Search results for: message passing neural network
3538 Using Industrial Service Quality to Assess Service Quality Perception in Television Advertisement: A Case Study
Authors: Ana L. Martins, Rita S. Saraiva, João C. Ferreira
Abstract:
Much effort has been placed on the assessment of perceived service quality. Several models can be found in literature, but these are mainly focused on business-to-consumer (B2C) relationships. Literature on how to assess perceived quality in business-to-business (B2B) contexts is scarce both conceptually and in terms of its application. This research aims at filling this gap in literature by applying INDSERV to a case study situation. Under this scope, this research aims at analyzing the adequacy of the proposed assessment tool to other context besides the one where it was developed and by doing so analyzing the perceive quality of the advertisement service provided by a specific television network to its B2B customers. The INDSERV scale was adopted and applied to a sample of 33 clients, via questionnaires adapted to interviews. Data was collected in person or phone. Both quantitative and qualitative data collection was performed. Qualitative data analysis followed content analysis protocol. Quantitative analysis used hypotheses testing. Findings allowed to conclude that the perceived quality of the television service provided by television network is very positive, being the Soft Process Quality the parameter that reveals the highest perceived quality of the service as opposed to Potential Quality. To this end, some comments and suggestions were made by the clients regarding each one of these service quality parameters. Based on the hypotheses testing, it was noticed that only advertisement clients that maintain a connection to the television network from 5 to 10 years do show a significant different perception of the TV advertisement service provided by the company in what the Hard Process Quality parameter is concerned. Through the collected data content analysis, it was possible to obtain the percentage of clients which share the same opinions and suggestions for improvement. Finally, based on one of the four service quality parameter in a B2B context, managerial suggestions were developed aiming at improving the television network advertisement perceived quality service.Keywords: B2B, case study, INDSERV, perceived service quality
Procedia PDF Downloads 2103537 Hybrid Hierarchical Routing Protocol for WSN Lifetime Maximization
Authors: H. Aoudia, Y. Touati, E. H. Teguig, A. Ali Cherif
Abstract:
Conceiving and developing routing protocols for wireless sensor networks requires considerations on constraints such as network lifetime and energy consumption. In this paper, we propose a hybrid hierarchical routing protocol named HHRP combining both clustering mechanism and multipath optimization taking into account residual energy and RSSI measures. HHRP consists of classifying dynamically nodes into clusters where coordinators nodes with extra privileges are able to manipulate messages, aggregate data and ensure transmission between nodes according to TDMA and CDMA schedules. The reconfiguration of the network is carried out dynamically based on a threshold value which is associated with the number of nodes belonging to the smallest cluster. To show the effectiveness of the proposed approach HHRP, a comparative study with LEACH protocol is illustrated in simulations.Keywords: routing protocol, optimization, clustering, WSN
Procedia PDF Downloads 4733536 Hybrid Multipath Congestion Control
Authors: Akshit Singhal, Xuan Wang, Zhijun Wang, Hao Che, Hong Jiang
Abstract:
Multiple Path Transmission Control Protocols (MPTCPs) allow flows to explore path diversity to improve the throughput, reliability and network resource utilization. However, the existing solutions may discourage users to adopt the solutions in the face of multipath scenario where different paths are charged based on different pricing structures, e.g., WiFi vs cellular connections, widely available for mobile phones. In this paper, we propose a Hybrid MPTCP (H-MPTCP) with a built-in mechanism to incentivize users to use multiple paths with different pricing structures. In the meantime, H-MPTCP preserves the nice properties enjoyed by the state-of-the-art MPTCP solutions. Extensive real Linux implementation results verify that H-MPTCP can indeed achieve the design objectives.Keywords: network, TCP, WiFi, cellular, congestion control
Procedia PDF Downloads 7223535 Cigarette Smoke Detection Based on YOLOV3
Abstract:
In order to satisfy the real-time and accurate requirements of cigarette smoke detection in complex scenes, a cigarette smoke detection technology based on the combination of deep learning and color features was proposed. Firstly, based on the color features of cigarette smoke, the suspicious cigarette smoke area in the image is extracted. Secondly, combined with the efficiency of cigarette smoke detection and the problem of network overfitting, a network model for cigarette smoke detection was designed according to YOLOV3 algorithm to reduce the false detection rate. The experimental results show that the method is feasible and effective, and the accuracy of cigarette smoke detection is up to 99.13%, which satisfies the requirements of real-time cigarette smoke detection in complex scenes.Keywords: deep learning, computer vision, cigarette smoke detection, YOLOV3, color feature extraction
Procedia PDF Downloads 913534 Research on the Internal Mechanism of Overseas Market Opportunity Construction of the Emerging-Market Multinational Enterprises
Authors: Jie Zhang, Chaomin Zhang
Abstract:
Based on the network theory, this paper selects three Emerging-Market Multinationals Enterprises (EMNEs) as the research object and takes the typical overseas market opportunities constructed by them as the analysis unit to research the internal mechanism of overseas market opportunity construction of the EMNEs. The results show that: (1) EMNEs overseas market opportunity construction is a complex process, through the continuous interaction between enterprises and entities in the internal and external networks to achieve opportunity prototype, opportunity creation, and opportunity optimization in overseas markets. (2) Governments, foreign institutions and industry associations in the institutional network and competitors, partners, and customers in the commercial networks are the important entities in the construction of overseas market opportunities. Through the interaction of entity perception, relationship construction, and utilization, enterprises can obtain the necessary information, resources, and political asylum in the process of opportunity construction. (3) Organizations, project teams, and organizational sub-units within the enterprise are important internal entities for the construction of overseas market opportunities. Through the connection between different entities, they can achieve the circulation of resources within the organization and promote the opportunity construction of overseas markets. The research conclusions expand the relevant research on international opportunities and have inspiring and guiding significance for the expansion of EMNEs overseas markets.Keywords: international (overseas) opportunities, opportunity construction, network entities, interaction, resource circulation
