syntactic freedom,' allowing for a more distant marking relationship with 'also' compared to GB English. The analysis involves a random extraction of 500 samples from both HK and GB English from the GloWbE corpus, forming a dataset (N=1000). Exclusions are made for cases where 'also' functions as an additive conjunct or serves as a copulative adverb, as well as sentences lacking sufficient indication that 'also' functions as a focusing particle. The final dataset comprises 820 tokens, with 416 for GB and 404 for HK, annotated according to the focused constituent and the relative position of ‘also’. Frequency analysis reveals significant differences in the relative position of 'also' and marking relationships between HK and GB English. Regression analysis indicates a preference in HK English for a distant marking relationship between 'also' and its focused constituent. Notably, the subject and other constituents emerge as significant predictors of a distant position for 'also.' Together, these findings underscore the nuanced linguistic dynamics in HK English and contribute to our understanding of language contact. It suggests that future pedagogical practice should consider incorporating the syntactic variation within English varieties, facilitating leaners’ effective communication in diverse English-speaking environments and enhancing their intercultural communication competence.Keywords: also, Cantonese, English, focus marker, frequency analysis, language contact, logistic regression analysis
Procedia PDF Downloads 51941 Study on Errors in Estimating the 3D Gaze Point for Different Pupil Sizes Using Eye Vergences
Authors: M. Pomianek, M. Piszczek, M. Maciejewski
Abstract:
The binocular eye tracking technology is increasingly being used in industry, entertainment and marketing analysis. In the case of virtual reality, eye tracking systems are already the basis for user interaction with the environment. In such systems, the high accuracy of determining the user's eye fixation point is very important due to the specificity of the virtual reality head-mounted display (HMD). Often, however, there are unknown errors occurring in the used eye tracking technology, as well as those resulting from the positioning of the devices in relation to the user's eyes. However, can the virtual environment itself influence estimation errors? The paper presents mathematical analyses and empirical studies of the determination of the fixation point and errors resulting from the change in the size of the pupil in response to the intensity of the displayed scene. The article contains both static laboratory tests as well as on the real user. Based on the research results, optimization solutions were proposed that would reduce the errors of gaze estimation errors. Studies show that errors in estimating the fixation point of vision can be minimized both by improving the pupil positioning algorithm in the video image and by using more precise methods to calibrate the eye tracking system in three-dimensional space.Keywords: eye tracking, fixation point, pupil size, virtual reality
Procedia PDF Downloads 130940 Tape-Shaped Multiscale Fiducial Marker: A Design Prototype for Indoor Localization
Authors: Marcell Serra de Almeida Martins, Benedito de Souza Ribeiro Neto, Gerson Lima Serejo, Carlos Gustavo Resque Dos Santos
Abstract:
Indoor positioning systems use sensors such as Bluetooth, ZigBee, and Wi-Fi, as well as cameras for image capture, which can be fixed or mobile. These computer vision-based positioning approaches are low-cost to implement, mainly when it uses a mobile camera. The present study aims to create a design of a fiducial marker for a low-cost indoor localization system. The marker is tape-shaped to perform a continuous reading employing two detection algorithms, one for greater distances and another for smaller distances. Therefore, the location service is always operational, even with variations in capture distance. A minimal localization and reading algorithm were implemented for the proposed marker design, aiming to validate it. The accuracy tests consider readings varying the capture distance between [0.5, 10] meters, comparing the proposed marker with others. The tests showed that the proposed marker has a broader capture range than the ArUco and QRCode, maintaining the same size. Therefore, reducing the visual pollution and maximizing the tracking since the ambient can be covered entirely.Keywords: multiscale recognition, indoor localization, tape-shaped marker, fiducial marker
Procedia PDF Downloads 132939 Exploring the Practices of Global Citizenship Education in Finland and Scotland
Authors: Elisavet Anastasiadou
Abstract:
