Search results for: heart damage
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3528

Search results for: heart damage

1068 Effect of Pioglitazone on Intracellular Na+ Homeostasis in Metabolic Syndrome-Induced Cardiomyopathy in Male Rats

Authors: Ayca Bilginoglu, Belma Turan

Abstract:

Metabolic syndrome, is associated impaired blood glucose level, insulin resistance, dyslipidemia caused by abdominal obesity. Also, it is related with cardiovascular risk accumulation and cardiomyopathy. The hypothesis of this study was to examine the effect of thiazolidinediones such as pioglitazone which is widely used insulin-sensitizing agents that improve glycemic control, on intracellular Na+ homeostasis in metabolic syndrome-induced cardiomyopathy in male rats. Male Wistar-Albino rats were randomly divided into three groups, namely control (Con, n=7), metabolic syndrome (MetS, n=7) and pioglitazone treated metabolic syndrome group (MetS+PGZ, n=7). Metabolic syndrome was induced by providing drinking water that was 32% sucrose, for 18 weeks. All of the animals were exposed to a 12 h light – 12 h dark cycle. Abdominal obesity and glucose intolerance had measured as a marker of metabolic syndrome. Intracellular Na+ ([Na+]i) is an important modulator of excitation–contraction coupling in heart. [Na+]i at rest and [Na+]i during pacing with electrical field stimulation in 0.2 Hz, 0.8 Hz, 2.0 Hz stimulation frequency were recorded in cardiomyocytes. Also, Na+ channel current (INa) density and I-V curve were measured to understand [Na+]i homeostasis. In results, high sucrose intake, as well as the normal daily diet, significantly increased body mass and blood glucose level of the rats in the metabolic syndrome group as compared with the non-treated control group. In MetS+PZG group, the blood glucose level and body inclined to decrease to the Con group. There was a decrease in INa density and there was a shift both activation and inactivation curve of INa. Pioglitazone reversed the shift to the control side. Basal [Na+]i either MetS and Con group were not significantly different, but there was a significantly increase in [Na+]i in stimulated cardiomyocytes in MetS group. Furthermore, pioglitazone had not effect on basal [Na+]i but it reversed the increase in [Na+]i in stimulated cardiomyocytes to the that of Con group. Results of the present study suggest that pioglitazone has a significant effect on the Na+ homeostasis in the metabolic syndrome induced cardiomyopathy in rats. All animal procedures and experiments were approved by the Animal Ethics Committee of Ankara University Faculty of Medicine (2015-2-37).

Keywords: insulin resistance, intracellular sodium, metabolic syndrome, sodium current

Procedia PDF Downloads 285
1067 Attrition of Igbo Indigenous Wives' Given Pet Names: Implications for the Igbo Language Endangerment

Authors: Ogbonna Anyanwu

Abstract:

Language attrition describes the non-pathological decrease in language that had previously been acquired by an individual. It can affect some aspects of a language use or all aspects of a language use. The Igbo language, (despite its status as one of the major Nigerian languages) based on recent studies is fast losing its population of first generation speakers and therefore, increasingly becoming endangered and may be heading to extinction as warned by UNESCO if there are no conscious efforts to reverse the situation. The present paper, which contributes to the Igbo endangerment studies, examines the attrition of an aspect of the Igbo language use and practice: the indigenous Igbo wives’ pet names. It surveys the level of attrition of indigenous Igbo wives’ pet names; names which Igbo married men christen their wives upon marriage. The wives’ pet names under investigation here are specifically those which a husband traditionally christens his wife to reflect the intimate marital bond between them and also to extol his wife as an integral part of him. These pet names morphologically, are always suffixed with the compound morpheme diya which is translated as 'her husband' as in enyidiya 'her husband’s friend', obidiya 'her husband’s heart', ahudiya 'her husband’s body', ugwudiya 'her husband’s honour’, etc. The data for the study were collected through questionnaire, and oral interview from 300 male and 100 female respondents of different age groups who are married, indigenous Igbo speakers and are resident in the study areas (two Local Government Areas from two different Senatorial Zones in Abia and Imo States, south-eastern, Nigeria). Findings from the study show almost a total attrition of the Igbo indigenous wives’ pet names under study across the different age groups. For the respondents within the age group of 25-54 years, there is no more christening and bearing of the indigenous Igbo wives’ pet names by men and women respectively. This age group gives and bears pet names which the group members feel are contemporary and in line with modernity. This is a piece of evidence that the Igbo indigenous pet names’ use and practice are no longer part of the lifestyle of this group of respondents and therefore, they cannot transmit such names to their own children. For the respondents within the age group of 55-74 years, the indigenous Igbo wives’ pet names are also fading fast with less than 20% retention within the age group of 65-74 years with very few traces within the group of 55-64 years. These findings are further evidence that this aspect of Igbo language use and culture is severely threatened and may be on the verge of being lost. The loss of this aspect of the Igbo language or any aspect of the language has huge implications for the gradual and steady endangerment of the language as predicted by UNESCO.

Keywords: attrition, endangerment, practice, Igbo

Procedia PDF Downloads 205
1066 Evaluation of Produced Water Treatment Using Advanced Oxidation Processes and Sodium Ferrate(VI)

Authors: Erica T. R. Mendonça, Caroline M. B. de Araujo, Filho, Osvaldo Chiavone, Sobrinho, Maurício A. da Motta

Abstract:

Oil and gas exploration is an essential activity for modern society, although the supply of its global demand has caused enough damage to the environment, mainly due to produced water generation, which is an effluent associated with the oil and gas produced during oil extraction. It is the aim of this study to evaluate the treatment of produced water, in order to reduce its oils and greases content (OG), by using flotation as a pre-treatment, combined with oxidation for the remaining organic load degradation. Thus, there has been tested Advanced Oxidation Process (AOP) using both Fenton and photo-Fenton reactions, as well as a chemical oxidation treatment using sodium ferrate(VI), Na2[FeO4], as a strong oxidant. All the studies were carried out using real samples of produced water from petroleum industry. The oxidation process using ferrate(VI) ion was studied based on factorial experimental designs. The factorial design was used in order to study how the variables pH, temperature and concentration of Na2[FeO4] influences the O&G levels. For the treatment using ferrate(VI) ion, the results showed that the best operating point is obtained when the temperature is 28 °C, pH 3, and a 2000 mg.L-1 solution of Na2[FeO4] is used. This experiment has achieved a final O&G level of 4.7 mg.L-1, which means 94% percentage removal efficiency of oils and greases. Comparing Fenton and photo-Fenton processes, it was observed that the Fenton reaction did not provide good reduction of O&G (around 20% only). On the other hand, a degradation of approximately 80.5% of oil and grease was obtained after a period of seven hours of treatment using photo-Fenton process, which indicates that the best process combination has occurred between the flotation and the photo-Fenton reaction using solar radiation, with an overall removal efficiency of O&G of approximately 89%.