Procedia PDF Downloads 243533 Non-Linear Assessment of Chromatographic Lipophilicity and Model Ranking of Newly Synthesized Steroid Derivatives
Authors: Milica Karadzic, Lidija Jevric, Sanja Podunavac-Kuzmanovic, Strahinja Kovacevic, Anamarija Mandic, Katarina Penov Gasi, Marija Sakac, Aleksandar Okljesa, Andrea Nikolic
Abstract:
The present paper deals with chromatographic lipophilicity prediction of newly synthesized steroid derivatives. The prediction was achieved using in silico generated molecular descriptors and quantitative structure-retention relationship (QSRR) methodology with the artificial neural networks (ANN) approach. Chromatographic lipophilicity of the investigated compounds was expressed as retention factor value logk. For QSRR modeling, a feedforward back-propagation ANN with gradient descent learning algorithm was applied. Using the novel sum of ranking differences (SRD) method generated ANN models were ranked. The aim was to distinguish the most consistent QSRR model that can be found, and similarity or dissimilarity between the models that could be noticed. In this study, SRD was performed with average values of retention factor value logk as reference values. An excellent correlation between experimentally observed retention factor value logk and values predicted by the ANN was obtained with a correlation coefficient higher than 0.9890. Statistical results show that the established ANN models can be applied for required purpose. This article is based upon work from COST Action (TD1305), supported by COST (European Cooperation in Science and Technology).Keywords: artificial neural networks, liquid chromatography, molecular descriptors, steroids, sum of ranking differences
Procedia PDF Downloads 3243532 Space Debris Mitigation: Solutions from the Dark Skies of the Remote Australian Outback Using a Proposed Network of Mobile Astronomical Observatories
Authors: Muhammad Akbar Hussain, Muhammad Mehdi Hussain, Waqar Haider
Abstract:
There are tens of thousands of undetected and uncatalogued pieces of space debris in the Low Earth Orbit (LEO). They are not only difficult to be detected and tracked, their sheer number puts active satellites and humans in orbit around Earth into danger. With the entry of more governments and private companies into harnessing the Earth’s orbit for communication, research and military purposes, there is an ever-increasing need for not only the detection and cataloguing of these pieces of space debris, it is time to take measures to take them out and clean up the space around Earth. Current optical and radar-based Space Situational Awareness initiatives are useful mostly in detecting and cataloguing larger pieces of debris mainly for avoidance measures. Smaller than 10 cm pieces are in a relatively dark zone, yet these are deadly and capable of destroying satellites and human missions. A network of mobile observatories, connected to each other in real time and working in unison as a single instrument, may be able to detect small pieces of debris and achieve effective triangulation to help create a comprehensive database of their trajectories and parameters to the highest level of precision. This data may enable ground-based laser systems to help deorbit individual debris. Such a network of observatories can join current efforts in detection and removal of space debris in Earth’s orbit.Keywords: space debris, low earth orbit, mobile observatories, triangulation, seamless operability
Procedia PDF Downloads 1723531 Why and When to Teach Definitions: Necessary and Unnecessary Discontinuities Resulting from the Definition of Mathematical Concepts
Authors: Josephine Shamash, Stuart Smith
Abstract:
We examine reasons for introducing definitions in teaching mathematics in a number of different cases. We try to determine if, where, and when to provide a definition, and which definition to choose. We characterize different types of definitions and the different purposes we may have for formulating them, and detail examples of each type. Giving a definition at a certain stage can sometimes be detrimental to the development of the concept image. In such a case, it is advisable to delay the precise definition to a later stage. We describe two models, the 'successive approximation model', and the 'model of the extending definition' that fit such situations. Detailed examples that fit the different models are given based on material taken from a number of textbooks, and analysis of the way the concept is introduced, and where and how its definition is given. Our conclusions, based on this analysis, is that some of the definitions given may cause discontinuities in the learning sequence and constitute obstacles and unnecessary cognitive conflicts in the formation of the concept definition. However, in other cases, the discontinuity in passing from definition to definition actually serves a didactic purpose, is unavoidable for the mathematical evolution of the concept image, and is essential for students to deepen their understanding.Keywords: concept image, mathematical definitions, mathematics education, mathematics teaching
Procedia PDF Downloads 1343530 Epoxomicin Affects Proliferating Neural Progenitor Cells of Rat
Authors: Bahaa Eldin A. Fouda, Khaled N. Yossef, Mohamed Elhosseny, Ahmed Lotfy, Mohamed Salama, Mohamed Sobh
Abstract:
Developmental neurotoxicity (DNT) entails the toxic effects imparted by various chemicals on the brain during the early childhood period. As human brains are vulnerable during this period, various chemicals would have their maximum effects on brains during early childhood. Some toxicants have been confirmed to induce developmental toxic effects on CNS e.g. lead, however; most of the agents cannot be identified with certainty due the defective nature of predictive toxicology models used. A novel alternative method that can overcome most of the limitations of conventional techniques is the use of 3D neurospheres system. This in-vitro system can recapitulate most of the changes during the period of brain development making it an ideal model for predicting neurotoxic effects. In the present study, we verified the possible DNT of epoxomicin which is a naturally occurring selective proteasome inhibitor with anti-inflammatory activity. Rat neural progenitor cells were isolated from rat embryos (E14) extracted from placental tissue. The cortices were aseptically dissected out from the brains of the fetuses and the tissues were triturated by repeated passage through a fire-polished constricted Pasteur pipette. The dispersed tissues were allowed to settle for 3 min. The supernatant was, then, transferred to a fresh tube and centrifuged at 1,000 g for 5 min. The pellet was placed in Hank’s balanced salt solution cultured as free-floating neurospheres in proliferation medium. Two doses of epoxomicin (1µM and 10µM) were used in cultured neuropsheres for a period of 14 days. For proliferation analysis, spheres were cultured in proliferation medium. After 0, 4, 5, 11, and 14 days, sphere size was determined by software analyses. The diameter of each neurosphere was measured and exported to excel file further to statistical analysis. For viability analysis, trypsin-EDTA solution were added to neurospheres for 3 min to dissociate them into single cells suspension, then viability evaluated by the Trypan Blue exclusion test. Epoxomicin was found to affect proliferation and viability of neuropsheres, these effects were positively correlated to doses and progress of time. This study confirms the DNT effects of epoxomicin on 3D neurospheres model. The effects on proliferation suggest possible gross morphologic changes while the decrease in viability propose possible focal lesion on exposure to epoxomicin during early childhood.Keywords: neural progentor cells, epoxomicin, neurosphere, medical and health sciences
Procedia PDF Downloads 4313529 Convolutional Neural Networks-Optimized Text Recognition with Binary Embeddings for Arabic Expiry Date Recognition
Authors: Mohamed Lotfy, Ghada Soliman
Abstract:
Recognizing Arabic dot-matrix digits is a challenging problem due to the unique characteristics of dot-matrix fonts, such as irregular dot spacing and varying dot sizes. This paper presents an approach for recognizing Arabic digits printed in dot matrix format. The proposed model is based on Convolutional Neural Networks (CNN) that take the dot matrix as input and generate embeddings that are rounded to generate binary representations of the digits. The binary embeddings are then used to perform Optical Character Recognition (OCR) on the digit images. To overcome the challenge of the limited availability of dotted Arabic expiration date images, we developed a True Type Font (TTF) for generating synthetic images of Arabic dot-matrix characters. The model was trained on a synthetic dataset of 3287 images and 658 synthetic images for testing, representing realistic expiration dates from 2019 to 2027 in the format of yyyy/mm/dd. Our model achieved an accuracy of 98.94% on the expiry date recognition with Arabic dot matrix format using fewer parameters and less computational resources than traditional CNN-based models. By investigating and presenting our findings comprehensively, we aim to contribute substantially to the field of OCR and pave the way for advancements in Arabic dot-matrix character recognition. Our proposed approach is not limited to Arabic dot matrix digit recognition but can also be extended to text recognition tasks, such as text classification and sentiment analysis.Keywords: computer vision, pattern recognition, optical character recognition, deep learning
Procedia PDF Downloads 983528 The Interplay between Autophagy and Macrophages' Polarization in Wound Healing: A Genetic Regulatory Network Analysis
Authors: Mayada Mazher, Ahmed Moustafa, Ahmed Abdellatif
Abstract:
Background: Autophagy is a eukaryotic, highly conserved catabolic process implicated in many pathophysiologies such as wound healing. Autophagy-associated genes serve as a scaffolding platform for signal transduction of macrophage polarization during the inflammatory phase of wound healing and tissue repair process. In the current study, we report a model for the interplay between autophagy-associated genes and macrophages polarization associated genes. Methods: In silico analysis was performed on 249 autophagy-related genes retrieved from the public autophagy database and gene expression data retrieved from Gene Expression Omnibus (GEO); GSE81922 and GSE69607 microarray data macrophages polarization 199 DEGS. An integrated protein-protein interaction network was constructed for autophagy and macrophage gene sets. The gene sets were then used for GO terms pathway enrichment analysis. Common transcription factors for autophagy and macrophages' polarization were identified. Finally, microRNAs enriched in both autophagy and macrophages were predicated. Results: In silico prediction of common transcription factors in DEGs macrophages and autophagy gene sets revealed a new role for the transcription factors, HOMEZ, GABPA, ELK1 and REL, that commonly regulate macrophages associated genes: IL6,IL1M, IL1B, NOS1, SOC3 and autophagy-related genes: Atg12, Rictor, Rb1cc1, Gaparab1, Atg16l1. Conclusions: Autophagy and macrophages' polarization are interdependent cellular processes, and both autophagy-related proteins and macrophages' polarization related proteins coordinate in tissue remodelling via transcription factors and microRNAs regulatory network. The current work highlights a potential new role for transcription factors HOMEZ, GABPA, ELK1 and REL in wound healing.Keywords: autophagy related proteins, integrated network analysis, macrophages polarization M1 and M2, tissue remodelling
Procedia PDF Downloads 1573527 A General Overview on Izadis Children's Right Situation in Iraqi Kurdistan
Authors: Shabnam Dadparvar, Laijin Shen
Abstract:
Undoubtedly, children are one of the biggest assets of any society and it is the duty of all officials to have a systematic plan to educate the next generation and make a better life for children so that they can progress and be effective for their communities. In an effort, Kurdistan Regional Government (KRG) has adopted standards to improve the condition for Izadis children; however, there are challenges that remain; such as: Izadis child abuse, Izadis child labor, Izadis children right’s law, orphans, Izadis street children and etc. In this paper, by a descriptive-analytical method the authors try to discuss the general situation of Izadis children in today s Iraqi Kurdistan and the issues such as drug abuse, Izadis child labor, orphans and Izadis street children. The questions are: How is the situation of Izadis children in Iraqi Kurdistan and what are their challenges? Also, what is the KRG’s strategy and through which ways, they can make a better life for minority children and change their current status? The authors believe that nowadays, the KRG is trying to crack down on problems against Izadis children; however, their effort is not adequate and some other activities should be performed; one of which is passing the Izadis children s law against violence.Keywords: children right, Iraqi Kurdistan, Izadis children, Kurdistan Regional Government
