Search results for: real rewards
2936 High School Students’ Seismic Risk Perception and Preparedness in Shavar, Dhaka
Authors: Mohammad Lutfur Rahman
Abstract:
School students of Dhaka are in extreme risk of natural disasters. However, the study on assessment of the real scenario of high school students about perceptions of earthquake is very little. The purpose of this cross-sectional study is to assess the seismic risk perception and preparedness levels about earthquake among high school students in Shavar, Dhaka. A questionnaire was developed, and data collection was done about a group of high school students in seven classrooms. The author uses a method of surveying high school students to identify and describe the factors that influence their knowledge and perceptions about earthquake. This study examines gender and grade differences in perceived risk and communication behavior in response to the earthquake. Female students’ preparation, participation, and communication with family are more frequent than that of male students. Female students have been found to be more likely to learn about a disaster than male students. Higher grade students have more awareness but less preparedness about earthquake than that of the younger one. This research concludes that irrespective of grades, high school students are vulnerable to earthquake due to the lack of a seismic education program.Keywords: awareness, earthquake, risk perception, seismic
Procedia PDF Downloads 2472935 High Temperature Oxidation of Cr-Steel Interconnects in Solid Oxide Fuel Cells
Authors: Saeed Ghali, Azza Ahmed, Taha Mattar
Abstract:
Solid Oxide Fuel Cell (SOFC) is a promising solution for the energy resources leakage. Ferritic stainless steel becomes a suitable candidate for the SOFCs interconnects due to the recent advancements. Different steel alloys were designed to satisfy the needed characteristics in SOFCs interconnect as conductivity, thermal expansion and corrosion resistance. Refractory elements were used as alloying elements to satisfy the needed properties. The oxidation behaviour of the developed alloys was studied where the samples were heated for long time period at the maximum operating temperature to simulate the real working conditions. The formed scale and oxidized surface were investigated by SEM. Microstructure examination was carried out for some selected steel grades. The effect of alloying elements on the behaviour of the proposed interconnects material and the performance during the working conditions of the cells are explored and discussed. Refractory metals alloying of chromium steel seems to satisfy the needed characteristics in metallic interconnects.Keywords: SOFCs, Cr-steel, interconnects, oxidation
Procedia PDF Downloads 3292934 Development of the Ontology of Engineering Design Complexity
Authors: Victor E. Lopez, L. Dale Thomas
Abstract:
As engineered systems become more complex, the difficulty associated with predicting, developing, and operating engineered systems also increases, resulting in increased costs, failure rates, and unexpected consequences. Successfully managing the complexity of the system should reduce these negative consequences. The study of complexity in the context of engineering development has suffered due to the ambiguity of the nature of complexity, what makes a system complex and how complexity translates to real world engineering attributes and consequences. This paper argues that the use of an ontology of engineering design complexity would i) improve the clarity of the research being performed by allowing researchers to use a common conceptualization of complexity, with more precise terminology, and ii) elucidate the connections between certain types of complexity and their consequences for system development. The ontology comprises concepts of complexity found in the literature and the different relations that exists between them. The ontology maps different complexity concepts such as structural complexity, creation complexity, and information entropy, and then relates the to system aspects such as interfaces, development effort, and modularity. The ontology is represented using the Web Ontology Language (OWL). This paper presents the current status of the ontology of engineering design complexity, the main challenges encountered, and the future plans for the ontology.Keywords: design complexity, ontology, design effort, complexity ontology
Procedia PDF Downloads 1852933 Rumour Containment Using Monitor Placement and Truth Propagation
Authors: Amrah Maryam
Abstract:
The emergence of online social networks (OSNs) has transformed the way we pursue and share information. On the one hand, OSNs provide great ease for the spreading of positive information while, on the other hand, they may also become a channel for the spreading of malicious rumors and misinformation throughout the social network. Thus, to assure the trustworthiness of OSNs to its users, it is of vital importance to detect the misinformation propagation in the network by placing network monitors. In this paper, we aim to place monitors near the suspected nodes with the intent to limit the diffusion of misinformation in the social network, and then we also detect the most significant nodes in the network for propagating true information in order to minimize the effect of already diffused misinformation. Thus, we initiate two heuristic monitor placement using articulation points and truth propagation using eigenvector centrality. Furthermore, to provide real-time workings of the system, we integrate both the monitor placement and truth propagation entities as well. To signify the effectiveness of the approaches, we have carried out the experiment and evaluation of Stanford datasets of online social networks.Keywords: online social networks, monitor placement, independent cascade model, spread of misinformation
Procedia PDF Downloads 1592932 The Design of Decorative Flower Patterns from Suan Sunandha Palace
Authors: Nawaporn Srisarankullawong
Abstract:
The study on the design of decorative flower patterns from Suan Sunandha Palace is the innovative design using flowers grown in Suan Sunandha Palace as the original sources. The research instrument included: 1) the photographs of flowers in watercolors painted by one of the lady in waiting of Her Royal Highness Princess Saisawareepirom as the source for investigating flowers used to grow in Suan Sunandha Palace, 2) pictures of real flowers used to grow in Suan Sunandha Palace, 3) Adobe Illustrator Program and Adobe Photoshop Program in designing the motif and decorative patterns including the prototype. The researcher chose 3 types of Suan Sunandha Palace flowers; moss rose, orchid, and lignum vitae. The details of the flowers were cut down to make simple motifs which were developed for elaborative decoration. There were 4 motifs adapted from moss roses, 3 motifs adapted from orchids, and 3 motifs adapted from lignum vitae. The patterns were used to decorate photo frames, wrapping paper, and gift boxes or souvenir boxes.Keywords: Suan Sunandha Palace, design of decorative, flower patterns, decorative flower
Procedia PDF Downloads 2832931 SC-LSH: An Efficient Indexing Method for Approximate Similarity Search in High Dimensional Space
Authors: Sanaa Chafik, Imane Daoudi, Mounim A. El Yacoubi, Hamid El Ouardi
Abstract:
Locality Sensitive Hashing (LSH) is one of the most promising techniques for solving nearest neighbour search problem in high dimensional space. Euclidean LSH is the most popular variation of LSH that has been successfully applied in many multimedia applications. However, the Euclidean LSH presents limitations that affect structure and query performances. The main limitation of the Euclidean LSH is the large memory consumption. In order to achieve a good accuracy, a large number of hash tables is required. In this paper, we propose a new hashing algorithm to overcome the storage space problem and improve query time, while keeping a good accuracy as similar to that achieved by the original Euclidean LSH. The Experimental results on a real large-scale dataset show that the proposed approach achieves good performances and consumes less memory than the Euclidean LSH.Keywords: approximate nearest neighbor search, content based image retrieval (CBIR), curse of dimensionality, locality sensitive hashing, multidimensional indexing, scalability
Procedia PDF Downloads 3202930 Structural Behaviour of Concrete Energy Piles in Thermal Loadings
Authors: E. H. N. Gashti, M. Malaska, K. Kujala
Abstract:
The thermo-mechanical behaviour of concrete energy pile foundations with different single and double U-tube shapes incorporated was analysed using the Comsol Multi-physics package. For the analysis, a 3D numerical model in real scale of the concrete pile and surrounding soil was simulated regarding actual operation of ground heat exchangers (GHE) and the surrounding ambient temperature. Based on initial ground temperature profile measured in situ, tube inlet temperature was considered to range from 6°C to 0°C (during the contraction process) over a 30-day period. Extra thermal stresses and deformations were calculated during the simulations and differences arising from the use of two different systems (single-tube and double-tube) were analysed. The results revealed no significant difference for extra thermal stresses at the centre of the pile in either system. However, displacements over the pile length were found to be up to 1.5-fold higher in the double-tube system than the single-tube system.Keywords: concrete energy piles, stresses, displacements, thermo-mechanical behaviour, soil-structure interactions
Procedia PDF Downloads 2132929 Transformers in Gene Expression-Based Classification
Authors: Babak Forouraghi
Abstract:
A genetic circuit is a collection of interacting genes and proteins that enable individual cells to implement and perform vital biological functions such as cell division, growth, death, and signaling. In cell engineering, synthetic gene circuits are engineered networks of genes specifically designed to implement functionalities that are not evolved by nature. These engineered networks enable scientists to tackle complex problems such as engineering cells to produce therapeutics within the patient's body, altering T cells to target cancer-related antigens for treatment, improving antibody production using engineered cells, tissue engineering, and production of genetically modified plants and livestock. Construction of computational models to realize genetic circuits is an especially challenging task since it requires the discovery of flow of genetic information in complex biological systems. Building synthetic biological models is also a time-consuming process with relatively low prediction accuracy for highly complex genetic circuits. The primary goal of this study was to investigate the utility of a pre-trained bidirectional encoder transformer that can accurately predict gene expressions in genetic circuit designs. The main reason behind using transformers is their innate ability (attention mechanism) to take account of the semantic context present in long DNA chains that are heavily dependent on spatial representation of their constituent genes. Previous approaches to gene circuit design, such as CNN and RNN architectures, are unable to capture semantic dependencies in long contexts as required in most real-world applications of synthetic biology. For instance, RNN models (LSTM, GRU), although able to learn long-term dependencies, greatly suffer from vanishing gradient and low-efficiency problem when they sequentially process past states and compresses contextual information into a bottleneck with long input sequences. In other words, these architectures are not equipped with the necessary attention mechanisms to follow a long chain of genes with thousands of tokens. To address the above-mentioned limitations of previous approaches, a transformer model was built in this work as a variation to the existing DNA Bidirectional Encoder Representations from Transformers (DNABERT) model. It is shown that the proposed transformer is capable of capturing contextual information from long input sequences with attention mechanism. In a previous work on genetic circuit design, the traditional approaches to classification and regression, such as Random Forrest, Support Vector Machine, and Artificial Neural Networks, were able to achieve reasonably high R2 accuracy levels of 0.95 to 0.97. However, the transformer model utilized in this work with its attention-based mechanism, was able to achieve a perfect accuracy level of 100%. Further, it is demonstrated that the efficiency of the transformer-based gene expression classifier is not dependent on presence of large amounts of training examples, which may be difficult to compile in many real-world gene circuit designs.Keywords: transformers, generative ai, gene expression design, classification