Keywords: advanced oxidation process, ferrate (VI) ion, oils and greases removal, produced water treatment

Procedia PDF Downloads 319
1065 Comparative Study between Angiotensin Converting Enzyme Inhibitors and Angiotensin Receptor Blockers on Ulcerative Colitis Induced Experimentally in Rats

Authors: Azza H. El-Medany, Hanan H. Hagar, Jamila H. El-Medany

Abstract:

Ulcerative colitis (UC) is one of chronic inflammatory diseases primarily affecting colon with unknown etiology. Some researches papers mentioned the possibility of the use of drugs that affect the angiotensin II in reducing the complication of ulcerative colitis. The aim of the present study is to evaluate the potential protective and therapeutic effects of captopril and valsartan on ulcerative colitis induced experimentally in rats using acetic acid. The results were assessed by histological assessment of colonic tissues and measurement of malondialdehyde (MDA), tumor necrosis factor (TNF-α), transforming growth factor (TGF-1B), angiotensin converting enzyme (ACE), reduced glutathione (GSH) and platelet activating factor (PAF) levels in colonic tissues. Oral pre-treatment with captopril or valsartan in a dose of 30 mgkg-1 body weight for 2 weeks before induction of colitis (prophylactic groups) and continuously for 2 weeks after induction (therapeutic groups) significantly reduce MDA, TNF-α, PAF, TGF-1B and ACE levels in colonic tissues as compared to acetic acid control group. Also, a significant increase in GSH level was observed in colonic tissues. Captopril and valsartan attenuated the macroscopic and microscopic colonic damage induced by acetic acid. These results suggest that either captopril or valsartan may be effective as prophylactic or treatment of UC through inhibition of ACE and scavenging effect on oxygen-derived free radicals.

Keywords: captopril, valsartan, angiotensin converting enzyme, reduced glutathione, tumor necrosis factor

Procedia PDF Downloads 269
1064 The Routine Use of a Negative Pressure Incision Management System in Vascular Surgery: A Case Series

Authors: Hansraj Bookun, Angela Tan, Rachel Xuan, Linheng Zhao, Kejia Wang, Animesh Singla, David Kim, Christopher Loupos

Abstract:

Introduction: Incisional wound complications in vascular surgery patients represent a significant clinical and econometric burden of morbidity and mortality. The objective of this study was to trial the feasibility of applying the Prevena negative pressure incision management system as a routine dressing in patients who had undergone arterial surgery. Conventionally, Prevena has been applied to groin incisions, but this study features applications on multiple wound sites such as the thigh or major amputation stumps. Method: This was a cross-sectional observational, single-centre case series of 12 patients who had undergone major vascular surgery. Their wounds were managed with the Prevena system being applied either intra-operatively or on the first post-operative day. Demographic and operative details were collated as well as the length of stay and complication rates. Results: There were 9 males (75%) with mean age of 66 years and the comorbid burden was as follows: ischaemic heart disease (92%), diabetes (42%), hypertension (100%), stage 4 or greater kidney impairment (17%) and current or ex-smoking (83%). The main indications were acute ischaemia (33%), claudication (25%), and gangrene (17%). There were single instances of an occluded popliteal artery aneurysm, diabetic foot infection, and rest pain. The majority of patients (50%) had hybrid operations with iliofemoral endarterectomies, patch arterioplasties, and further peripheral endovascular treatment. There were 4 complex arterial bypass operations and 2 major amputations. The mean length of stay was 17 ± 10 days, with a range of 4 to 35 days. A single complication, in the form of a lymphocoele, was encountered in the context of an iliofemoral endarterectomy and patch arterioplasty. This was managed conservatively. There were no deaths. Discussion: The Prevena wound management system shows that in conjunction with safe vascular surgery, absolute wound complication rates remain low and that it remains a valuable adjunct in the treatment of vasculopaths.

Keywords: wound care, negative pressure, vascular surgery, closed incision

Procedia PDF Downloads 137
1063 Quantification of Effects of Structure-Soil-Structure Interactions on Urban Environment under Rayleigh Wave Loading

Authors: Neeraj Kumar, J. P. Narayan

Abstract:

The effects of multiple Structure-Soil-Structure Interactions (SSSI) on the seismic wave-field is generally disregarded by earthquake engineers, particularly the surface waves which cause more damage to buildings. Closely built high rise buildings exchange substantial seismic energy with each other and act as a full-coupled dynamic system. In this paper, SSI effects on the building responses and the free field motion due to a small city consisting 25- homogenous buildings blocks of 10-storey are quantified. The rocking and translational behavior of building under Rayleigh wave loading is studied for different dimensions of the building. The obtained dynamic parameters of buildings revealed a reduction in building roof drift with an increase in number of buildings ahead of the considered building. The strain developed by vertical component of Rayleigh may cause tension in structural components of building. A matching of fundamental frequency of building for the horizontal component of Rayleigh wave with that for vertically incident SV-wave is obtained. Further, the fundamental frequency of building for the vertical vibration is approximately twice to that for horizontal vibration. The city insulation has caused a reduction of amplitude of Rayleigh wave up to 19.3% and 21.6% in the horizontal and vertical components, respectively just outside the city. Further, the insulating effect of city was very large at fundamental frequency of buildings for both the horizontal and vertical components. Therefore, it is recommended to consider the insulating effects of city falling in the path of Rayleigh wave propagation in seismic hazard assessment for an area.

Keywords: structure-soil-structure interactions, Rayleigh wave propagation, finite difference simulation, dynamic response of buildings

Procedia PDF Downloads 215
1062 Analysis of the Vibration Behavior of a Small-Scale Wind Turbine Blade under Johannesburg Wind Speed

Authors: Tolulope Babawarun, Harry Ngwangwa

Abstract:

The wind turbine blade may sustain structural damage from external loads such as high winds or collisions, which could compromise its aerodynamic efficiency. The wind turbine blade vibrates at significant intensities and amplitudes under these conditions. The effect of these vibrations on the dynamic flow field surrounding the blade changes the forces operating on it. The structural dynamic analysis of a small wind turbine blade is considered in this study. It entails creating a finite element model, validating the model, and doing structural analysis on the verified finite element model. The analysis is based on the structural reaction of a small-scale wind turbine blade to various loading sources. Although there are many small-scale off-shore wind turbine systems in use, only preliminary structural analysis is performed during design phases; these systems' performance under various loading conditions as they are encountered in real-world situations has not been properly researched. This will allow us to record the same Equivalent von Mises stress and deformation that the blade underwent. A higher stress contour was found to be more concentrated near the middle span of the blade under the various loading scenarios studied. The highest stress that the blade in this study underwent is within the range of the maximum stress that blade material can withstand. The maximum allowable stress of the blade material is 1,770 MPa. The deformation of the blade was highest at the blade tip. The critical speed of the blade was determined to be 4.3 Rpm with a rotor speed range of 0 to 608 Rpm. The blade's mode form under loading conditions indicates a bending mode, the most prevalent of which is flapwise bending.