Procedia PDF Downloads 2603526 Computer Assisted Learning in a Less Resource Region
Authors: Hamidullah Sokout, Samiullah Paracha, Abdul Rashid Ahmadi
Abstract:
Passing the entrance exam to a university is a major step in one's life. University entrance exam commonly known as Kankor is the nationwide entrance exam in Afghanistan. This examination is prerequisite for all public and private higher education institutions at undergraduate level. It is usually taken by students who are graduated from high schools. In this paper, we reflect the major educational school graduates issues and propose ICT-based test preparation environment, known as ‘Online Kankor Exam Prep System’ to give students the tools to help them pass the university entrance exam on the first try. The system is based on Intelligent Tutoring System (ITS), which introduced an essential package of educational technology for learners that features: (i) exam-focused questions and content; (ii) self-assessment environment; and (iii) test preparation strategies in order to help students to acquire the necessary skills in their carrier and keep them up-to-date with instruction.Keywords: web-based test prep systems, learner-centered design, e-learning, intelligent tutoring system
Procedia PDF Downloads 3753525 Net-Trainer-ST: A Swiss Army Knife for Pentesting, Based on Single Board Computer, for Cybersecurity Professionals and Hobbyists
Authors: K. Hołda, D. Śliwa, K. Daniec, A. Nawrat
Abstract:
This article was created as part of the developed master's thesis. It attempts to present a newly developed device, which will support the work of specialists dealing with broadly understood cybersecurity terms. The device is contrived to automate security tests. In addition, it simulates potential cyberattacks in the most realistic way possible, without causing permanent damage to the network, in order to maximize the quality of the subsequent corrections to the tested network systems. The proposed solution is a fully operational prototype created from commonly available electronic components and a single board computer. The focus of the following article is not only put on the hardware part of the device but also on the theoretical and applicatory way in which implemented cybersecurity tests operate and examples of their results.Keywords: Raspberry Pi, ethernet, automated cybersecurity tests, ARP, DNS, backdoor, TCP, password sniffing
Procedia PDF Downloads 1283524 The Rise of Darknet: A Call for Understanding Online Communication of Terrorist Groups in Indonesia
Authors: Aulia Dwi Nastiti
Abstract:
A number of studies and reports on terrorism have continuously addressed the role of internet and online activism to support terrorist and extremist groups. In particular, they stress on social media’s usage that generally serves for the terrorist’s propaganda as well as justification of their causes. While those analyses are important to understand how social media is a vital tool for global network terrorism, they are inadequate to explain the online communication patterns that enable terrorism acts. Beyond apparent online narratives, there is a deep cyber sphere where the very vein of terrorism movement lies. That is a hidden space in the internet called ‘darknet’. Recent investigations, particularly in Middle Eastern context, have shed some lights that this invisible space in the internet is fundamental to maintain the terrorist activities. Despite that, limited number of research examines darknet within the issue of terrorist movements in Indonesian context—where the country is considered quite a hotbed for extremist groups. Therefore, this paper attempts to provide an insight of darknet operation in Indonesian cases. By exploring how the darknet is used by the Indonesian-based extremist groups, this paper maps out communication patterns of terrorist groups on the internet which appear as an intermingled network. It shows the usage of internet is differentiated in different level of anonymity for distinctive purposes. This paper further argues that the emerging terrorist communication network calls for a more comprehensive counterterrorism strategy on the Internet.Keywords: communication pattern, counterterrorism, darknet, extremist groups, terrorism
Procedia PDF Downloads 2963523 Wadjda, a Film That Quietly Sets the Stage for a Cultural Revolution in Saudi Arabia
Authors: Anouar El Younssi
Abstract:
This study seeks to shed some light on the political and social ramifications and implications of Haifaa al-Mansour’s 2012 film Wadjda. The film made international headlines following its release, and was touted as the first film ever to be shot in its entirety inside the Kingdom of Saudi Arabia, and also the first to be directed by a female (Haifaa al-Mansour). Wadjda revolves around a simple storyline: A teenage Saudi girl living in the capital city Riyadh—named Wadjda—wants to have a bicycle just like her male teenage neighbor and friend Abdullah, but her ultra-conservative Saudi society places so many constraints on its female population—including not allowing girls and women to ride bicycles. Wadjda, who displays a rebellious spirit, takes concrete steps to save money in order to realize her dream of buying a bicycle. For example, she starts making and selling sports bracelets to her school mates, and she decides to participate in a Qur’an competition in hopes of winning a sum of money that comes with the first prize. In the end, Wadjda could not beat the system on her own, but the film reverses course, and the audience gets a happy ending: Wadjda’s mother, whose husband has decided to take a second wife, defies the system and buys her daughter the very bicycle Wadjda has been dreaming of. It is quite significant that the mother takes her daughter’s side on the subject of the bicycle at the end of the film, for this shows that she finally came to the realization that she and her daughter are both oppressed by the cultural norms prevalent in Saudi society. It is no coincidence that this change of heart and action on the part of the mother takes place immediately after the wedding night celebrating her husband’s second marriage. Gender inequality is thus placed front and center in the film. Nevertheless, a major finding of this study is that the film carries out its social critique in a soft and almost covert manner. The female actors in the film never issue a direct criticism of Saudi society or government; the criticism is consistently implied and subtle throughout. It is a criticism that relies more on showing than telling. The film shows us—rather than tells us directly—what is wrong, and lets us, the audience, decide and make a judgment. In fact, showing could arguably be more powerful and impactful than telling. Regarding methodology, this study will focus on and analyze the visuals and a number of key utterances by the main actor Wadjda in order to corroborate the study’s argument about the film’s bent on critiquing patriarchy. This research will attempt to establish a link between the film as an art object and as a social text. Ultimately, Wadjda sends a message of hope, that change is possible and that it is already happening slowly inside the Kingdom. It also sends the message that an insurrectional approach regarding women’s rights in Saudi Arabia is perhaps not the right one, at least at this historical juncture.Keywords: bicycle, gender inequality, social critique, Wadjda, women’s rights
