Search results for: mathematical optimization
2384 High Strength Steel Thin-Walled Cold-Formed Profiles Manufactured for Automated Rack Supported Warehouses
Authors: A. Natali, F. V. Lippi, F. Morelli, W. Salvatore, J. H. M. De Paula Filho, P. Pol
Abstract:
Automated Rack Supported Warehouses (ARSWs) are storage buildings whose load-bearing structure is made of the same steel racks where goods are stocked. These racks are made of cold formed elements, and the main supporting structure is repeated several times along the length of the building, resulting in a huge quantity of steel. The possibility of using high strength steel to manufacture the traditional cold-formed profiles used for ARSWs is numerically investigated, with the aim of reducing the necessary steel quantity but guaranteeing optimal structural performance levels.Keywords: steel racks, automated rack supported warehouse, thin-walled cold-formed elements, high strength steel, structural optimization
Procedia PDF Downloads 1572383 Artificial Intelligence Based Comparative Analysis for Supplier Selection in Multi-Echelon Automotive Supply Chains via GEP and ANN Models
Authors: Seyed Esmail Seyedi Bariran, Laysheng Ewe, Amy Ling
Abstract:
Since supplier selection appears as a vital decision, selecting supplier based on the best and most accurate ways has a lot of importance for enterprises. In this study, a new Artificial Intelligence approach is exerted to remove weaknesses of supplier selection. The paper has three parts. First part is choosing the appropriate criteria for assessing the suppliers’ performance. Next one is collecting the data set based on experts. Afterwards, the data set is divided into two parts, the training data set and the testing data set. By the training data set the best structure of GEP and ANN are selected and to evaluate the power of the mentioned methods the testing data set is used. The result obtained shows that the accuracy of GEP is more than ANN. Moreover, unlike ANN, a mathematical equation is presented by GEP for the supplier selection.Keywords: supplier selection, automotive supply chains, ANN, GEP
Procedia PDF Downloads 6312382 Impact of Population Size on Symmetric Travelling Salesman Problem Efficiency
Authors: Wafa' Alsharafat, Suhila Farhan Abu-Owida
Abstract:
Genetic algorithm (GA) is a powerful evolutionary searching technique that is used successfully to solve and optimize problems in different research areas. Genetic Algorithm (GA) considered as one of optimization methods used to solve Travel salesman Problem (TSP). The feasibility of GA in finding a TSP solution is dependent on GA operators; encoding method, population size, termination criteria, in general. In specific, crossover and its probability play a significant role in finding possible solutions for Symmetric TSP (STSP). In addition, the crossover should be determined and enhanced in term reaching optimal or at least near optimal. In this paper, we spot the light on using a modified crossover method called modified sequential constructive crossover and its impact on reaching optimal solution. To justify the relevance of a parameter value in solving the TSP, a set comparative analysis conducted on different crossover methods values.Keywords: genetic algorithm, crossover, mutation, TSP
Procedia PDF Downloads 2272381 Novel GPU Approach in Predicting the Directional Trend of the S&P500
Authors: A. J. Regan, F. J. Lidgey, M. Betteridge, P. Georgiou, C. Toumazou, K. Hayatleh, J. R. Dibble
Abstract:
Our goal is development of an algorithm capable of predicting the directional trend of the Standard and Poor’s 500 index (S&P 500). Extensive research has been published attempting to predict different financial markets using historical data testing on an in-sample and trend basis, with many authors employing excessively complex mathematical techniques. In reviewing and evaluating these in-sample methodologies, it became evident that this approach was unable to achieve sufficiently reliable prediction performance for commercial exploitation. For these reasons, we moved to an out-of-sample strategy based on linear regression analysis of an extensive set of financial data correlated with historical closing prices of the S&P 500. We are pleased to report a directional trend accuracy of greater than 55% for tomorrow (t+1) in predicting the S&P 500.Keywords: financial algorithm, GPU, S&P 500, stock market prediction
Procedia PDF Downloads 3502380 Real-Time Implementation of Self-Tuning Fuzzy-PID Controller for First Order Plus Dead Time System Base on Microcontroller STM32
Authors: Maitree Thamma, Witchupong Wiboonjaroen, Thanat Suknuan, Karan Homchat
Abstract:
First order plus dead time (FOPDT) is a high dynamic system. Therefore, the controller must be intelligent. This paper presents the development and implementation of self-tuning Fuzzy-PID controller for controlling the FOPDT system. The water level process used represented FOPDT system and the mathematical model of the system was approximated by using System Identification toolbox in Matlab. The control programming and Fuzzy-PID algorithm used Matlab/Simulink and run on Microcontroller STM32.Keywords: real-time control, self-tuning fuzzy-PID, FOPDT system, the water lever process