Keywords: ANSYS, finite element analysis, static loading, dynamic analysis

Procedia PDF Downloads 87
1061 Osteoarthritis (OA): A Total Knee Replacement Surgery

Authors: Loveneet Kaur

Abstract:

Introduction: Osteoarthritis (OA) is one of the leading causes of disability, and the knee is the most commonly affected joint in the body. The last resort for treatment of knee OA is Total Knee Replacement (TKR) surgery. Despite numerous advances in prosthetic design, patients do not reach normal function after surgery. Current surgical decisions are made on 2D radiographs and patient interviews. Aims: The aim of this study was to compare knee kinematics pre and post-TKR surgery using computer-animated images of patient-specific models under everyday conditions. Methods: 7 subjects were recruited for the study. Subjects underwent 3D gait analysis during 4 everyday activities and medical imaging of the knee joint pre- and one-month post-surgery. A 3D model was created from each of the scans, and the kinematic gait analysis data was used to animate the images. Results: Improvements were seen in a range of motion in all 4 activities 1-year post-surgery. The preoperative 3D images provide detailed information on the anatomy of the osteoarthritic knee. The postoperative images demonstrate potential future problems associated with the implant. Although not accurate enough to be of clinical use, the animated data can provide valuable insight into what conditions cause damage to both the osteoarthritic and prosthetic knee joints. As the animated data does not require specialist training to view, the images can be utilized across the fields of health professionals and manufacturing in the assessment and treatment of patients pre and post-knee replacement surgery. Future improvements in the collection and processing of data may yield clinically useful data. Conclusion: Although not yet of clinical use, the potential application of 3D animations of the knee joint pre and post-surgery is widespread.

Keywords: Orthoporosis, Ortharthritis, knee replacement, TKR

Procedia PDF Downloads 48
1060 Blood Ketones as a Point of Care Testing in Paediatric Emergencies

Authors: Geetha Jayapathy, Lakshmi Muthukrishnan, Manoj Kumar Reddy Pulim , Radhika Raman

Abstract:

Introduction: Ketones are the end products of fatty acid metabolism and a source of energy for vital organs such as the brain, heart and skeletal muscles. Ketones are produced in excess when glucose is not available as a source of energy or it cannot be utilized as in diabetic ketoacidosis. Children admitted in the emergency department often have starvation ketosis which is not clinically manifested. Decision on admission of children to the emergency room with subtle signs can be difficult at times. Point of care blood ketone testing can be done at the bedside even in a primary level care setting to supplement and guide us in our management decisions. Hence this study was done to explore the utility of this simple bedside parameter as a supplement in assessing pediatric patients presenting to the emergency department. Objectives: To estimate blood ketones of children admitted in the emergency department. To analyze the significance of blood ketones in various disease conditions. Methods: Blood ketones using point of care testing instrument (ABOTTprecision Xceed Pro meters) was done in patients getting admitted in emergency room and in out-patients (through sample collection centre). Study population: Children aged 1 month to 18 years were included in the study. 250 cases (In-patients) and 250 controls (out-patients) were collected. Study design: Prospective observational study. Data on details of illness and physiological status were documented. Blood ketones were compared between the two groups and all in patients were categorized into various system groups and analysed. Results: Mean blood ketones were high in in-patients ranging from 0 to 7.2, with a mean of 1.28 compared to out-patients ranging from 0 to 1.9 with a mean of 0.35. This difference was statistically significant with a p value < 0.001. In-patients with shock (mean of 4.15) and diarrheal dehydration (mean of 1.85) had a significantly higher blood ketone values compared to patients with other system involvement. Conclusion: Blood ketones were significantly high (above the normal range) in pediatric patients who are sick requiring admission. Patients with various forms of shock had very high blood ketone values as found in diabetic ketoacidosis. Ketone values in diarrheal dehydration were moderately high correlating to the degree of dehydration.

Keywords: admission, blood ketones, paediatric emergencies, point of care testing

Procedia PDF Downloads 209
1059 Effect of Labisia pumila var. alata with a Structured Exercise Program in Women with Polycystic Ovarian Syndrome

Authors: D. Maryama AG. Daud, Zuliana Bacho, Stephanie Chok, DG. Mashitah PG. Baharuddin, Mohd Hatta Tarmizi, Nathira Abdul Majeed, Helen Lasimbang

Abstract:

Lifestyle, physical activity, food intake, genetics and medication are contributing factors for people getting obese. Which in some of the obese people were a low or non-responder to exercise. And obesity is very common clinical feature in women affected by Polycystic Ovarian Syndrome (PCOS). Labisia pumila var. alata (LP) is a local herb which had been widely used by Malay women in treating menstrual irregularities, painful menstruation and postpartum well-being. Therefore, this study was carried out to investigate the effect of LP with a structured exercise program on anthropometric, body composition and physical fitness performance of PCOS patients. By using a single blind and parallel study design, where by subjects were assigned into a 16-wk structured exercise program (3 times a week) interventions; (LP and exercise; LPE, and exercise only; E). All subjects in the LPE group were prescribed 200mg LP; once a day, for 16 weeks. The training heart rate (HR) was monitored based on a percentage of the maximum HR (HRmax) achieved during submaximal exercise test that was conducted at wk-0 and wk-8. The progression of aerobic exercise intensity from 25–30 min at 60 – 65% HRmax during the first week to 45 min at 75–80% HRmax by the end of this study. Anthropometric (body weight, Wt; waist circumference, WC; and hip circumference, HC), body composition (fat mass, FM; percentage body fat, %BF; Fat Free Mass, FFM) and physical fitness performance (push up to failure, PU; 1-minute Sit Up, SU; and aerobic step test, PVO2max) were measured at wk-0, wk-4, wk-8, wk-12, and wk-16. This study found that LP does not have a significant effect on body composition, anthropometric and physical fitness performance of PCOS patients underwent a structured exercise program. It means LP does not improve exercise responses of PCOS patients towards anthropometric, body composition and physical fitness performance. The overall data shows exercise responses of PCOS patients is by increasing their aerobic endurance and muscle endurance performances, there is a significant reduction in FM, PBF, HC, and Wt significantly. Therefore, exercise program for PCOS patients have to focus on aerobic fitness, and muscle endurance.

Keywords: polycystic ovarian syndrome, Labisia pumila var. alata, body composition, aerobic endurance, muscle endurance, anthropometric

Procedia PDF Downloads 208
1058 Retinal Changes in Patients with Idiopathic Inflammatory Myopathies: A Case-Control Study

Authors: Rachna Agarwal, R. Naveen, Darpan Thakre, Rohit Shahi, Maryam Abbasi, Upendra Rathore, Latika Gupta

Abstract:

Aim: Retinal changes are the window to systemic vasculature. Therefore, we explored retinal changes in patients with idiopathic inflammatory myopathies (IIM) as a surrogate for vascular health. Methods: Adult and juvenile IIM patients visiting a tertiary care centre in 2021 satisfying the International Myositis Classification Criteria were enrolled for detailed ophthalmic examination in comparison with healthy controls (HC). Patients with conditions that precluded thorough posterior chamber examination were excluded. Scale variables are expressed as median (IQR). Multivariate analysis (binary logistic regression-BLR) was conducted, adjusting for age, gender, and comorbidities besides factors significant in univariate analysis. Results: 43 patients with IIM [31 females; age 36 (23-45) years; disease duration 5.5 (2-12) months] were enrolled for participation. DM (44%) was the most common diagnosis. IIM patients exhibited frequent attenuation of retinal vessels (32.6% vs. 4.3%, p <0.001), AV nicking (14% vs. 2.2%, p=0.053), and vascular tortuosity (18.6% vs. 2.2%, p=0.012), besides decreased visual acuity (53.5% vs. 10.9%, p<0.001) and immature cataracts (34.9% vs. 2.2%, p<0.001). Attenuation of vessels [OR 10.9 (1.7-71), p=0.004] emerged as significantly different from HC after adjusting for covariates in BLR. Notably, adults with IIM were more predisposed to retinal abnormalities [21 (57%) vs. 1 (16%), p=0.068], especially attenuation of vessels [14(38%) vs. 0(0), p=0.067] than jIIM. However, no difference was found in retinal features amongst the subtypes of adult IIM, nor did they correlate with MDAAT, MDI, or HAQ-DI. Conclusion: Retinal microvasculopathy and diminution of vision occur in nearly one-third to half of the patients with IIM. Microvasculopathy occurs across subtypes of IIM, and more so in adults, calling for further investigation as a surrogate for damage assessment and potentially even systemic vascular health.

Keywords: idiopathic inflammatory myopathies, vascular health, retinal microvasculopathy, arterial attenuation

Procedia PDF Downloads 91
1057 High Performance Wood Shear Walls and Dissipative Anchors for Damage Limitation

Authors: Vera Wilden, Benno Hoffmeister, Georgios Balaskas, Lukas Rauber, Burkhard Walter

Abstract:

Light-weight timber frame elements represent an efficient structural solution for wooden multistory buildings. The wall elements of such buildings – which act as shear diaphragms- provide lateral stiffness and resistance to wind and seismic loads. The tendency towards multi-story structures leads to challenges regarding the prediction of stiffness, strength and ductility of the buildings. Lightweight timber frame elements are built up of several structural parts (sheeting, fasteners, frame, support and anchorages); each of them contributing to the dynamic response of the structure. This contribution describes the experimental and numerical investigation and development of enhanced lightweight timber frame buildings. These developments comprise high-performance timber frame walls with the variable arrangements of sheathing planes and dissipative anchors at the base of the timber buildings, which reduce damages to the timber structure and can be exchanged after significant earthquakes. In order to prove the performance of the developed elements in the context of a real building a full-scale two-story building core was designed and erected in the laboratory and tested experimentally for its seismic performance. The results of the tests and a comparison of the test results to the predicted behavior are presented. Observation during the test also reveals some aspects of the design and details which need to consider in the application of the timber walls in the context of the complete building.

Keywords: dissipative anchoring, full scale test, push-over-test, wood shear walls

Procedia PDF Downloads 246
1056 Temperature Distribution for Asphalt Concrete-Concrete Composite Pavement

Authors: Tetsya Sok, Seong Jae Hong, Young Kyu Kim, Seung Woo Lee

Abstract:

The temperature distribution for asphalt concrete (AC)-Concrete composite pavement is one of main influencing factor that affects to performance life of pavement. The temperature gradient in concrete slab underneath the AC layer results the critical curling stress and lead to causes de-bonding of AC-Concrete interface. These stresses, when enhanced by repetitive axial loadings, also contribute to the fatigue damage and eventual crack development within the slab. Moreover, the temperature change within concrete slab extremely causes the slab contracts and expands that significantly induces reflective cracking in AC layer. In this paper, the numerical prediction of pavement temperature was investigated using one-dimensional finite different method (FDM) in fully explicit scheme. The numerical predicted model provides a fundamental and clear understanding of heat energy balance including incoming and outgoing thermal energies in addition to dissipated heat in the system. By using the reliable meteorological data for daily air temperature, solar radiation, wind speech and variable pavement surface properties, the predicted pavement temperature profile was validated with the field measured data. Additionally, the effects of AC thickness and daily air temperature on the temperature profile in underlying concrete were also investigated. Based on obtained results, the numerical predicted temperature of AC-Concrete composite pavement using FDM provided a good accuracy compared to field measured data and thicker AC layer significantly insulates the temperature distribution in underlying concrete slab.

Keywords: asphalt concrete, finite different method (FDM), curling effect, heat transfer, solar radiation

Procedia PDF Downloads 269
1055 Regression-Based Approach for Development of a Cuff-Less Non-Intrusive Cardiovascular Health Monitor

Authors: Pranav Gulati, Isha Sharma

Abstract:

Hypertension and hypotension are known to have repercussions on the health of an individual, with hypertension contributing to an increased probability of risk to cardiovascular diseases and hypotension resulting in syncope. This prompts the development of a non-invasive, non-intrusive, continuous and cuff-less blood pressure monitoring system to detect blood pressure variations and to identify individuals with acute and chronic heart ailments, but due to the unavailability of such devices for practical daily use, it becomes difficult to screen and subsequently regulate blood pressure. The complexities which hamper the steady monitoring of blood pressure comprises of the variations in physical characteristics from individual to individual and the postural differences at the site of monitoring. We propose to develop a continuous, comprehensive cardio-analysis tool, based on reflective photoplethysmography (PPG). The proposed device, in the form of an eyewear captures the PPG signal and estimates the systolic and diastolic blood pressure using a sensor positioned near the temporal artery. This system relies on regression models which are based on extraction of key points from a pair of PPG wavelets. The proposed system provides an edge over the existing wearables considering that it allows for uniform contact and pressure with the temporal site, in addition to minimal disturbance by movement. Additionally, the feature extraction algorithms enhance the integrity and quality of the extracted features by reducing unreliable data sets. We tested the system with 12 subjects of which 6 served as the training dataset. For this, we measured the blood pressure using a cuff based BP monitor (Omron HEM-8712) and at the same time recorded the PPG signal from our cardio-analysis tool. The complete test was conducted by using the cuff based blood pressure monitor on the left arm while the PPG signal was acquired from the temporal site on the left side of the head. This acquisition served as the training input for the regression model on the selected features. The other 6 subjects were used to validate the model by conducting the same test on them. Results show that the developed prototype can robustly acquire the PPG signal and can therefore be used to reliably predict blood pressure levels.

Keywords: blood pressure, photoplethysmograph, eyewear, physiological monitoring

Procedia PDF Downloads 278
1054 Impacts and Management of Oil Spill Pollution along the Chabahar Bay by ESI Mapping, Iran

Authors: M. Sanjarani, A. Danehkar, A. Mashincheyan, A. H. Javid, S. M. R. Fatemi

Abstract:

The oil spill in marine water has direct impact on coastal resources and community. Environmental Sensitivity Index (ESI) map is the first step to assess the potential impact of an oil spill and minimize the damage of coastal resources. In order to create Environmental Sensitivity Maps for the Chabahar bay (Iran), information has been collected in three different layers (Shoreline Classification, Biological and Human- uses resources) by means of field observations and measurements of beach morphology, personal interviews with professionals of different areas and the collection of bibliographic information. In this paper an attempt made to prepare an ESI map for sensitivity to oil spills of Chabahar bay coast. The Chabahar bay is subjected to high threaten to oil spill because of port, dense mangrove forest,only coral spot in Oman Sea and many industrial activities. Mapping the coastal resources, shoreline and coastal structures was carried out using Satellite images and GIS technology. The coastal features classified into three major categories as: Shoreline Classification, Biological and Human uses resources. The important resources classified into mangrove, Exposed tidal flats, sandy beach, etc. The sensitivity of shore was ranked as low to high (1 = low sensitivity,10 = high sensitivity) based on geomorphology of Chabahar bay coast using NOAA standards (sensitivity to oil, ease of clean up, etc). Eight ESI types were found in the area namely; ESI 1A, 1C, 3A, 6B, 7, 8B,9A and 10D. Therefore, in the study area, 50% were defined as High sensitivity, less than 1% as Medium, and 49% as low sensitivity areas. The ESI maps are useful to the oil spill responders, coastal managers and contingency planners. The overall ESI mapping product can provide a valuable management tool not only for oil spill response but for better integrated coastal zone management.