Procedia PDF Downloads 1333522 Lessons from Implementation of a Network-Wide Safety Huddle in Behavioral Health
Authors: Deborah Weidner, Melissa Morgera
Abstract:
The model of care delivery in the Behavioral Health Network (BHN) is integrated across all five regions of Hartford Healthcare and thus spans the entirety of the state of Connecticut, with care provided in seven inpatient settings and over 30 ambulatory outpatient locations. While safety has been a core priority of the BHN in alignment with High Reliability practices, safety initiatives have historically been facilitated locally in each region or within each entity, with interventions implemented locally as opposed to throughout the network. To address this, the BHN introduced a network wide Safety Huddle during 2022. Launched in January, the BHN Safety Huddle brought together internal stakeholders, including medical and administrative leaders, along with executive institute leadership, quality, and risk management. By bringing leaders together and introducing a network-wide safety huddle into the way we work, the benefit has been an increase in awareness of safety events occurring in behavioral health areas as well as increased systemization of countermeasures to prevent future events. One significant discussion topic presented in huddles has pertained to environmental design and patient access to potentially dangerous items, addressing some of the most relevant factors resulting in harm to patients in inpatient and emergency settings for behavioral health patients. The safety huddle has improved visibility of potential environmental safety risks through the generation of over 15 safety alerts cascaded throughout the BHN and also spurred a rapid improvement project focused on standardization of patient belonging searches to reduce patient access to potentially dangerous items on inpatient units. Safety events pertaining to potentially dangerous items decreased by 31% as a result of standardized interventions implemented across the network and as a result of increased awareness. A second positive outcome originating from the BHN Safety Huddle was implementation of a recommendation to increase the emergency Narcan®(naloxone) supply on hand in ambulatory settings of the BHN after incidents involving accidental overdose resulted in higher doses of naloxone administration. By increasing the emergency supply of naloxone on hand in all ambulatory and residential settings, colleagues are better prepared to respond in an emergency situation should a patient experience an overdose while on site. Lastly, discussions in safety huddle spurred a new initiative within the BHN to improve responsiveness to assaultive incidents through a consultation service. This consult service, aligned with one of the network’s improvement priorities to reduce harm events related to assaultive incidents, was borne out of discussion in huddle in which it was identified that additional interventions may be needed in providing clinical care to patients who are experiencing multiple and/ or frequent safety events.Keywords: quality, safety, behavioral health, risk management
Procedia PDF Downloads 853521 Radiology Information System’s Mechanisms: HL7-MHS & HL7/DICOM Translation
Authors: Kulwinder Singh Mann
Abstract:
The innovative features of information system, known as Radiology Information System (RIS), for electronic medical records has shown a good impact in the hospital. The objective is to help and make their work easier; such as for a physician to access the patient’s data and for a patient to check their bill transparently. The interoperability of RIS with the other intra-hospital information systems it interacts with, dealing with the compatibility and open architecture issues, are accomplished by two novel mechanisms. The first one is the particular message handling system that is applied for the exchange of information, according to the Health Level Seven (HL7) protocol’s specifications and serves the transfer of medical and administrative data among the RIS applications and data store unit. The second one implements the translation of information between the formats that HL7 and Digital Imaging and Communication in Medicine (DICOM) protocols specify, providing the communication between RIS and Picture and Archive Communication System (PACS) which is used for the increasing incorporation of modern medical imaging equipment.Keywords: RIS, PACS, HIS, HL7, DICOM, messaging service, interoperability, digital images
Procedia PDF Downloads 3063520 ATC in Competitive Electricity Market Using TCSC
Authors: S. K. Gupta, Richa Bansal
Abstract:
In a deregulated power system structure, power producers, and customers share a common transmission network for wheeling power from the point of generation to the point of consumption. All parties in this open access environment may try to purchase the energy from the cheaper source for greater profit margins, which may lead to overloading and congestion of certain corridors of the transmission network. This may result in violation of line flow, voltage and stability limits and thereby undermine the system security. Utilities therefore need to determine adequately their Available Transfer Capability (ATC) to ensure that system reliability is maintained while serving a wide range of bilateral and multilateral transactions. This paper presents power transfer distribution factor based on AC load flow for the determination and enhancement of ATC. The study has been carried out for IEEE 24 bus Reliability Test System.Keywords: available transfer capability, FACTS devices, power transfer distribution factors, electric
Procedia PDF Downloads 5003519 ANOVA-Based Feature Selection and Machine Learning System for IoT Anomaly Detection
Authors: Muhammad Ali
Abstract:
Cyber-attacks and anomaly detection on the Internet of Things (IoT) infrastructure is emerging concern in the domain of data-driven intrusion. Rapidly increasing IoT risk is now making headlines around the world. denial of service, malicious control, data type probing, malicious operation, DDos, scan, spying, and wrong setup are attacks and anomalies that can affect an IoT system failure. Everyone talks about cyber security, connectivity, smart devices, and real-time data extraction. IoT devices expose a wide variety of new cyber security attack vectors in network traffic. For further than IoT development, and mainly for smart and IoT applications, there is a necessity for intelligent processing and analysis of data. So, our approach is too secure. We train several machine learning models that have been compared to accurately predicting attacks and anomalies on IoT systems, considering IoT applications, with ANOVA-based feature selection with fewer prediction models to evaluate network traffic to help prevent IoT devices. The machine learning (ML) algorithms that have been used here are KNN, SVM, NB, D.T., and R.F., with the most satisfactory test accuracy with fast detection. The evaluation of ML metrics includes precision, recall, F1 score, FPR, NPV, G.M., MCC, and AUC & ROC. The Random Forest algorithm achieved the best results with less prediction time, with an accuracy of 99.98%.Keywords: machine learning, analysis of variance, Internet of Thing, network security, intrusion detection
Procedia PDF Downloads 1283518 An Approach to Analyze Testing of Nano On-Chip Networks
Authors: Farnaz Fotovvatikhah, Javad Akbari
Abstract:
Test time of a test architecture is an important factor which depends on the architecture's delay and test patterns. Here a new architecture to store the test results based on network on chip is presented. In addition, simple analytical model is proposed to calculate link test time for built in self-tester (BIST) and external tester (Ext) in multiprocessor systems. The results extracted from the model are verified using FPGA implementation and experimental measurements. Systems consisting 16, 25, and 36 processors are implemented and simulated and test time is calculated. In addition, BIST and Ext are compared in terms of test time at different conditions such as at different number of test patterns and nodes. Using the model the maximum frequency of testing could be calculated and the test structure could be optimized for high speed testing.Keywords: test, nano on-chip network, JTAG, modelling
Procedia PDF Downloads 4913517 Awareness and Utilization of Social Network Tools among Agricultural Science Students in Colleges of Education in Ogun State, Nigeria
Authors: Adebowale Olukayode Efunnowo
Abstract:
This study was carried out to assess the awareness and utilization of Social Network Tools (SNTs) among agricultural science students in Colleges of Education in Ogun State, Nigeria. Simple random sampling techniques were used to select 280 respondents from the study area. Descriptive statistics was used to describe the objectives while Pearson Product Moment Correlation was used to test the hypothesis. The result showed that the majority (71.8%) of the respondents were single, with a mean age of 20 years. Almost all (95.7%) the respondents were aware of Facebook and 2go as a Social Network Tools (SNTs) while 85.0% of the respondents were not aware of Blackplanet, LinkedIn, MyHeritage and Bebo. Many (41.1%) of the respondents had views that using SNTs can enhance extensive literature survey, increase internet browsing potential, promote teaching proficiency, and update on outcomes of researches. However, 51.4% of the respondents perceived that SNTs usage as what is meant for the lecturers/adults only while 16.1% considered it as mainly used by internet fraudsters. Findings revealed that about 50.0% of the respondents browsed Facebook and 2go daily while more than 80% of the respondents used Blackplanet, MyHeritage, Skyrock, Bebo, LinkedIn and My YearBook as the need arise. Major constraints to the awareness and utilization of SNTs were high cost and poor quality of ICTs facilities (77.1%), epileptic power supply (75.0%), inadequate telecommunication infrastructure (71.1%), low technical know-how (62.9%) and inadequate computer knowledge (61.1%). The result of PPMC analysis showed that there was an inverse relationship between constraints and utilization of SNTs at p < 0.05. It can be concluded that constraints affect efficient and effective utilization of SNTs in the study area. It is hereby recommended that management of colleges of education and agricultural institutes should provide good internet connectivity, computer facilities, and alternative power supply in order to increase the awareness and utilization of SNTs among students.Keywords: awareness, utilization, social network tools, constraints, students
Procedia PDF Downloads 3563516 Multivariate Data Analysis for Automatic Atrial Fibrillation Detection
Authors: Zouhair Haddi, Stephane Delliaux, Jean-Francois Pons, Ismail Kechaf, Jean-Claude De Haro, Mustapha Ouladsine
Abstract:
Atrial fibrillation (AF) has been considered as the most common cardiac arrhythmia, and a major public health burden associated with significant morbidity and mortality. Nowadays, telemedical approaches targeting cardiac outpatients situate AF among the most challenged medical issues. The automatic, early, and fast AF detection is still a major concern for the healthcare professional. Several algorithms based on univariate analysis have been developed to detect atrial fibrillation. However, the published results do not show satisfactory classification accuracy. This work was aimed at resolving this shortcoming by proposing multivariate data analysis methods for automatic AF detection. Four publicly-accessible sets of clinical data (AF Termination Challenge Database, MIT-BIH AF, Normal Sinus Rhythm RR Interval Database, and MIT-BIH Normal Sinus Rhythm Databases) were used for assessment. All time series were segmented in 1 min RR intervals window and then four specific features were calculated. Two pattern recognition methods, i.e., Principal Component Analysis (PCA) and Learning Vector Quantization (LVQ) neural network were used to develop classification models. PCA, as a feature reduction method, was employed to find important features to discriminate between AF and Normal Sinus Rhythm. Despite its very simple structure, the results show that the LVQ model performs better on the analyzed databases than do existing algorithms, with high sensitivity and specificity (99.19% and 99.39%, respectively). The proposed AF detection holds several interesting properties, and can be implemented with just a few arithmetical operations which make it a suitable choice for telecare applications.Keywords: atrial fibrillation, multivariate data analysis, automatic detection, telemedicine