Procedia PDF Downloads 592928 Difficulties in Teaching and Learning English Pronunciation in Sindh Province, Pakistan
Authors: Majno Ajbani
Abstract:
Difficulties in teaching and learning English pronunciation in Sindh province, Pakistan Abstract Sindhi language is widely spoken in Sindh province, and it is one of the difficult languages of the world. Sindhi language has fifty-two alphabets which have caused a serious issue in learning and teaching of English pronunciation for teachers and students of Colleges and Universities. This study focuses on teachers’ and students’ need for extensive training in the pronunciation that articulates the real pronunciation of actual words. The study is set to contribute in the sociolinguistic studies of English learning communities in this region. Data from 200 English teachers and students was collected by already tested structured questionnaire. The data was analysed using SPSS 20 software. The data analysis clearly demonstrates the higher range of inappropriate pronunciations towards English learning and teaching. The anthropogenic responses indicate 87 percentages teachers and students had an improper pronunciation. This indicates the substantial negative effects on academic and sociolinguistic aspects. It is suggested an improper speaking of English, based on rapid changes in geopolitical and sociocultural surroundings.Keywords: alphabets, pronunciation, sociolinguistic, anthropogenic, imprudent, malapropos
Procedia PDF Downloads 3922927 Augmented Reality in Advertising and Brand Communication: An Experimental Study
Authors: O. Mauroner, L. Le, S. Best
Abstract:
Digital technologies offer many opportunities in the design and implementation of brand communication and advertising. Augmented reality (AR) is an innovative technology in marketing communication that focuses on the fact that virtual interaction with a product ad offers additional value to consumers. AR enables consumers to obtain (almost) real product experiences by the way of virtual information even before the purchase of a certain product. Aim of AR applications in relation with advertising is in-depth examination of product characteristics to enhance product knowledge as well as brand knowledge. Interactive design of advertising provides observers with an intense examination of a specific advertising message and therefore leads to better brand knowledge. The elaboration likelihood model and the central route to persuasion strongly support this argumentation. Nevertheless, AR in brand communication is still in an initial stage and therefore scientific findings about the impact of AR on information processing and brand attitude are rare. The aim of this paper is to empirically investigate the potential of AR applications in combination with traditional print advertising. To that effect an experimental design with different levels of interactivity is built to measure the impact of interactivity of an ad on different variables o advertising effectiveness.Keywords: advertising effectiveness, augmented reality, brand communication, brand recall
Procedia PDF Downloads 3012926 Wear Damage of Glass Fiber Reinforced Polyimide Composites with the Addition of Graphite
Authors: Mahmoudi Noureddine
Abstract:
The glass fiber (GF) reinforced polyimide (PL) composites filled with graphite powders were fabricated by means of hot press molding technique. The friction and wear properties of the resulting composites sliding against GCr15 steel were investigated on a model ring-on-block test rig at dry sliding condition. The wear mechanisms were also discussed, based on scanning electron microscopic examination of the worn surface of the PL composites and the transfer film formed on the counterpart. With the increasing normal loads, the friction coefficient of the composites increased under the dry sliding, owing to inconsistent influences of shear strength and real contact areas. Experimental results revealed that the incorporation of graphite significantly improve the wear resistance of the glass fibers reinforced polyimide composites. For best combination of friction coefficient and wear rate, the optimal volume content of graphite in the composites appears to be 45 %. It was also found that the tribological properties of the glass fiber reinforced PL composites filled with graphite powders were closely related with the sliding condition such as sliding rate and applied load.Keywords: composites, fiber, friction, wear
Procedia PDF Downloads 3542925 Robust Optimisation Model and Simulation-Particle Swarm Optimisation Approach for Vehicle Routing Problem with Stochastic Demands
Authors: Mohanad Al-Behadili, Djamila Ouelhadj
Abstract:
In this paper, a specific type of vehicle routing problem under stochastic demand (SVRP) is considered. This problem is of great importance because it models for many of the real world vehicle routing applications. This paper used a robust optimisation model to solve the problem along with the novel Simulation-Particle Swarm Optimisation (Sim-PSO) approach. The proposed Sim-PSO approach is based on the hybridization of the Monte Carlo simulation technique with the PSO algorithm. A comparative study between the proposed model and the Sim-PSO approach against other solution methods in the literature has been given in this paper. This comparison including the Analysis of Variance (ANOVA) to show the ability of the model and solution method in solving the complicated SVRP. The experimental results show that the proposed model and Sim-PSO approach has a significant impact on the obtained solution by providing better quality solutions comparing with well-known algorithms in the literature.Keywords: stochastic vehicle routing problem, robust optimisation model, Monte Carlo simulation, particle swarm optimisation