Keywords: ESI, oil spill, GIS, Chabahar Bay, Iran

Procedia PDF Downloads 366
1053 Effects of Marinating with Cashew Apple Extract on the Bacterial Growth of Beef and Chicken Meat

Authors: S. Susanti, V. P. Bintoro, A. Setiadi, S. I. Santoso, D. R. Febriandi

Abstract:

Meat is a foodstuff of animal origin. It is perishable because a suitable medium for bacterial growth. That is why meat can be a potential hazard to humans. Several ways have been done to inhibit bacterial population in an effort to prolong the meat shelf-life. However, aberration sometimes happens in the practices of meat preservation, for example by using chemical material that possessed strong antibacterial activity like formaldehyde. For health reason, utilization of formaldehyde as a food preservative was forbidden because of DNA damage resulting cancer and birth defects. Therefore, it is important to seek a natural food preservative that is not harmful to the body. This study aims to reveal the potency of cashew apple as natural food preservative by measuring its antibacterial activity and marinating effect on the bacterial growth of beef and chicken meat. Antibacterial activity was measured by The Kirby-Bauer method while bacterial growth was determined by total plate count method. The results showed that inhibition zone of 10-30% cashew apple extract significantly wider compared to 0% extract on the medium of E. coli, S. aureus, S. typii, and Bacillus sp. Furthermore, beef marinated with 20-30% cashew apple extract and chicken meat marinated with 5-15% extract significantly less in the total number of bacteria compared to 0% extract. It can be concluded that marinating with 5-30% cashew apple extract can effectively inhibit the bacterial growth of beef and chicken meat. Moreover, the concentration of extracts to inhibit bacterial populations in chicken meat was reached at the lower level compared to beef. Thus, cashew apple is potential as a natural food preservative.

Keywords: bacterial growth, cashew apple, marinating, meat

Procedia PDF Downloads 276
1052 Survey and Identification of Coinfecting Botryosphaeriales Causing Stem Canker Diseases of Eucalyptus camaldulensis in Ethiopia

Authors: Wendu Admasu, Assefa Sintayehu, Alemu Gezahgne, Zewdu Terefework

Abstract:

Eucalyptus is the most widely planted forest tree species in the world. In Ethiopia, pathogenic fungi pose an increasing threat to Eucalyptus species. Due to limited research, there is insufficient information on the associated diseases and pathogens. This study investigated Eucalyptus diseases, the extent of their damage, and the causal fungal pathogens. A Eucalyptus disease survey was conducted in the Eucalyptus forestry areas of Ethiopia during the growth years 2019/20 and 2020/21. Disease assessment and sampling were carried out in eighteen plantations at nine locations. E. camaldulensis was the most dominant species planted in the surveyed areas. The field study shows a high incidence and severity of canker diseases. Diseased stem and branch samples were collected, cultured on malt extract agar media and studied. The results of morphological and ITS sequence analysis confirmed that the fungal species Neofusicoccum parvum, Lasiodiplodia theobromae, and Aplosporella hesperidica caused the observed canker symptoms. This is the first report of Lasiodiplodia theobromae and Aplosporella hesperidica causing diseases in Eucalyptus plants in Ethiopia. Changes in global climate and environmental factors, such as altitude, are believed to have a strong impact on the susceptibility of Eucalyptus plants to diseases. Strict quarantine practices and continuous monitoring of pathogenic and endophytic fungal species associated with Eucalyptus trees are issued to be prioritized to effectively control and manage the disease.

Keywords: Neofusicoccum, Lasiodiplodia, Aplosporella, pathogenicity, phylogeny, severity

Procedia PDF Downloads 69
1051 Multiscale Cohesive Zone Modeling of Composite Microstructure

Authors: Vincent Iacobellis, Kamran Behdinan

Abstract:

A finite element cohesive zone model is used to predict the temperature dependent material properties of a polyimide matrix composite with unidirectional carbon fiber arrangement. The cohesive zone parameters have been obtained from previous research involving an atomistic-to-continuum multiscale simulation of the fiber-matrix interface using the bridging cell multiscale method. The goal of the research was to both investigate the effect of temperature change on the composite behavior with respect to transverse loading as well as the validate the use of cohesive parameters obtained from atomistic-to-continuum multiscale modeling to predict fiber-matrix interfacial cracking. From the multiscale model cohesive zone parameters (i.e. maximum traction and energy of separation) were obtained by modeling the interface between the coarse-grained polyimide matrix and graphite based carbon fiber. The cohesive parameters from this simulation were used in a cohesive zone model of the composite microstructure in order to predict the properties of the macroscale composite with respect to changes in temperature ranging from 21 ˚C to 316 ˚C. Good agreement was found between the microscale RUC model and experimental results for stress-strain response, stiffness, and material strength at low and high temperatures. Examination of the deformation of the composite through localized crack initiation at the fiber-matrix interface also agreed with experimental observations of similar phenomena. Overall, the cohesive zone model was shown to be both effective at modeling the composite properties with respect to transverse loading as well as validated the use of cohesive zone parameters obtained from the multiscale simulation.

Keywords: cohesive zone model, fiber-matrix interface, microscale damage, multiscale modeling

Procedia PDF Downloads 487
1050 Spatial Analysis of Flood Vulnerability in Highly Urbanized Area: A Case Study in Taipei City

Authors: Liang Weichien

Abstract:

Without adequate information and mitigation plan for natural disaster, the risk to urban populated areas will increase in the future as populations grow, especially in Taiwan. Taiwan is recognized as the world's high-risk areas, where an average of 5.7 times of floods occur per year should seek to strengthen coherence and consensus in how cities can plan for flood and climate change. Therefore, this study aims at understanding the vulnerability to flooding in Taipei city, Taiwan, by creating indicators and calculating the vulnerability of each study units. The indicators were grouped into sensitivity and adaptive capacity based on the definition of vulnerability of Intergovernmental Panel on Climate Change. The indicators were weighted by using Principal Component Analysis. However, current researches were based on the assumption that the composition and influence of the indicators were the same in different areas. This disregarded spatial correlation that might result in inaccurate explanation on local vulnerability. The study used Geographically Weighted Principal Component Analysis by adding geographic weighting matrix as weighting to get the different main flood impact characteristic in different areas. Cross Validation Method and Akaike Information Criterion were used to decide bandwidth and Gaussian Pattern as the bandwidth weight scheme. The ultimate outcome can be used for the reduction of damage potential by integrating the outputs into local mitigation plan and urban planning.