Procedia PDF Downloads 2703515 Determination of Flow Arrangement for Optimum Performance in Heat Exchangers
Authors: Ahmed Salisu Atiku
Abstract:
This task involves the determination of the flow arrangement for optimum performance and the calculation of total heat transfer of two identical double pipe heat exchangers in series. The inner pipe contains the cold water stream at 27°C, whilst the outer pipe contains the two hot stream of water at 50°C and 90 °C which can be mixed in any way desired. The analysis was carried out using counter flow arrangement due to its good heat transfer ability. The best way of heating this cold stream was found out to be passing the 90°C hot stream through the two heat exchangers. The outlet temperature of the cold stream was found to be 39.6°C and overall heat transfer of 131.3 kW. Though starting with 50°C hot stream in the first heat exchanger followed by 90°C hot stream in the second heat exchanger gives an outlet temperature almost the same as 90°C hot stream alone, but the heat transfer is low. The reason for the low heat transfer was that only the heat transfer in the second heat exchanger is considered. Whilst the reason behind high outlet temperature was that the cold stream was already preheated by the first stream.Keywords: cold stream, flow arrangement, heat exchanger, hot stream
Procedia PDF Downloads 3293514 Towards Creative Movie Title Generation Using Deep Neural Models
Authors: Simon Espigolé, Igor Shalyminov, Helen Hastie
Abstract:
Deep machine learning techniques including deep neural networks (DNN) have been used to model language and dialogue for conversational agents to perform tasks, such as giving technical support and also for general chit-chat. They have been shown to be capable of generating long, diverse and coherent sentences in end-to-end dialogue systems and natural language generation. However, these systems tend to imitate the training data and will only generate the concepts and language within the scope of what they have been trained on. This work explores how deep neural networks can be used in a task that would normally require human creativity, whereby the human would read the movie description and/or watch the movie and come up with a compelling, interesting movie title. This task differs from simple summarization in that the movie title may not necessarily be derivable from the content or semantics of the movie description. Here, we train a type of DNN called a sequence-to-sequence model (seq2seq) that takes as input a short textual movie description and some information on e.g. genre of the movie. It then learns to output a movie title. The idea is that the DNN will learn certain techniques and approaches that the human movie titler may deploy that may not be immediately obvious to the human-eye. To give an example of a generated movie title, for the movie synopsis: ‘A hitman concludes his legacy with one more job, only to discover he may be the one getting hit.’; the original, true title is ‘The Driver’ and the one generated by the model is ‘The Masquerade’. A human evaluation was conducted where the DNN output was compared to the true human-generated title, as well as a number of baselines, on three 5-point Likert scales: ‘creativity’, ‘naturalness’ and ‘suitability’. Subjects were also asked which of the two systems they preferred. The scores of the DNN model were comparable to the scores of the human-generated movie title, with means m=3.11, m=3.12, respectively. There is room for improvement in these models as they were rated significantly less ‘natural’ and ‘suitable’ when compared to the human title. In addition, the human-generated title was preferred overall 58% of the time when pitted against the DNN model. These results, however, are encouraging given the comparison with a highly-considered, well-crafted human-generated movie title. Movie titles go through a rigorous process of assessment by experts and focus groups, who have watched the movie. This process is in place due to the large amount of money at stake and the importance of creating an effective title that captures the audiences’ attention. Our work shows progress towards automating this process, which in turn may lead to a better understanding of creativity itself.Keywords: creativity, deep machine learning, natural language generation, movies
Procedia PDF Downloads 3273513 Bi-objective Network Optimization in Disaster Relief Logistics
Authors: Katharina Eberhardt, Florian Klaus Kaiser, Frank Schultmann
Abstract:
Last-mile distribution is one of the most critical parts of a disaster relief operation. Various uncertainties, such as infrastructure conditions, resource availability, and fluctuating beneficiary demand, render last-mile distribution challenging in disaster relief operations. The need to balance critical performance criteria like response time, meeting demand and cost-effectiveness further complicates the task. The occurrence of disasters cannot be controlled, and the magnitude is often challenging to assess. In summary, these uncertainties create a need for additional flexibility, agility, and preparedness in logistics operations. As a result, strategic planning and efficient network design are critical for an effective and efficient response. Furthermore, the increasing frequency of disasters and the rising cost of logistical operations amplify the need to provide robust and resilient solutions in this area. Therefore, we formulate a scenario-based bi-objective optimization model that integrates pre-positioning, allocation, and distribution of relief supplies extending the general form of a covering location problem. The proposed model aims to minimize underlying logistics costs while maximizing demand coverage. Using a set of disruption scenarios, the model allows decision-makers to identify optimal network solutions to address the risk of disruptions. We provide an empirical case study of the public authorities’ emergency food storage strategy in Germany to illustrate the potential applicability of the model and provide implications for decision-makers in a real-world setting. Also, we conduct a sensitivity analysis focusing on the impact of varying stockpile capacities, single-site outages, and limited transportation capacities on the objective value. The results show that the stockpiling strategy needs to be consistent with the optimal number of depots and inventory based on minimizing costs and maximizing demand satisfaction. The strategy has the potential for optimization, as network coverage is insufficient and relies on very high transportation and personnel capacity levels. As such, the model provides decision support for public authorities to determine an efficient stockpiling strategy and distribution network and provides recommendations for increased resilience. However, certain factors have yet to be considered in this study and should be addressed in future works, such as additional network constraints and heuristic algorithms.Keywords: humanitarian logistics, bi-objective optimization, pre-positioning, last mile distribution, decision support, disaster relief networks