Global citizenship refers to an economic, social, political, and cultural interconnectedness, and it is inextricably intertwined with social justice, respect for human rights, peace, and a sense of responsibility to act on a local and global level. It aims to be transformative, enhance critical thinking and participation with pedagogical approaches based on social justice and democracy. The purpose of this study is to explore how Global Citizenship Education (GCE) is presented and implemented in two educational contexts, specifically in the curricula and pedagogical practices of primary education in Finland and Scotland. The impact of GCE is recognized as means for further development by institution such as and Finnish and Scottish curricula acknowledge the significance of GCE, emphasizing the student's ability to act and succeed in diverse and global communities. This comparative study should provide a good basis for further developing teaching practices based on informed understanding of how GCE is constrained or enabled from two different perspectives, extend the methodological applications of Practice Architectures and provide critical insights into GCE as a theoretical notion adopted by national and international educational policy. The study is directly connected with global citizenship aiming at future and societal change. The empirical work employs a multiple case study approach, including interviews and analysis of existing documents (textbook, curriculum). The data consists of the Finnish and Scottish curriculum. A systematic analysis of the curriculum in relation to GCE will offer insights into how the aims of GCE are presented and framed within the two contexts. This will be achieved using the theory of Practice Architectures. Curricula are official policy documentations (texts) that frame and envisage pedagogical practices. Practices, according to the theory of practice architectures, consist of sayings, doings, and relatings. Hence, even if the text analysis includes the semantic space (sayings) that are prefigured by the cultural-discursive arrangements and the relating prefigured by the socio-political arrangements, they will inevitably reveal information on the (doings) prefigured by the material-economic arrangements, as they hang together in practices. The results will assist educators in making changes to their teaching and enhance their self-conscious understanding of the history-making significance of their practices. It will also have a potential reform and focus on educationally relevant to such issues. Thus, the study will be able to open the ground for interventions and further research while it will consider the societal demands of a world in change.Keywords: citizenhsip, curriculum, democracy, practices
Procedia PDF Downloads 206938 Satellite Imagery Classification Based on Deep Convolution Network
Authors: Zhong Ma, Zhuping Wang, Congxin Liu, Xiangzeng Liu
Abstract:
Satellite imagery classification is a challenging problem with many practical applications. In this paper, we designed a deep convolution neural network (DCNN) to classify the satellite imagery. The contributions of this paper are twofold — First, to cope with the large-scale variance in the satellite image, we introduced the inception module, which has multiple filters with different size at the same level, as the building block to build our DCNN model. Second, we proposed a genetic algorithm based method to efficiently search the best hyper-parameters of the DCNN in a large search space. The proposed method is evaluated on the benchmark database. The results of the proposed hyper-parameters search method show it will guide the search towards better regions of the parameter space. Based on the found hyper-parameters, we built our DCNN models, and evaluated its performance on satellite imagery classification, the results show the classification accuracy of proposed models outperform the state of the art method.Keywords: satellite imagery classification, deep convolution network, genetic algorithm, hyper-parameter optimization
Procedia PDF Downloads 298937 Synthetic Aperture Radar Remote Sensing Classification Using the Bag of Visual Words Model to Land Cover Studies
Authors: Reza Mohammadi, Mahmod R. Sahebi, Mehrnoosh Omati, Milad Vahidi
Abstract:
Classification of high resolution polarimetric Synthetic Aperture Radar (PolSAR) images plays an important role in land cover and land use management. Recently, classification algorithms based on Bag of Visual Words (BOVW) model have attracted significant interest among scholars and researchers in and out of the field of remote sensing. In this paper, BOVW model with pixel based low-level features has been implemented to classify a subset of San Francisco bay PolSAR image, acquired by RADARSAR 2 in C-band. We have used segment-based decision-making strategy and compared the result with the result of traditional Support Vector Machine (SVM) classifier. 90.95% overall accuracy of the classification with the proposed algorithm has shown that the proposed algorithm is comparable with the state-of-the-art methods. In addition to increase in the classification accuracy, the proposed method has decreased undesirable speckle effect of SAR images.Keywords: Bag of Visual Words (BOVW), classification, feature extraction, land cover management, Polarimetric Synthetic Aperture Radar (PolSAR)