Keywords: flood vulnerability, geographically weighted principal components analysis, GWPCA, highly urbanized area, spatial correlation

Procedia PDF Downloads 286
1049 Non-Invasive Assessment of Peripheral Arterial Disease: Automated Ankle Brachial Index Measurement and Pulse Volume Analysis Compared to Ultrasound Duplex Scan

Authors: Jane E. A. Lewis, Paul Williams, Jane H. Davies

Abstract:

Introduction: There is, at present, a clear and recognized need to optimize the diagnosis of peripheral arterial disease (PAD), particularly in non-specialist settings such as primary care, and this arises from several key facts. Firstly, PAD is a highly prevalent condition. In 2010, it was estimated that globally, PAD affected more than 202 million people and furthermore, this prevalence is predicted to further escalate. The disease itself, although frequently asymptomatic, can cause considerable patient suffering with symptoms such as lower limb pain, ulceration, and gangrene which, in worse case scenarios, can necessitate limb amputation. A further and perhaps the most eminent consequence of PAD arises from the fact that it is a manifestation of systemic atherosclerosis and therefore is a powerful predictor of coronary heart disease and cerebrovascular disease. Objective: This cross sectional study aimed to individually and cumulatively compare sensitivity and specificity of the (i) ankle brachial index (ABI) and (ii) pulse volume waveform (PVW) recorded by the same automated device, with the presence or absence of peripheral arterial disease (PAD) being verified by an Ultrasound Duplex Scan (UDS). Methods: Patients (n = 205) referred for lower limb arterial assessment underwent an ABI and PVW measurement using volume plethysmography followed by a UDS. Presence of PAD was recorded for ABI if < 0.9 (noted if > 1.30) if PVW was graded as 2, 3 or 4 or a hemodynamically significant stenosis > 50% with UDS. Outcome measure was agreement between measured ABI and interpretation of the PVW for PAD diagnosis, using UDS as the reference standard. Results: Sensitivity of ABI was 80%, specificity 91%, and overall accuracy 88%. Cohen’s kappa revealed good agreement between ABI and UDS (k = 0.7, p < .001). PVW sensitivity 97%, specificity 81%, overall accuracy 84%, with a good level of agreement between PVW and UDS (k = 0.67, p < .001). The combined sensitivity of ABI and PVW was 100%, specificity 76%, and overall accuracy 85% (k = 0.67, p < .001). Conclusions: Combing these two diagnostic modalities within one device provided a highly accurate method of ruling out PAD. Such a device could be utilized within the primary care environment to reduce the number of unnecessary referrals to secondary care with concomitant cost savings, reduced patient inconvenience, and prioritization of urgent PAD cases.

Keywords: ankle brachial index, peripheral arterial disease, pulse volume waveform, ultrasound duplex scan

Procedia PDF Downloads 166
1048 Applications of Artificial Intelligence (AI) in Cardiac imaging

Authors: Angelis P. Barlampas

Abstract:

The purpose of this study is to inform the reader, about the various applications of artificial intelligence (AI), in cardiac imaging. AI grows fast and its role is crucial in medical specialties, which use large amounts of digital data, that are very difficult or even impossible to be managed by human beings and especially doctors.Artificial intelligence (AI) refers to the ability of computers to mimic human cognitive function, performing tasks such as learning, problem-solving, and autonomous decision making based on digital data. Whereas AI describes the concept of using computers to mimic human cognitive tasks, machine learning (ML) describes the category of algorithms that enable most current applications described as AI. Some of the current applications of AI in cardiac imaging are the follows: Ultrasound: Automated segmentation of cardiac chambers across five common views and consequently quantify chamber volumes/mass, ascertain ejection fraction and determine longitudinal strain through speckle tracking. Determine the severity of mitral regurgitation (accuracy > 99% for every degree of severity). Identify myocardial infarction. Distinguish between Athlete’s heart and hypertrophic cardiomyopathy, as well as restrictive cardiomyopathy and constrictive pericarditis. Predict all-cause mortality. CT Reduce radiation doses. Calculate the calcium score. Diagnose coronary artery disease (CAD). Predict all-cause 5-year mortality. Predict major cardiovascular events in patients with suspected CAD. MRI Segment of cardiac structures and infarct tissue. Calculate cardiac mass and function parameters. Distinguish between patients with myocardial infarction and control subjects. It could potentially reduce costs since it would preclude the need for gadolinium-enhanced CMR. Predict 4-year survival in patients with pulmonary hypertension. Nuclear Imaging Classify normal and abnormal myocardium in CAD. Detect locations with abnormal myocardium. Predict cardiac death. ML was comparable to or better than two experienced readers in predicting the need for revascularization. AI emerge as a helpful tool in cardiac imaging and for the doctors who can not manage the overall increasing demand, in examinations such as ultrasound, computed tomography, MRI, or nuclear imaging studies.

Keywords: artificial intelligence, cardiac imaging, ultrasound, MRI, CT, nuclear medicine

Procedia PDF Downloads 78
1047 Limited Component Evaluation of the Effect of Regular Cavities on the Sheet Metal Element of the Steel Plate Shear Wall

Authors: Seyyed Abbas Mojtabavi, Mojtaba Fatzaneh Moghadam, Masoud Mahdavi

Abstract:

Steel Metal Shear Wall is one of the most common and widely used energy dissipation systems in structures, which is used today as a damping system due to the increase in the construction of metal structures. In the present study, the shear wall of the steel plate with dimensions of 5×3 m and thickness of 0.024 m was modeled with 2 floors of total height from the base level with finite element method in Abaqus software. The loading is done as a concentrated load at the upper point of the shear wall on the second floor based on step type buckle. The mesh in the model is applied in two directions of length and width of the shear wall, equal to 0.02 and 0.033, respectively, and the mesh in the models is of sweep type. Finally, it was found that the steel plate shear wall with cavity (CSPSW) compared to the SPSW model, S (Mises), Smax (In-Plane Principal), Smax (In-Plane Principal-ABS), Smax (Min Principal) increased by 53%, 70%, 68% and 43%, respectively. The presence of cavities has led to an increase in the estimated stresses, but their presence has caused critical stresses and critical deformations created to be removed from the inner surface of the shear wall and transferred to the desired sections (regular cavities) which can be suggested as a solution in seismic design and improvement of the structure to transfer possible damage during the earthquake and storm to the desired and pre-designed location in the structure.