Procedia PDF Downloads 843512 Green Closed-Loop Supply Chain Network Design Considering Different Production Technologies Levels and Transportation Modes
Authors: Mahsa Oroojeni Mohammad Javad
Abstract:
Globalization of economic activity and rapid growth of information technology has resulted in shorter product lifecycles, reduced transport capacity, dynamic and changing customer behaviors, and an increased focus on supply chain design in recent years. The design of the supply chain network is one of the most important supply chain management decisions. These decisions will have a long-term impact on the efficacy and efficiency of the supply chain. In this paper, a two-objective mixed-integer linear programming (MILP) model is developed for designing and optimizing a closed-loop green supply chain network that, to the greatest extent possible, includes all real-world assumptions such as multi-level supply chain, the multiplicity of production technologies, and multiple modes of transportation, with the goals of minimizing the total cost of the chain (first objective) and minimizing total emissions of emissions (second objective). The ε-constraint and CPLEX Solver have been used to solve the problem as a single-objective problem and validate the problem. Finally, the sensitivity analysis is applied to study the effect of the real-world parameters’ changes on the objective function. The optimal management suggestions and policies are presented.Keywords: closed-loop supply chain, multi-level green supply chain, mixed-integer programming, transportation modes
Procedia PDF Downloads 833511 Flame Retardant Study of Methylol Melamine Phosphate-Treated Cotton Fibre
Authors: Nurudeen Afolami Ayeni, Kasali Bello
Abstract:
Methylolmelamine with increasing degree of methylol substitution and the phosphates derivatives were used to resinate cotton fabric (CF). The resination was carried out at different curing time and curing temperature. Generally, the results show a reduction in the flame propagation rate of the treated fabrics compared to the untreated cotton fabric (CF). While the flame retardancy of methylolmelamine-treated fibre could be attributed to the degree of crosslinking of fibre-resin network which promotes stability, the methylolmelamine phosphate-treated fabrics show better retardancy due to the intumescences action of the phosphate resin upon decomposition in the resin – fabric network.Keywords: cotton fabric, flame retardant, methylolmelamine, crosslinking, resination
Procedia PDF Downloads 3883510 Generalized Additive Model for Estimating Propensity Score
Authors: Tahmidul Islam
Abstract:
Propensity Score Matching (PSM) technique has been widely used for estimating causal effect of treatment in observational studies. One major step of implementing PSM is estimating the propensity score (PS). Logistic regression model with additive linear terms of covariates is most used technique in many studies. Logistics regression model is also used with cubic splines for retaining flexibility in the model. However, choosing the functional form of the logistic regression model has been a question since the effectiveness of PSM depends on how accurately the PS been estimated. In many situations, the linearity assumption of linear logistic regression may not hold and non-linear relation between the logit and the covariates may be appropriate. One can estimate PS using machine learning techniques such as random forest, neural network etc for more accuracy in non-linear situation. In this study, an attempt has been made to compare the efficacy of Generalized Additive Model (GAM) in various linear and non-linear settings and compare its performance with usual logistic regression. GAM is a non-parametric technique where functional form of the covariates can be unspecified and a flexible regression model can be fitted. In this study various simple and complex models have been considered for treatment under several situations (small/large sample, low/high number of treatment units) and examined which method leads to more covariate balance in the matched dataset. It is found that logistic regression model is impressively robust against inclusion quadratic and interaction terms and reduces mean difference in treatment and control set equally efficiently as GAM does. GAM provided no significantly better covariate balance than logistic regression in both simple and complex models. The analysis also suggests that larger proportion of controls than treatment units leads to better balance for both of the methods.Keywords: accuracy, covariate balances, generalized additive model, logistic regression, non-linearity, propensity score matching
Procedia PDF Downloads 3703509 Simulation of Climatic Change Effects on the Potential Fishing Zones of Dorado Fish (Coryphaena hippurus L.) in the Colombian Pacific under Scenarios RCP Using CMIP5 Model
Authors: Adriana Martínez-Arias, John Josephraj Selvaraj, Luis Octavio González-Salcedo
Abstract:
In the Colombian Pacific, Dorado fish (Coryphaena hippurus L.) fisheries is of great commercial interest. However, its habitat and fisheries may be affected by climatic change especially by the actual increase in sea surface temperature. Hence, it is of interest to study the dynamics of these species fishing zones. In this study, we developed Artificial Neural Networks (ANN) models to predict Catch per Unit Effort (CPUE) as an indicator of species abundance. The model was based on four oceanographic variables (Chlorophyll a, Sea Surface Temperature, Sea Level Anomaly and Bathymetry) derived from satellite data. CPUE datasets for model training and cross-validation were obtained from logbooks of commercial fishing vessel. Sea surface Temperature for Colombian Pacific were projected under Representative Concentration Pathway (RCP) scenarios 4.5 and 8.5 using Coupled Model Intercomparison Project Phase 5 (CMIP5) and CPUE maps were created. Our results indicated that an increase in sea surface temperature reduces the potential fishing zones of this species in the Colombian Pacific. We conclude that ANN is a reliable tool for simulation of climate change effects on the potential fishing zones. This research opens a future agenda for other species that have been affected by climate change.Keywords: climatic change, artificial neural networks, dorado fish, CPUE
Procedia PDF Downloads 248