Procedia PDF Downloads 2922379 Improved Artificial Bee Colony Algorithm for Non-Convex Economic Power Dispatch Problem
Authors: Badr M. Alshammari, T. Guesmi
Abstract:
This study presents a modified version of the artificial bee colony (ABC) algorithm by including a local search technique for solving the non-convex economic power dispatch problem. The local search step is incorporated at the end of each iteration. Total system losses, valve-point loading effects and prohibited operating zones have been incorporated in the problem formulation. Thus, the problem becomes highly nonlinear and with discontinuous objective function. The proposed technique is validated using an IEEE benchmark system with ten thermal units. Simulation results demonstrate that the proposed optimization algorithm has better convergence characteristics in comparison with the original ABC algorithm.Keywords: economic power dispatch, artificial bee colony, valve-point loading effects, prohibited operating zones
Procedia PDF Downloads 2572378 Dynamic Analysis of Offshore 2-HUS/U Parallel Platform
Authors: Xie Kefeng, Zhang He
Abstract:
For the stability and control demand of offshore small floating platform, a 2-HUS/U parallel mechanism was presented as offshore platform. Inverse kinematics was obtained by institutional constraint equation, and the dynamic model of offshore 2-HUS/U parallel platform was derived based on rigid body’s Lagrangian method. The equivalent moment of inertia, damping and driving force/torque variation of offshore 2-HUS/U parallel platform were analyzed. A numerical example shows that, for parallel platform of given motion, system’s equivalent inertia changes 1.25 times maximally. During the movement of platform, they change dramatically with the system configuration and have coupling characteristics. The maximum equivalent drive torque is 800 N. At the same time, the curve of platform’s driving force/torque is smooth and has good sine features. The control system needs to be adjusted according to kinetic equation during stability and control and it provides a basis for the optimization of control system.Keywords: 2-HUS/U platform, dynamics, Lagrange, parallel platform
Procedia PDF Downloads 3452377 Formulation and Evaluation of Dispersible Tablet of Furosemide for Pediatric Use
Authors: O. Benaziz, A. Dorbane, S. Djeraba
Abstract:
The objective of this work is to formulate a dry dispersible form of furosemide in the context of pediatric dose adjustment. To achieve this, we have produced a set of formulas that will be tested in process and after compression. The formula with the best results will be improved to optimize the final shape of the product. Furosemide is the most widely used pediatric diuretic because of its low toxicity. The manufacturing process was chosen taking into account all the data relating to the active ingredient and the excipients used and complying with the specifications and requirements of dispersible tablets. The process used to prepare these tablets was wet granulation. Different excipients were used: lactose, maize starch, magnesium stearate and two superdisintegrants. The mode of incorporation of super-disintegrant changes with each formula. The use of super-disintegrant in the formula allowed optimization of the disintegration time. Prepared tablets were evaluated for weight, content uniformity, hardness, disintegration time, friability and in vitro dissolution test.Keywords: formulation, dispersible tablets, wet granulation, superdisintegrants, disintegration
Procedia PDF Downloads 3452376 Molecular Dynamics Simulation of Realistic Biochar Models with Controlled Microporosity
Authors: Audrey Ngambia, Ondrej Masek, Valentina Erastova
Abstract:
Biochar is an amorphous carbon-rich material generated from the pyrolysis of biomass with multifarious properties and functionality. Biochar has shown proven applications in the treatment of flue gas and organic and inorganic pollutants in soil and water/wastewater as a result of its multiple surface functional groups and porous structures. These properties have also shown potential in energy storage and carbon capture. The availability of diverse sources of biomass to produce biochar has increased interest in it as a sustainable and environmentally friendly material. The properties and porous structures of biochar vary depending on the type of biomass and high heat treatment temperature (HHT). Biochars produced at HHT between 400°C – 800°C generally have lower H/C and O/C ratios, higher porosities, larger pore sizes and higher surface areas with temperature. While all is known experimentally, there is little knowledge on the porous role structure and functional groups play on processes occurring at the atomistic scale, which are extremely important for the optimization of biochar for application, especially in the adsorption of