Keywords: steel plate shear wall, abacus software, finite element method, , boundary element, seismic structural improvement, von misses stress

Procedia PDF Downloads 95
1046 Effects of Essential Oils on the Intestinal Microflora of Termite (Heterotermes indicola)

Authors: Ayesha Aihetasham, Najma Arshad, Sobia Khan

Abstract:

Damage causes by subterranean termites are of major concern today. Termites majorly treated with pesticides resulted in several problems related to health and environment. For this reason, plant-derived natural products specifically essential oils have been evaluated in order to control termites. The aim of the present study was to investigate the antitermitic potential of six essential oils on Heterotermes indicola subterranean termite. No-choice bioassay was used to assess the termiticidal action of essential oils. Further, gut from each set of treated termite group was extracted and analyzed for reduction in number of protozoa and bacteria by protozoal count method using haemocytometer and viable bacterial plate count (dilution method) respectively. In no-choice bioassay it was found that Foeniculum vulgare oil causes high degree of mortality 90 % average mortality at 10 mg oil concentration (10mg/0.42g weight of filter paper). Least mortality appeared to be due to Citrus sinensis oil (43.33 % average mortality at 10 mg/0.42g). The highest activity verified to be of Foeniculum vulgare followed by Eruca sativa, Trigonella foenum-graecum, Peganum harmala, Syzygium cumini and Citrus sinensis. The essential oil which caused maximum reduction in number of protozoa was P. harmala followed by T. foenum-graecum and E. sativa. In case of bacterial count E. sativa oil indicated maximum decrease in bacterial number (6.4×10⁹ CFU/ml). It is concluded that F. vulgare, E. sativa and P. harmala essential oils are highly effective against H. indicola termite and its gut microflora.

Keywords: bacterial count, essential oils, Heterotermes indicola, protozoal count

Procedia PDF Downloads 247
1045 Neutron Irradiated Austenitic Stainless Steels: An Applied Methodology for Nanoindentation and Transmission Electron Microscopy Studies

Authors: P. Bublíkova, P. Halodova, H. K. Namburi, J. Stodolna, J. Duchon, O. Libera

Abstract:

Neutron radiation-induced microstructural changes cause degradation of mechanical properties and the lifetime reduction of reactor internals during nuclear power plant operation. Investigating the effects of neutron irradiation on mechanical properties of the irradiated material (hardening, embrittlement) is challenging and time-consuming. Although the fast neutron spectrum has the major influence on microstructural properties, the thermal neutron effect is widely investigated owing to Irradiation-Assisted Stress Corrosion Cracking firstly observed in BWR stainless steels. In this study, 300-series austenitic stainless steels used as material for NPP's internals were examined after neutron irradiation at ~ 15 dpa. Although several nanoindentation experimental publications are available to determine the mechanical properties of ion irradiated materials, less is available on neutron irradiated materials at high dpa tested in hot-cells. In this work, we present particular methodology developed to determine the mechanical properties of neutron irradiated steels by nanoindentation technique. Furthermore, radiation-induced damage in the specimens was investigated by High Resolution - Transmission Electron Microscopy (HR-TEM) that showed the defect features, particularly Frank loops, cavity microstructure, radiation-induced precipitates and radiation-induced segregation. The results of nanoindentation measurements and associated nanoscale defect features showed the effect of irradiation-induced hardening. We also propose methodologies to optimized sample preparation for nanoindentation and microscotructural studies.

Keywords: nanoindentation, thermal neutrons, radiation hardening, transmission electron microscopy

Procedia PDF Downloads 158
1044 The Design of Safe Spaces in Healthcare Facilities Vulnerable to Tornado Impact in Central US

Authors: Lucy Ampaw-Asiedu, Terri R. Norton

Abstract:

In the wake of recent disasters happening around the world such as earthquake in Italy (January, 2017); hurricanes in the United States (US) (September 2016 and September 2017); and compounding disasters in Haiti (September 2010 and September 2016); to our best knowledge, never has the world seen the need to work on preemptive rather than reactionary measures to salvage this situation than now. Tornadoes are natural hazards that mostly affect mid-western and central states in the US. Tornadoes, like all natural hazards such as hurricanes, earthquakes, floods and others, are very destructive and result in massive destruction to homes, cause billions of dollars in damage and claims many lives. Healthcare facilities in general are vulnerable to disasters, and therefore, the safety of patients, health workers and those who come in to seek shelter should be a priority. The focus of this study is to assess disaster management measures instituted by healthcare facilities. Thus, the sole aim of the study is to examine the vulnerabilities and the design of safe spaces in healthcare facilities in Central US. Objectives that guide the study are to primarily identify the impacts of tornadoes in hospitals and to assess the structural design or specifications of safe spaces. St. John’s Regional Medical Center, now Mercy Hospital in Joplin, is used as a case study. Preliminary results show that the lateral base shear of the proposed design to be 684.24 ton (1508.49kip) for the safe space. Findings from this work will be used to make recommendations about the design of safe spaces for health care facilities in Central US.

Keywords: disaster management, safe spaces, structural design, tornado, vulnerability

Procedia PDF Downloads 215
1043 Factors Associated with Commencement of Non-Invasive Ventilation

Authors: Manoj Kumar Reddy Pulim, Lakshmi Muthukrishnan, Geetha Jayapathy, Radhika Raman

Abstract:

Introduction: In the past two decades, noninvasive positive pressure ventilation (NIPPV) emerged as one of the most important advances in the management of both acute and chronic respiratory failure in children. In the acute setting, it is an alternative to intubation with a goal to preserve normal physiologic functions, decrease airway injury, and prevent respiratory tract infections. There is a need to determine the clinical profile and parameters which point towards the need for NIV in the pediatric emergency setting. Objectives: i) To study the clinical profile of children who required non invasive ventilation and invasive ventilation, ii) To study the clinical parameters common to children who required non invasive ventilation. Methods: All children between one month to 18 years, who were intubated in the pediatric emergency department and those for whom decision to commence Non Invasive Ventilation was made in Emergency Room were included in the study. Children were transferred to the Paediatric Intensive Care Unit and started on Non Invasive Ventilation as per our hospital policy and followed up in the Paediatric Intensive Care Unit. Clinical profile of all children which included age, gender, diagnosis and indication for intubation were documented. Clinical parameters such as respiratory rate, heart rate, saturation, grunting were documented. Parameters obtained were subject to statistical analysis. Observations: Airway disease (Bronchiolitis 25%, Viral induced wheeze 22%) was a common diagnosis in 32 children who required Non Invasive Ventilation. Neuromuscular disorder was the common diagnosis in 27 children (78%) who were Intubated. 17 children commenced on Non Invasive Ventilation who later needed invasive ventilation had Neuromuscular disease. High frequency nasal cannula was used in 32, and mask ventilation in 17 children. Clinical parameters common to the Non Invasive Ventilation group were age < 1 year (17), tachycardia n = 7 (22%), tachypnea n = 23 (72%) and severe respiratory distress n = 9 (28%), grunt n = 7 (22%), SPO2 (80% to 90%) n = 16. Children in the Non Invasive Ventilation + INTUBATION group were > 3 years (9), had tachycardia 7 (41%), tachypnea 9(53%) with a male predominance n = 9. In statistical comparison among 3 groups,'p' value was significant for pH, saturation, and use of Ionotrope. Conclusion: Invasive ventilation can be avoided in the paediatric Emergency Department in children with airway disease, by commencing Non Invasive Ventilation early. Intubation in the pediatric emergency department has a higher association with neuromuscular disorders.