Procedia PDF Downloads 209936 Ensemble of Deep CNN Architecture for Classifying the Source and Quality of Teff Cereal
Authors: Belayneh Matebie, Michael Melese
Abstract:
The study focuses on addressing the challenges in classifying and ensuring the quality of Eragrostis Teff, a small and round grain that is the smallest cereal grain. Employing a traditional classification method is challenging because of its small size and the similarity of its environmental characteristics. To overcome this, this study employs a machine learning approach to develop a source and quality classification system for Teff cereal. Data is collected from various production areas in the Amhara regions, considering two types of cereal (high and low quality) across eight classes. A total of 5,920 images are collected, with 740 images for each class. Image enhancement techniques, including scaling, data augmentation, histogram equalization, and noise removal, are applied to preprocess the data. Convolutional Neural Network (CNN) is then used to extract relevant features and reduce dimensionality. The dataset is split into 80% for training and 20% for testing. Different classifiers, including FVGG16, FINCV3, QSCTC, EMQSCTC, SVM, and RF, are employed for classification, achieving accuracy rates ranging from 86.91% to 97.72%. The ensemble of FVGG16, FINCV3, and QSCTC using the Max-Voting approach outperforms individual algorithms.Keywords: Teff, ensemble learning, max-voting, CNN, SVM, RF
Procedia PDF Downloads 52935 Mapping of Siltations of AlKhod Dam, Muscat, Sultanate of Oman Using Low-Cost Multispectral Satellite Data
Authors: Sankaran Rajendran
Abstract:
Remote sensing plays a vital role in mapping of resources and monitoring of environments of the earth. In the present research study, mapping and monitoring of clay siltations occurred in the Alkhod Dam of Muscat, Sultanate of Oman are carried out using low-cost multispectral Landsat and ASTER data. The dam is constructed across the Wadi Samail catchment for ground water recharge. The occurrence and spatial distribution of siltations in the dam are studied with five years of interval from the year 1987 of construction to 2014. The deposits are mainly due to the clay, sand, and silt occurrences derived from the weathering rocks of ophiolite sequences occurred in the Wadi Samail catchment. The occurrences of clays are confirmed by minerals identification using ASTER VNIR-SWIR spectral bands and Spectral Angle Mapper supervised image processing method. The presence of clays and their spatial distribution are verified in the field. The study recommends the technique and the low-cost satellite data to similar region of the world.Keywords: Alkhod Dam, ASTER siltation, Landsat, remote sensing, Oman
Procedia PDF Downloads 435934 Impact of Profitability, Slack Resources and Natural Disasters on China's Corporate Philanthropic Practices
Authors: Nabeel Safdar, Qian Aimin
Abstract:
Corporate philanthropy is important, as the donations have been considered as a source to improve the image of business entity in modern era of high competition. We used data on annual basis from 2000 to 2014 for 1,248 firms listed at Shanghai and Shenzhen stock exchanges. Results for giving firms reveal that there is curve linear relation of profitability and CP, as profitable firms utilize cash in an efficient way and have fewer amounts of slack resource and tradeoff among stakeholder and agency cost made it more justifiable. We found that more profitability does not mean that the cash flows are available, actually good performing firms or profitable firm also good at cash management. Cash is utilized in an effective way by profitable firms, and have fewer extents of slack resources which generate curvilinear relationship of profitability with Corporate Philanthropy. We found that the trend of Corporate Philanthropy also got affected due to natural disasters. Analysis made by innovation, slack resources and directors salary revealed the positive significant relationship. It is not compulsory that firm should be only profitable for engaging in philanthropy rather they should have abundant slack resources to donate.Keywords: corporate philanthropy, free cash flows, natural disasters, profitability
Procedia PDF Downloads 307933 Teaching Continuities in the Great Books Tradition and Contemporary Popular Culture
Authors: Alex Kizuk
Abstract:
This paper studies the trope or meme of the Siren in terms of what long-standing cultural continuities can be found in college classrooms today. Those who have raised children may remember reading from Hans Christian Anderson's 'The Little Mermaid' (1836), not to mention regaling them with colorful Disneyesque versions when they were younger. Though Anderson tempered the darker first ending of the story to give the little mermaid more agency in her salvation—a prognostic developed in Disney adaptations—nonetheless, the tale pivots on an image of a 'heavenly realm' that the mermaid may eventually come to know or comprehend as a beloved woman on dry land. Only after 300 years, however, may she hope to see that 'which lives forever' and 'rises through thin air, up to the shining stars. Just as [sea-people] rise through the water to see the lands on earth.' What students today can see in this example is a trope of the agonistic soul in a hard-won disembarkation at a harbour of knowledge--where the seeker after truth may come to know through persistence (300 years)—all that is good and true concerning human life. This paper discusses several such examples from the Great Books and popular culture to suggest that teaching in the world of the 21st century could do worse than accede to some such perennial seeking.Keywords: the Great Books, tradition, popular culture, 21st century directions in teaching
Procedia PDF Downloads 155932 Accuracy Improvement of Traffic Participant Classification Using Millimeter-Wave Radar by Leveraging Simulator Based on Domain Adaptation
Authors: Tokihiko Akita, Seiichi Mita
Abstract:
A millimeter-wave radar is the most robust against adverse environments, making it an essential environment recognition sensor for automated driving. However, the reflection signal is sparse and unstable, so it is difficult to obtain the high recognition accuracy. Deep learning provides high accuracy even for them in recognition, but requires large scale datasets with ground truth. Specially, it takes a lot of cost to annotate for a millimeter-wave radar. For the solution, utilizing a simulator that can generate an annotated huge dataset is effective. Simulation of the radar is more difficult to match with real world data than camera image, and recognition by deep learning with higher-order features using the simulator causes further deviation. We have challenged to improve the accuracy of traffic participant classification by fusing simulator and real-world data with domain adaptation technique. Experimental results with the domain adaptation network created by us show that classification accuracy can be improved even with a few real-world data.Keywords: millimeter-wave radar, object classification, deep learning, simulation, domain adaptation
Procedia PDF Downloads 91931 Development and Utilization of Keratin-Fibrin-Gelatin Composite Films as Potential Material for Skin Tissue Engineering Application
Authors: Sivakumar Singaravelu, Giriprasath Ramanathan, M. D. Raja, Uma Tirichurapalli Sivagnanam
Abstract:
The goal of the present study was to develop and evaluate composite film for tissue engineering application. The keratin was extracted from bovine horn and used for preparation of keratin (HK), physiologically clotted fibrin (PCF) and gelatin (G) blend films in different stoichiometric ratios (1:1:1, 1:1:2 and 1:1:3) by using solvent casting method. The composite films (HK-PCF-G) were characterized physiochemically using Fourier Transform Infrared Spectroscopy (FTIR), Differential Scanning Calorimetry (DSC), Thermogravimetric Analysis (TGA) and Scanning Electron Microscopy (SEM). The mechanical properties of the composite films were analyzed. The results of tensile strength show that ultimate strength and elongation were 10.72 Mpa and 4.83 MPA respectively for 1:1:3 ratio combination. The SEM image showed a slight smooth surface for 1:1:3 ratio combination compared to other films. In order to impart antibacterial activities, the composite films were loaded with Mupirocin (MP) to act against infection. The composite films acted as a suitable carrier to protect and release the drug in a controlled manner. This developed composite film would be a suitable alternative material for tissue engineering application.Keywords: bovine horn, keratin, fibrin, gelatin, tensile strength
Procedia PDF Downloads 448930 Electrical and Structural Properties of Polyaniline-Fullerene Nanocomposite
Authors: M. Nagaraja, H. M. Mahesh, K. Rajanna, M. Z. Kurian, J. Manjanna
Abstract:
In recent years, composites of conjugated polymers with fullerenes (C60) has attracted considerable scientific and technological attention in the field of organic electronics because they possess a novel combination of electrical, optical, ferromagnetic, mechanical and sensor properties. These properties represent major advances in the design of organic electronic devices. With the addition of C60 in the conjugated polymer matrix, the primary photo-excitation of the conjugated polymer undergoes an ultrafast electron transfer, and it has been demonstrated that fullerene molecules may serve as efficient electron acceptors in polymeric solar cells. The present paper includes the systematic studies on the effect of electrical, structural and sensor properties of polyaniline (PANI) matrix by the presence of C60. Polyaniline-fullerene (PANI/C60) composite is prepared by the introduction of fullerene during polymerization of aniline with ammonium persulfate and dodechyl benzene sulfonic acid as oxidant and dopant respectively. FTIR spectroscopy indicated the interaction between PANI and C60. X-ray diffraction proved the formation of a PANI/C60 complex. SEM image shows the highly branched chain structure of the PANI in the presence of C60. The conductivity of the PANI/C60 was found to be more than ten orders of magnitude over the pure PANI.Keywords: conductivity, fullerene, nanocomposite, polyaniline