Procedia PDF Downloads 2762924 Impact of Tablet Based Learning on Continuous Assessment (ESPRIT Smart School Framework)
Authors: Mehdi Attia, Sana Ben Fadhel, Lamjed Bettaieb
Abstract:
Mobile technology has become a part of our daily lives and assist learners (despite their level and age) in their leaning process using various apparatus and mobile devices (laptop, tablets, etc.). This paper presents a new learning framework based on tablets. This solution has been developed and tested in ESPRIT “Ecole Supérieure Privée d’Igénieurie et de Technologies”, a Tunisian school of engineering. This application is named ESSF: Esprit Smart School Framework. In this work, the main features of the proposed solution are listed, particularly its impact on the learners’ evaluation process. Learner’s assessment has always been a critical component of the learning process as it measures students’ knowledge. However, traditional evaluation methods in which the learner is evaluated once or twice each year cannot reflect his real level. This is why a continuous assessment (CA) process becomes necessary. In this context we have proved that ESSF offers many important features that enhance and facilitate the implementation of the CA process.Keywords: continuous assessment, mobile learning, tablet based learning, smart school, ESSF
Procedia PDF Downloads 3332923 To Know the Way to the Unknown: A Semi-Experimental Study on the Implication of Skills and Knowledge for Creative Processes in Higher Education
Authors: Mikkel Snorre Wilms Boysen
Abstract:
From a theoretical perspective, expertise is generally considered a precondition for creativity. The assumption is that an individual needs to master the common and accepted rules and techniques within a certain knowledge-domain in order to create something new and valuable. However, real life cases, and a limited amount of empirical studies, demonstrate that this assumption may be overly simple. In this article, this question is explored through a number of semi-experimental case studies conducted within the fields of music, technology, and youth culture. The studies indicate that, in various ways, expertise plays an important part in creative processes. However, the case studies also indicate that expertise sometimes leads to an entrenched perspective, in the sense that knowledge and experience may work as a path into the well-known rather than into the unknown. In this article, these issues are explored with reference to different theoretical approaches to creativity and learning, including actor-network theory, the theory of blind variation and selective retention, and Csikszentmihalyi’s system model. Finally, some educational aspects and implications of this are discussed.Keywords: creativity, expertise , education, technology
Procedia PDF Downloads 3192922 Facility Anomaly Detection with Gaussian Mixture Model
Authors: Sunghoon Park, Hank Kim, Jinwon An, Sungzoon Cho
Abstract:
Internet of Things allows one to collect data from facilities which are then used to monitor them and even predict malfunctions in advance. Conventional quality control methods focus on setting a normal range on a sensor value defined between a lower control limit and an upper control limit, and declaring as an anomaly anything falling outside it. However, interactions among sensor values are ignored, thus leading to suboptimal performance. We propose a multivariate approach which takes into account many sensor values at the same time. In particular Gaussian Mixture Model is used which is trained to maximize likelihood value using Expectation-Maximization algorithm. The number of Gaussian component distributions is determined by Bayesian Information Criterion. The negative Log likelihood value is used as an anomaly score. The actual usage scenario goes like a following. For each instance of sensor values from a facility, an anomaly score is computed. If it is larger than a threshold, an alarm will go off and a human expert intervenes and checks the system. A real world data from Building energy system was used to test the model.Keywords: facility anomaly detection, gaussian mixture model, anomaly score, expectation maximization algorithm
Procedia PDF Downloads 2702921 Testing of Small Local Zones by Means of Small Punch Test at Room and Creep Temperatures
Authors: Vaclav Mentl, Josef Volak
Abstract:
In many industrial applications, materials are subjected to degradation of mechanical properties as a result of real service conditions, temperature, cyclic loading, humidity or other corrosive media, irradiation, their combination etc. The assessment of the remaining lifetime of components and structures is commonly based on correlated procedures including numerous destructive, non-destructive and mathematical techniques that should guarantee reasonably precise assessment of the current damage extent of materials in question and the remaining lifetime evaluation of the component under consideration. The answers to demands of customers to extend the lifetime of existing components beyond their original design life must be based on detailed assessment of the current degradation extent, what can be rarely realised by means of traditional mechanical (standardised) tests that need relatively large volumes of representative material for the test specimen manufacturing. This fact accelerated the research of miniaturised test specimen that can be sampled non-invasively from the component.Keywords: small punch test, correlation, creep, mechanical properties
Procedia PDF Downloads 2742920 Neighborhood Relations in a Context of Cultural and Social Diversity - Qualitative Analysis of a Case Study in a Territory in the inner City of Lisbon
Authors: Madalena Corte-real, João Pedro Nunes, Bernardo Fernandes, Ana Jorge Correira
Abstract:
This presentation looks, from a sociological perspective, at neighboring practices in the inner city of Lisbon. The capital of Portugal, with half a million inhabitants, inserted in a metropolitan area with almost 2,9 million people, has been in the international spotlight seen as an interesting city to live in and to invest in, especially in the real estate market. This promotion emerged in the context of the financial crisis, where local authorities aimed to make Lisbon a more competitive city, calling for visitors and financial and human capital. Especially in the last decade, Portugal’s capital has been experiencing a significant increase in terms of migration from creative and entrepreneurial exiles to economic and political expats. In this context, the territory under analysis, in particular, is a mixed-used area undergoing rapid transformations in recent years marked by the presence of newcomers and non-nationals as well as social and cultural heterogeneity. It is next to one of the main arteries, considered the most multicultural part of the city, and presented in the press as one of the coolest neighborhoods in Europe. In view of these aspects, this research aims to address key-topics in current urban research: anonymity often related to big cities, socio-spatial attachment to the neighborhood, and the effects of diversity in the everyday relations of residents and shopkeepers. This case-study intends to look at particularities in local regimes differently affected by growing mobility. Against a backdrop of unidimensional generalizations and a tendency to refer to central countries and global cities, it aims to discuss national and local specificities. In methodological terms, the project comprises essentially a qualitative approach that consists of direct observation techniques and ethnographic methods as well semi-structured interviews to residents and local stakeholders whose narratives are subject to content analysis. The paper starts with a characterization of the broader context of the city of Lisbon, followed by territorial specificities regarding socio-spatial development, namely the city’s and the inner-areas morphology as well as the population’s socioeconomic profile. Following the residents and stakeholders’ narratives and practices it will assess the perception and behaviors regarding the representation of the area, relationships and experiences, routines, and sociability. Results point to a significant presence of neighborhood relations and different forms of support, in particular, among the different groups – e.g., old long-time residents, middle-class families, global creative class, and communities of economic migrants. Fieldwork reveals low levels of place-attachment although some residents refer, presently, high levels of satisfaction. Engagement with living space, this case-study suggests, reveals the social construction and lived the experience of neighboring by different groups, but also the way different and contrasting visions and desires are articulated to the profound urban, cultural and political changes that permeate the area.Keywords: diversity, lisbon, neighboring and neighborhood, place-attachment
Procedia PDF Downloads 1062919 Realization of Wearable Inertial Measurement Units-Sensor-Fusion Harness to Control Therapeutic Smartphone Applications
Authors: Svilen Dimitrov, Manthan Pancholi, Norbert Schmitz, Didier Stricker
Abstract:
This paper presents the end-to-end development of a wearable motion sensing harness consisting of computational unit and four inertial measurement units to control three smartphone therapeutic games for children. The inertial data is processed in real time to obtain lower body motion information like knee raises, feet taps and squads. By providing a Wi-Fi connection interface the sensor harness acts wireless remote control for smartphone applications. By performing various lower body movements the users provoke corresponding game state changes. In contrary to the current similar offers, like Nintendo Wii Remote, Xbox Kinect and Playstation Move, this product, consisting of the sensor harness and the applications on top of it, are fully wearable, which means they do not rely on the user to be bound to concrete soft- or hardwareequipped space.Keywords: wearable harness, inertial measurement units, smartphone therapeutic games, motion tracking, lower-body activity monitoring
Procedia PDF Downloads 4012918 Metaverse in Future Personal Healthcare Industry: From Telemedicine to Telepresence
Authors: Mohammed Saeed Jawad
Abstract:
Metaverse involves the convergence of three major technologies trends of AI, VR, and AR. Together these three technologies can provide an entirely new channel for delivering healthcare with great potential to lower costs and improve patient outcomes on a larger scale. Telepresence is the technology that allows people to be together even if they are physically apart. Medical doctors can be symbolic as interactive avatars developed to have smart conversations and medical recommendations for patients at the different stages of the treatment. Medical digital assets such as Medical IoT for real-time remote healthcare monitoring as well as the symbolic doctors’ avatars as well as the hospital and clinical physical constructions and layout can be immersed in extended realities 3D metaverse environments where doctors, nurses, and patients can interact and socialized with the related digital assets that facilitate the data analytics of the sensed and collected personal medical data with visualized interaction of the digital twin of the patient’s body as well as the medical doctors' smart conversation and consultation or even in a guided remote-surgery operation.Keywords: personal healthcare, metaverse, telemedicine, telepresence, avatar, medical consultation, remote-surgery
Procedia PDF Downloads 1332917 Development and Metrological Validation of a Control Strategy in Embedded Island Grids Using Battery-Hybrid-Systems
Authors: L. Wilkening, G. Ackermann, T. T. Do
Abstract:
This article presents an approach for stand-alone and grid-connected mode of a German low-voltage grid with high share of photovoltaic. For this purpose, suitable dynamic system models have been developed. This allows the simulation of dynamic events in very small time ranges and the operation management over longer periods of time. Using these simulations, suitable control parameters could be identified, and their effects on the grid can be analyzed. In order to validate the simulation results, a LV-grid test bench has been implemented at the University of Technology Hamburg. The developed control strategies are to be validated using real inverters, generators and different realistic loads. It is shown that a battery hybrid system installed next to a voltage transformer makes it possible to operate the LV-grid in stand-alone mode without using additional information and communication technology and without intervention in the existing grid units. By simulating critical days of the year, suitable control parameters for stable stand-alone operations are determined and set point specifications for different control strategies are defined.Keywords: battery, e-mobility, photovoltaic, smart grid
Procedia PDF Downloads 1422916 A Near-Optimal Domain Independent Approach for Detecting Approximate Duplicates
Authors: Abdelaziz Fellah, Allaoua Maamir
Abstract:
We propose a domain-independent merging-cluster filter approach complemented with a set of algorithms for identifying approximate duplicate entities efficiently and accurately within a single and across multiple data sources. The near-optimal merging-cluster filter (MCF) approach is based on the Monge-Elkan well-tuned algorithm and extended with an affine variant of the Smith-Waterman similarity measure. Then we present constant, variable, and function threshold algorithms that work conceptually in a divide-merge filtering fashion for detecting near duplicates as hierarchical clusters along with their corresponding representatives. The algorithms take recursive refinement approaches in the spirit of filtering, merging, and updating, cluster representatives to detect approximate duplicates at each level of the cluster tree. Experiments show a high effectiveness and accuracy of the MCF approach in detecting approximate duplicates by outperforming the seminal Monge-Elkan’s algorithm on several real-world benchmarks and generated datasets.Keywords: data mining, data cleaning, approximate duplicates, near-duplicates detection, data mining applications and discovery
Procedia PDF Downloads 3852915 Fault-Detection and Self-Stabilization Protocol for Wireless Sensor Networks
Authors: Ather Saeed, Arif Khan, Jeffrey Gosper
Abstract:
Sensor devices are prone to errors and sudden node failures, which are difficult to detect in a timely manner when deployed in real-time, hazardous, large-scale harsh environments and in medical emergencies. Therefore, the loss of data can be life-threatening when the sensed phenomenon is not disseminated due to sudden node failure, battery depletion or temporary malfunctioning. We introduce a set of partial differential equations for localizing faults, similar to Green’s and Maxwell’s equations used in Electrostatics and Electromagnetism. We introduce a node organization and clustering scheme for self-stabilizing sensor networks. Green’s theorem is applied to regions where the curve is closed and continuously differentiable to ensure network connectivity. Experimental results show that the proposed GTFD (Green’s Theorem fault-detection and Self-stabilization) protocol not only detects faulty nodes but also accurately generates network stability graphs where urgent intervention is required for dynamically self-stabilizing the network.Keywords: Green’s Theorem, self-stabilization, fault-localization, RSSI, WSN, clustering
Procedia PDF Downloads 742914 Enhancing Early Detection of Coronary Heart Disease Through Cloud-Based AI and Novel Simulation Techniques
Authors: Md. Abu Sufian, Robiqul Islam, Imam Hossain Shajid, Mahesh Hanumanthu, Jarasree Varadarajan, Md. Sipon Miah, Mingbo Niu
Abstract:
Coronary Heart Disease (CHD) remains a principal cause of global morbidity and mortality, characterized by atherosclerosis—the build-up of fatty deposits inside the arteries. The study introduces an innovative methodology that leverages cloud-based platforms like AWS Live Streaming and Artificial Intelligence (AI) to early detect and prevent CHD symptoms in web applications. By employing novel simulation processes and AI algorithms, this research aims to significantly mitigate the health and societal impacts of CHD. Methodology: This study introduces a novel simulation process alongside a multi-phased model development strategy. Initially, health-related data, including heart rate variability, blood pressure, lipid profiles, and ECG readings, were collected through user interactions with web-based applications as well as API Integration. The novel simulation process involved creating synthetic datasets that mimic early-stage CHD symptoms, allowing for the refinement and training of AI algorithms under controlled conditions without compromising patient privacy. AWS Live Streaming was utilized to capture real-time health data, which was then processed and analysed using advanced AI techniques. The novel aspect of our methodology lies in the simulation of CHD symptom progression, which provides a dynamic training environment for our AI models enhancing their predictive accuracy and robustness. Model Development: it developed a machine learning model trained on both real and simulated datasets. Incorporating a variety of algorithms including neural networks and ensemble learning model to identify early signs of CHD. The model's continuous learning mechanism allows it to evolve adapting to new data inputs and improving its predictive performance over time. Results and Findings: The deployment of our model yielded promising results. In the validation phase, it achieved an accuracy of 92% in predicting early CHD symptoms surpassing existing models. The precision and recall metrics stood at 89% and 91% respectively, indicating a high level of reliability in identifying at-risk individuals. These results underscore the effectiveness of combining live data streaming with AI in the early detection of CHD. Societal Implications: The implementation of cloud-based AI for CHD symptom detection represents a significant step forward in preventive healthcare. By facilitating early intervention, this approach has the potential to reduce the incidence of CHD-related complications, decrease healthcare costs, and improve patient outcomes. Moreover, the accessibility and scalability of cloud-based solutions democratize advanced health monitoring, making it available to a broader population. This study illustrates the transformative potential of integrating technology and healthcare, setting a new standard for the early detection and management of chronic diseases.Keywords: coronary heart disease, cloud-based ai, machine learning, novel simulation techniques, early detection, preventive healthcare