Keywords: clinical parameters, indications, non invasive ventilation, paediatric emergency room

Procedia PDF Downloads 336
1042 Development of a Self-Retractable Front Spoilers Suitable for Indian Road Conditions to Reduce Aerodynamic Drag

Authors: G. Sivaraj, K. M. Parammasivam, R. Veeramanikandan, S. Nithish

Abstract:

Reduction of ground clearance or (ride height) is a vital factor in minimizing aerodynamic drag force and improving vehicle performance. But in India, minimization of ground clearance is limited because of the road conditions. Due to this problem, reduction of aerodynamic drag and performance are not fully improved. In this view, this paper deals with the development of self-retractable front spoilers which are most suitable for Indian road conditions. These retractable spoilers are fitted in the front portion of the car and in speed below 60 km/hr these spoilers are in retracted positions. But, when the car crosses a speed above 60 km/hr, using electronic circuit the spoilers are activated. Thus, using this technique aerodynamic performance can be improved at a speed above 60 km/hr. Also, when the car speed is reduced below the 60 km/hr mark, the front spoiler are retracted which makes it as a normal car. This is because, in Indian roads, speed breakers are installed to cut off speed at particular places. Thus, in these circumstances there are chances of damaging front spoilers. Since, when the driver sees the speed breaker, he will automatically apply break to prevent damage, at this time using electronic circuit the front spoiler is retracted. However, accidentally when the driver fails to apply brakes there are chances for the front spoilers to get a hit. But as the front spoilers are made of Kevlar composite, it can withstand high impact loads and using a spring mechanism the spoilers are retracted immediately. By using CFD analysis and low-speed wind tunnel testing drag coefficient of the 1:10 scaled car model with and without self-retractable spoilers are calculated and validated. Also, using wind tunnel, proper working of self-retractable at car speed below and above 60 km/hr are validated.

Keywords: aerodynamic drag, CFD analysis, kevlar composite, self-retractable spoilers, wind tunnel

Procedia PDF Downloads 342
1041 Analysis of Seismic Waves Generated by Blasting Operations and their Response on Buildings

Authors: S. Ziaran, M. Musil, M. Cekan, O. Chlebo

Abstract:

The paper analyzes the response of buildings and industrially structures on seismic waves (low frequency mechanical vibration) generated by blasting operations. The principles of seismic analysis can be applied for different kinds of excitation such as: earthquakes, wind, explosions, random excitation from local transportation, periodic excitation from large rotating and/or machines with reciprocating motion, metal forming processes such as forging, shearing and stamping, chemical reactions, construction and earth moving work, and other strong deterministic and random energy sources caused by human activities. The article deals with the response of seismic, low frequency, mechanical vibrations generated by nearby blasting operations on a residential home. The goal was to determine the fundamental natural frequencies of the measured structure; therefore it is important to determine the resonant frequencies to design a suitable modal damping. The article also analyzes the package of seismic waves generated by blasting (Primary waves – P-waves and Secondary waves S-waves) and investigated the transfer regions. For the detection of seismic waves resulting from an explosion, the Fast Fourier Transform (FFT) and modal analysis, in the frequency domain, is used and the signal was acquired and analyzed also in the time domain. In the conclusions the measured results of seismic waves caused by blasting in a nearby quarry and its effect on a nearby structure (house) is analyzed. The response on the house, including the fundamental natural frequency and possible fatigue damage is also assessed.

Keywords: building structure, seismic waves, spectral analysis, structural response

Procedia PDF Downloads 400
1040 The Conundrum of Marital Rape in Malawi: The Past, the Present and the Future

Authors: Esther Gumboh

Abstract:

While the definition of rape has evolved over the years and now differs from one jurisdiction to another, at the heart of the offence remains the absence of consent on the part of the victim. In simple terms, rape consists in non-consensual sexual intercourse. Therefore, the core issue is whether the accused acted with the consent of the victim. Once it is established that the act was consensual, a conviction of rape cannot be secured. Traditionally, rape within marriage was impossible because it was understood that a woman gave irrevocable consent to sex with her husband throughout the duration of the marriage. This position has since changed in most jurisdictions. Indeed, Malawian law now recognises the offence of marital rape. This is a victory for women’s rights and gender equality. Curiously, however, the definition of marital rape endorsed differs from the standard understanding of rape as non-consensual sex. Instead, the law has introduced the concept of unreasonableness of the refusal to engage in sex as a defence to an accused. This is an alarming position that undermines the protection sought to be derived from the criminalisation of rape within marriage. Moreover, in the Malawian context where rape remains an offence only men can commit against women, the current legal framework for marital rape perpetuates the societal misnomer that a married woman gives a once-off consent to sexual intercourse by virtue of marriage. This takes us back to the old common law position which many countries have moved away from. The present definition of marital rape under Malawian law also sits at odd with the nature of rape that is applicable to all other instances of non-consensual sexual intercourse. Consequently, the law fails to protect married women from unwanted sexual relations at the hands of their husbands. This paper critically examines the criminalisation of marital rape in Malawi. It commences with a historical account of the conceptualisation of rape and then looks at judgments that rejected the validity of marital rape. The discussion then moves to the debates that preceded the criminalisation of marital rape in Malawi and how the Law Commission reasoned to finally make a recommendation in its favour. Against this background, the paper analyses the legal framework for marital rape and what this means for the elements of the offence and defences that may be raised by an accused. In the final analysis, this contribution recommends that there is need to amend the definition of marital rape. Better still, the law should simply state that the fact of marriage is not a defence to a charge of rape, or, in other words, that there is no marital rape exemption. This would automatically mean that husbands are subjected to the same criminal law principles as their unmarried counterparts when it comes to non-consensual sexual intercourse with their wives.

Keywords: criminal law, gender, Malawi, marital rape, rape, sexual intercourse

Procedia PDF Downloads 354
1039 Fake Accounts Detection in Twitter Based on Minimum Weighted Feature Set

Authors: Ahmed ElAzab, Amira M. Idrees, Mahmoud A. Mahmoud, Hesham Hefny

Abstract:

Social networking sites such as Twitter and Facebook attracts over 500 million users across the world, for those users, their social life, even their practical life, has become interrelated. Their interaction with social networking has affected their life forever. Accordingly, social networking sites have become among the main channels that are responsible for vast dissemination of different kinds of information during real time events. This popularity in Social networking has led to different problems including the possibility of exposing incorrect information to their users through fake accounts which results to the spread of malicious content during life events. This situation can result to a huge damage in the real world to the society in general including citizens, business entities, and others. In this paper, we present a classification method for detecting fake accounts on Twitter. The study determines the minimized set of the main factors that influence the detection of the fake accounts on Twitter, then the determined factors have been applied using different classification techniques, a comparison of the results for these techniques has been performed and the most accurate algorithm is selected according to the accuracy of the results. The study has been compared with different recent research in the same area, this comparison has proved the accuracy of the proposed study. We claim that this study can be continuously applied on Twitter social network to automatically detect the fake accounts, moreover, the study can be applied on different Social network sites such as Facebook with minor changes according to the nature of the social network which are discussed in this paper.

Keywords: fake accounts detection, classification algorithms, twitter accounts analysis, features based techniques

Procedia PDF Downloads 416