Procedia PDF Downloads 216929 Entrepreneurial Orientation and Customer Satisfaction: Evidences nearby Khao San Road
Authors: Vichada Chokesikarin
Abstract:
The study aims to determine which factors account for customer satisfaction and to investigate the relationship between entrepreneurial orientation and business success, in particular, context of the information understanding of hostel business in Pranakorn district, Bangkok and the significant element of entrepreneurship in tourism industry. This study covers 352 hostels customers and 61 hostel owners/managers nearby Khao San Road. Data collection methods were used by survey questionnaire and a series of hypotheses were developed from services marketing literature. The findings suggest the customer satisfaction most influenced by image, service quality, room quality and price accordingly. Furthermore the findings revealed that significant relationships exist between entrepreneurial orientation and business success; while competitive aggressiveness was found unrelated. The ECSI model’s generic measuring customer satisfaction was found partially mediate the business success. A reconsideration of other variables applicable should be supported with the model of hostel business. The study provides context and overall view of hostel business while discussing from the entrepreneurial orientation to customer satisfaction, thereby reducing decision risk on hostel investment.Keywords: customer satisfaction, ECSI model, entrepreneurial orientation, small hotel, hostel, business performance
Procedia PDF Downloads 335928 Motion-Based Detection and Tracking of Multiple Pedestrians
Authors: A. Harras, A. Tsuji, K. Terada
Abstract:
Tracking of moving people has gained a matter of great importance due to rapid technological advancements in the field of computer vision. The objective of this study is to design a motion based detection and tracking multiple walking pedestrians randomly in different directions. In our proposed method, Gaussian mixture model (GMM) is used to determine moving persons in image sequences. It reacts to changes that take place in the scene like different illumination; moving objects start and stop often, etc. Background noise in the scene is eliminated through applying morphological operations and the motions of tracked people which is determined by using the Kalman filter. The Kalman filter is applied to predict the tracked location in each frame and to determine the likelihood of each detection. We used a benchmark data set for the evaluation based on a side wall stationary camera. The actual scenes from the data set are taken on a street including up to eight people in front of the camera in different two scenes, the duration is 53 and 35 seconds, respectively. In the case of walking pedestrians in close proximity, the proposed method has achieved the detection ratio of 87%, and the tracking ratio is 77 % successfully. When they are deferred from each other, the detection ratio is increased to 90% and the tracking ratio is also increased to 79%.Keywords: automatic detection, tracking, pedestrians, counting
Procedia PDF Downloads 256927 Other-Generated Disclosure: A Challenge to Privacy on Social Network Sites
Authors: Tharntip Tawnie Chutikulrungsee, Oliver Kisalay Burmeister, Maumita Bhattacharya, Dragana Calic
Abstract:
Sharing on social network sites (SNSs) has rapidly emerged as a new social norm and has become a global phenomenon. Billions of users reveal not only their own information (self disclosure) but also information about others (other-generated disclosure), resulting in a risk and a serious threat to either personal or informational privacy. Self-disclosure (SD) has been extensively researched in the literature, particularly regarding control of individual and existing privacy management. However, far too little attention has been paid to other-generated disclosure (OGD), especially by insiders. OGD has a strong influence on self-presentation, self-image, and electronic word of mouth (eWOM). Moreover, OGD is more credible and less likely manipulated than SD, but lacks privacy control and legal protection to some extent. This article examines OGD in depth, ranging from motivation to both online and offline impacts, based upon lived experiences from both ‘the disclosed’ and ‘the discloser’. Using purposive sampling, this phenomenological study involves an online survey and in-depth interviews. The findings report the influence of peer disclosure as well as users’ strategies to mitigate privacy issues. This article also calls attention to the challenge of OGD privacy and inadequacies in the law related to privacy protection in the digital domain.Keywords: facebook, online privacy, other-generated disclosure, social networks sites (SNSs)
Procedia PDF Downloads 250