gases. Atomistic simulations methods have shown the potential to generate such amorphous materials; however, most of the models available are composed of only carbon atoms or graphitic sheets, which are very dense or with simple slit pores, all of which ignore the important role of heteroatoms such as O, N, S and pore morphologies. Hence, developing realistic models that integrate these parameters are important to understand their role in governing adsorption mechanisms that will aid in guiding the design and optimization of biochar materials for target applications. In this work, molecular dynamics simulations in the isobaric ensemble are used to generate realistic biochar models taking into account experimentally determined H/C, O/C, N/C, aromaticity, micropore size range, micropore volumes and true densities of biochars. A pore generation approach was developed using virtual atoms, which is a Lennard-Jones sphere of varying van der Waals radius and softness. Its interaction via a soft-core potential with the biochar matrix allows the creation of pores with rough surfaces while varying the van der Waals radius parameters gives control to the pore-size distribution. We focused on microporosity, creating average pore sizes of 0.5 - 2 nm in diameter and pore volumes in the range of 0.05 – 1 cm3/g, which corresponds to experimental gas adsorption micropore sizes of amorphous porous biochars. Realistic biochar models with surface functionalities, micropore size distribution and pore morphologies were developed, and they could aid in the study of adsorption processes in confined micropores.Keywords: biochar, heteroatoms, micropore size, molecular dynamics simulations, surface functional groups, virtual atoms
Procedia PDF Downloads 712375 Adaptive Few-Shot Deep Metric Learning
Authors: Wentian Shi, Daming Shi, Maysam Orouskhani, Feng Tian
Abstract:
Whereas currently the most prevalent deep learning methods require a large amount of data for training, few-shot learning tries to learn a model from limited data without extensive retraining. In this paper, we present a loss function based on triplet loss for solving few-shot problem using metric based learning. Instead of setting the margin distance in triplet loss as a constant number empirically, we propose an adaptive margin distance strategy to obtain the appropriate margin distance automatically. We implement the strategy in the deep siamese network for deep metric embedding, by utilizing an optimization approach by penalizing the worst case and rewarding the best. Our experiments on image recognition and co-segmentation model demonstrate that using our proposed triplet loss with adaptive margin distance can significantly improve the performance.Keywords: few-shot learning, triplet network, adaptive margin, deep learning
Procedia PDF Downloads 1712374 Machine Learning Approach for Lateralization of Temporal Lobe Epilepsy
Authors: Samira-Sadat JamaliDinan, Haidar Almohri, Mohammad-Reza Nazem-Zadeh
Abstract:
Lateralization of temporal lobe epilepsy (TLE) is very important for positive surgical outcomes. We propose a machine learning framework to ultimately identify the epileptogenic hemisphere for temporal lobe epilepsy (TLE) cases using magnetoencephalography (MEG) coherence source imaging (CSI) and diffusion tensor imaging (DTI). Unlike most studies that use classification algorithms, we propose an effective clustering approach to distinguish between normal and TLE cases. We apply the famous Minkowski weighted K-Means (MWK-Means) technique as the clustering framework. To overcome the problem of poor initialization of K-Means, we use particle swarm optimization (PSO) to effectively select the initial centroids of clusters prior to applying MWK-Means. We demonstrate that compared to K-means and MWK-means independently, this approach is able to improve the result of a benchmark data set.Keywords: temporal lobe epilepsy, machine learning, clustering, magnetoencephalography
Procedia PDF Downloads 1562373 Layout Design Optimization of Spars under Multiple Load Cases of the High-Aspect-Ratio Wing
Authors: Yu Li, Jingwu He, Yuexi Xiong
Abstract:
The spar layout will affect the wing’s stiffness characteristics, and irrational spar arrangement will reduce the overall bending and twisting resistance capacity of the wing. In this paper, the active structural stiffness design theory is used to match the stiffness-center axis position and load-cases under the corresponding multiple flight conditions, in order to achieve better stiffness properties of the wing. The combination of active stiffness method and principle of stiffness distribution is proved to be reasonable supplying an initial reference for wing designing. The optimized layout of spars is eventually obtained, and the high-aspect-ratio wing will have better stiffness characteristics.Keywords: active structural stiffness design theory, high-aspect-ratio wing, flight load cases, layout of spars
Procedia PDF Downloads 3222372 Using Multi-Arm Bandits to Optimize Game Play Metrics and Effective Game Design