Procedia PDF Downloads 632913 Mineralized Nanoparticles as a Contrast Agent for Ultrasound and Magnetic Resonance Imaging
Authors: Jae Won Lee, Kyung Hyun Min, Hong Jae Lee, Sang Cheon Lee
Abstract:
To date, imaging techniques have attracted much attention in medicine because the detection of diseases at an early stage provides greater opportunities for successful treatment. Consequently, over the past few decades, diverse imaging modalities including magnetic resonance (MR), positron emission tomography, computed tomography, and ultrasound (US) have been developed and applied widely in the field of clinical diagnosis. However, each of the above-mentioned imaging modalities possesses unique strengths and intrinsic weaknesses, which limit their abilities to provide accurate information. Therefore, multimodal imaging systems may be a solution that can provide improved diagnostic performance. Among the current medical imaging modalities, US is a widely available real-time imaging modality. It has many advantages including safety, low cost and easy access for patients. However, its low spatial resolution precludes accurate discrimination of diseased region such as cancer sites. In contrast, MR has no tissue-penetrating limit and can provide images possessing exquisite soft tissue contrast and high spatial resolution. However, it cannot offer real-time images and needs a comparatively long imaging time. The characteristics of these imaging modalities may be considered complementary, and the modalities have been frequently combined for the clinical diagnostic process. Biominerals such as calcium carbonate (CaCO3) and calcium phosphate (CaP) exhibit pH-dependent dissolution behavior. They demonstrate pH-controlled drug release due to the dissolution of minerals in acidic pH conditions. In particular, the application of this mineralization technique to a US contrast agent has been reported recently. The CaCO3 mineral reacts with acids and decomposes to generate calcium dioxide (CO2) gas in an acidic environment. These gas-generating mineralized nanoparticles generated CO2 bubbles in the acidic environment of the tumor, thereby allowing for strong echogenic US imaging of tumor tissues. On the basis of this previous work, it was hypothesized that the loading of MR contrast agents into the CaCO3 mineralized nanoparticles may be a novel strategy in designing a contrast agent for dual imaging. Herein, CaCO3 mineralized nanoparticles that were capable of generating CO2 bubbles to trigger the release of entrapped MR contrast agents in response to tumoral acidic pH were developed for the purposes of US and MR dual-modality imaging of tumors. Gd2O3 nanoparticles were selected as an MR contrast agent. A key strategy employed in this study was to prepare Gd2O3 nanoparticle-loaded mineralized nanoparticles (Gd2O3-MNPs) using block copolymer-templated CaCO3 mineralization in the presence of calcium cations (Ca2+), carbonate anions (CO32-) and positively charged Gd2O3 nanoparticles. The CaCO3 core was considered suitable because it may effectively shield Gd2O3 nanoparticles from water molecules in the blood (pH 7.4) before decomposing to generate CO2 gas, triggering the release of Gd2O3 nanoparticles in tumor tissues (pH 6.4~7.4). The kinetics of CaCO3 dissolution and CO2 generation from the Gd2O3-MNPs were examined as a function of pH and pH-dependent in vitro magnetic relaxation; additionally, the echogenic properties were estimated to demonstrate the potential of the particles for the tumor-specific US and MR imaging.Keywords: calcium carbonate, mineralization, ultrasound imaging, magnetic resonance imaging
Procedia PDF Downloads 2352912 Wind Interference Effects on Various Plan Shape Buildings Under Wind Load
Authors: Ritu Raj, Hrishikesh Dubey
Abstract:
This paper presents the results of the experimental investigations carried out on two intricate plan shaped buildings to evaluate aerodynamic performance of the building. The purpose is to study the associated environment arising due to wind forces in isolated and interference conditions on a model of scale 1:300 with a prototype having 180m height. Experimental tests were carried out at the boundary layer wind tunnel considering isolated conditions with 0° to 180° isolated wind directions and four interference conditions of twin building (separately for both the models). The research has been undertaken in Terrain Category-II, which is the most widely available terrain in India. A comparative assessment of the two models is performed out in an attempt to comprehend the various consequences of diverse conditions that may emerge in real-life situations, as well as the discrepancies amongst them. Experimental results of wind pressure coefficients of Model-1 and Model-2 shows good agreement with various wind incidence conditions with minute difference in the magnitudes of mean Cp. On the basis of wind tunnel studies, it is distinguished that the performance of Model-2 is better than Model-1in both isolated as well as interference conditions for all wind incidences and orientations respectively.Keywords: interference factor, tall buildings, wind direction, mean pressure-coefficients
Procedia PDF Downloads 1262911 Application of WebGIS-Based Water Environment Capacity Inquiry and Planning System in Water Resources Management
Authors: Tao Ding, Danjia Yan, Jinye Li, Chao Ren, Xinhua Hu
Abstract:
The paper based on the research background of the current situation of water shortage in China and intelligent management of water resources in the information era. And the paper adopts WebGIS technology, combining the mathematical model of water resources management to develop a WebGIS-based water environment capacity inquiry and polluted water emission planning. The research significance of the paper is that it can inquiry the water environment capacity of Jinhua City in real time and plan how to drain polluted water into the river, so as to realize the effective management of water resources. This system makes sewage planning more convenient and faster. For the planning of the discharge enterprise, the decision on the optimal location of the sewage outlet can be achieved through calculation of the Sewage discharge planning model in the river, without the need for site visits. The system can achieve effective management of water resources and has great application value.Keywords: sewerage planning, water environment capacity, water resources management, WebGIS
Procedia PDF Downloads 1832910 Dynamic Log Parsing and Intelligent Anomaly Detection Method Combining Retrieval Augmented Generation and Prompt Engineering
Authors: Liu Linxin
Abstract:
As system complexity increases, log parsing and anomaly detection become more and more important in ensuring system stability. However, traditional methods often face the problems of insufficient adaptability and decreasing accuracy when dealing with rapidly changing log contents and unknown domains. To this end, this paper proposes an approach LogRAG, which combines RAG (Retrieval Augmented Generation) technology with Prompt Engineering for Large Language Models, applied to log analysis tasks to achieve dynamic parsing of logs and intelligent anomaly detection. By combining real-time information retrieval and prompt optimisation, this study significantly improves the adaptive capability of log analysis and the interpretability of results. Experimental results show that the method performs well on several public datasets, especially in the absence of training data, and significantly outperforms traditional methods. This paper provides a technical path for log parsing and anomaly detection, demonstrating significant theoretical value and application potential.Keywords: log parsing, anomaly detection, retrieval-augmented generation, prompt engineering, LLMs
Procedia PDF Downloads 272909 Anomaly Detection with ANN and SVM for Telemedicine Networks
Authors: Edward Guillén, Jeisson Sánchez, Carlos Omar Ramos
Abstract:
In recent years, a wide variety of applications are developed with Support Vector Machines -SVM- methods and Artificial Neural Networks -ANN-. In general, these methods depend on intrusion knowledge databases such as KDD99, ISCX, and CAIDA among others. New classes of detectors are generated by machine learning techniques, trained and tested over network databases. Thereafter, detectors are employed to detect anomalies in network communication scenarios according to user’s connections behavior. The first detector based on training dataset is deployed in different real-world networks with mobile and non-mobile devices to analyze the performance and accuracy over static detection. The vulnerabilities are based on previous work in telemedicine apps that were developed on the research group. This paper presents the differences on detections results between some network scenarios by applying traditional detectors deployed with artificial neural networks and support vector machines.Keywords: anomaly detection, back-propagation neural networks, network intrusion detection systems, support vector machines
Procedia PDF Downloads 3562908 Wireless Sensor Networks for Water Quality Monitoring: Prototype Design
Authors: Cesar Eduardo Hernández Curiel, Victor Hugo Benítez Baltazar, Jesús Horacio Pacheco Ramírez
Abstract:
This paper is devoted to present the advances in the design of a prototype that is able to supervise the complex behavior of water quality parameters such as pH and temperature, via a real-time monitoring system. The current water quality tests that are performed in government water quality institutions in Mexico are carried out in problematic locations and they require taking manual samples. The water samples are then taken to the institution laboratory for examination. In order to automate this process, a water quality monitoring system based on wireless sensor networks is proposed. The system consists of a sensor node which contains one pH sensor, one temperature sensor, a microcontroller, and a ZigBee radio, and a base station composed by a ZigBee radio and a PC. The progress in this investigation shows the development of a water quality monitoring system. Due to recent events that affected water quality in Mexico, the main motivation of this study is to address water quality monitoring systems, so in the near future, a more robust, affordable, and reliable system can be deployed.Keywords: pH measurement, water quality monitoring, wireless sensor networks, ZigBee
Procedia PDF Downloads 4032907 Optimal Feature Extraction Dimension in Finger Vein Recognition Using Kernel Principal Component Analysis
Authors: Amir Hajian, Sepehr Damavandinejadmonfared
Abstract:
In this paper the issue of dimensionality reduction is investigated in finger vein recognition systems using kernel Principal Component Analysis (KPCA). One aspect of KPCA is to find the most appropriate kernel function on finger vein recognition as there are several kernel functions which can be used within PCA-based algorithms. In this paper, however, another side of PCA-based algorithms -particularly KPCA- is investigated. The aspect of dimension of feature vector in PCA-based algorithms is of importance especially when it comes to the real-world applications and usage of such algorithms. It means that a fixed dimension of feature vector has to be set to reduce the dimension of the input and output data and extract the features from them. Then a classifier is performed to classify the data and make the final decision. We analyze KPCA (Polynomial, Gaussian, and Laplacian) in details in this paper and investigate the optimal feature extraction dimension in finger vein recognition using KPCA.Keywords: biometrics, finger vein recognition, principal component analysis (PCA), kernel principal component analysis (KPCA)
Procedia PDF Downloads 363