Authors: Kenny Raharjo, Ramon Lawrence
Abstract:
Game designers have the challenging task of building games that engage players to spend their time and money on the game. There are an infinite number of game variations and design choices, and it is hard to systematically determine game design choices that will have positive experiences for players. In this work, we demonstrate how multi-arm bandits can be used to automatically explore game design variations to achieve improved player metrics. The advantage of multi-arm bandits is that they allow for continuous experimentation and variation, intrinsically converge to the best solution, and require no special infrastructure to use beyond allowing minor game variations to be deployed to users for evaluation. A user study confirms that applying multi-arm bandits was successful in determining the preferred game variation with highest play time metrics and can be a useful technique in a game designer's toolkit.Keywords: game design, multi-arm bandit, design exploration and data mining, player metric optimization and analytics
Procedia PDF Downloads 5102371 Evaluation of Reliability, Availability and Maintainability for Automotive Manufacturing Process
Authors: Hamzeh Soltanali, Abbas Rohani, A. H. S. Garmabaki, Mohammad Hossein Abbaspour-Fard, Adithya Thaduri
Abstract:
Toward continuous innovation and high complexity of technological systems, the automotive manufacturing industry is also under pressure to implement adequate management strategies regarding availability and productivity. In this context, evaluation of system’s performance by considering reliability, availability and maintainability (RAM) methodologies can constitute for resilient operation, identifying the bottlenecks of manufacturing process and optimization of maintenance actions. In this paper, RAM parameters are evaluated for improving the operational performance of the fluid filling process. To evaluate the RAM factors through the behavior of states defined for such process, a systematic decision framework was developed. The results of RAM analysis revealed that that the improving reliability and maintainability of main bottlenecks for each filling workstation need to be considered as a priority. The results could be useful to improve operational performance and sustainability of production process.Keywords: automotive, performance, reliability, RAM, fluid filling process
Procedia PDF Downloads 3532370 Monotonicity of the Jensen Functional for f-Divergences via the Zipf-Mandelbrot Law
Authors: Neda Lovričević, Đilda Pečarić, Josip Pečarić
Abstract:
The Jensen functional in its discrete form is brought in relation to the Csiszar divergence functional, this time via its monotonicity property. This approach presents a generalization of the previously obtained results that made use of interpolating Jensen-type inequalities. Thus the monotonicity property is integrated with the Zipf-Mandelbrot law and applied to f-divergences for probability distributions that originate from the Csiszar divergence functional: Kullback-Leibler divergence, Hellinger distance, Bhattacharyya distance, chi-square divergence, total variation distance. The Zipf-Mandelbrot and the Zipf law are widely used in various scientific fields and interdisciplinary and here the focus is on the aspect of the mathematical inequalities.Keywords: Jensen functional, monotonicity, Csiszar divergence functional, f-divergences, Zipf-Mandelbrot law
Procedia PDF Downloads 1422369 ACBM: Attention-Based CNN and Bi-LSTM Model for Continuous Identity Authentication
Authors: Rui Mao, Heming Ji, Xiaoyu Wang
Abstract:
Keystroke dynamics are widely used in identity recognition. It has the advantage that the individual typing rhythm is difficult to imitate. It also supports continuous authentication through the keyboard without extra devices. The existing keystroke dynamics authentication methods based on machine learning have a drawback in supporting relatively complex scenarios with massive data. There are drawbacks to both feature extraction and model optimization in these methods. To overcome the above weakness, an authentication model of keystroke dynamics based on deep learning is proposed. The model uses feature vectors formed by keystroke content and keystroke time. It ensures efficient continuous authentication by cooperating attention mechanisms with the combination of CNN and Bi-LSTM. The model has been tested with Open Data Buffalo dataset, and the result shows that the FRR is 3.09%, FAR is 3.03%, and EER is 4.23%. This proves that the model is efficient and accurate on continuous authentication.Keywords: keystroke dynamics, identity authentication, deep learning, CNN, LSTM
Procedia PDF Downloads 1552368 Buckling Analysis of Composite Shells under Compression and Torsional Loads: Numerical and Analytical Study
Authors: Güneş Aydın, Razi Kalantari Osgouei, Murat Emre Öztürk, Ahmad Partovi Meran, Ekrem Tüfekçi
Abstract:
Advanced lightweight laminated composite shells are increasingly being used in all types of modern structures, for enhancing their structural efficiency and performance. Such thin-walled structures are susceptible to buckling when subjected to various loading. This paper focuses on the buckling of cylindrical shells under axial compression and torsional loads. Effects of fiber orientation on the maximum buckling load of carbon fiber reinforced polymer (CFRP) shells are optimized. Optimum fiber angles have been calculated analytically by using MATLAB program. Numerical models have been carried out by using Finite Element Method program ABAQUS. Results from analytical and numerical analyses are also compared.Keywords: buckling, composite, cylindrical shell, finite element, compression, torsion, MATLAB, optimization
Procedia PDF Downloads 5872367 A Data Envelopment Analysis Model in a Multi-Objective Optimization with Fuzzy Environment
Authors: Michael Gidey Gebru
Abstract:
Most of Data Envelopment Analysis models operate in a static environment with input and output parameters that are chosen by deterministic data. However, due to ambiguity brought on shifting market conditions, input and output data are not always precisely gathered in real-world scenarios. Fuzzy numbers can be used to address this kind of ambiguity in input and output data. Therefore, this work aims to expand crisp Data Envelopment Analysis into Data Envelopment Analysis with fuzzy environment. In this study, the input and output data are regarded as fuzzy triangular numbers. Then, the Data Envelopment Analysis model with fuzzy environment is solved using a multi-objective method to gauge the Decision Making Units' efficiency. Finally, the developed Data Envelopment Analysis model is illustrated with an application on real data 50 educational institutions.Keywords: efficiency, Data Envelopment Analysis, fuzzy, higher education, input, output
Procedia PDF Downloads 572366 Comparison of Acid and Base Pretreatment of Switchgrass (Panicum virgatum L.) for Bioethanol Production
Authors: Mustafa Ümi̇t Ünal, Nafi̇z Çeli̇ktaş, Aysun Şener, Sara Betül Dolgun, Duygu Keser
Abstract:
The aim of this study was to compare acid and base pretreatment of switchgrass for bioethanol production. Switchgrass was pretreated with sulfuric acid and sodium hydroxide at 0.5, 1.0 and 1.5% (v/v) at 120, 140, 180 °C for 10, 60 and 90. Optimization of enzymatic hydrolysis of the pretreated switchgrass samples were carried out using three different enzyme mixtures (22.5 mg cellulase and 75 mg cellobiase /g biomass; 45 mg cellulase and 150 mg cellobiase /g biomass; 90 mg cellulase and 300 mg cellobiase /g biomass). Samples were removed at 24-h interval for fermentable sugar analyses with HPLC. The results showed that use of 90 mg cellulase and 300 mg cellobiase/g biomass resulted in the highest fermentable sugar formation. Furthermore, the highest fermentable sugar yield was obtained by pretreatment at 120 °C for 10 min using 1.0 % sodium hydroxide.Keywords: switchgrass, acid pretreatment, enzymatic hydrolysis, base pretreatment, ethanol production
Procedia PDF Downloads 5302365 Physicochemical-Mechanical, Thermal and Rheological Properties Analysis of Pili Tree (Canarium Ovatum) Resin as Aircraft Integral Fuel Tank Sealant
Authors: Mark Kennedy, E. Bantugon, Noruane A. Daileg
Abstract:
Leaks arising from aircraft fuel tanks is a protracted problem for the aircraft manufacturers, operators, and maintenance crews. It principally arises from stress, structural defects, or degraded sealants as the aircraft age. It can be ignited by different sources, which can result in catastrophic flight and consequences, exhibiting a major drain both on time and budget. In order to mitigate and eliminate this kind of problem, the researcher produced an experimental sealant having a base material of natural tree resin, the Pili Tree Resin. Aside from producing an experimental sealant, the main objective of this research is to analyze its physical, chemical, mechanical, thermal, and rheological properties, which is beneficial and effective for specific aircraft parts, particularly the integral fuel tank. The experimental method of research was utilized in this study since it is a product invention. This study comprises two parts, specifically the Optimization Process and the Characterization Process. In the Optimization Process, the experimental sealant was subjected to the Flammability Test, an important test and consideration according to 14 Code of Federal Regulation Appendix N, Part 25 - Fuel Tank Flammability Exposure and Reliability Analysis, to get the most suitable formulation. Followed by the Characterization Process, where the formulated experimental sealant has undergone thirty-eight (38) different standard testing including Organoleptic, Instrumental Color Measurement Test, Smoothness of Appearance Test, Miscibility Test, Boiling Point Test, Flash Point Test, Curing Time, Adhesive Test, Toxicity Test, Shore A Hardness Test, Compressive Strength, Shear Strength, Static Bending Strength, Tensile Strength, Peel Strength Test, Knife Test, Adhesion by Tape Test, Leakage Test), Drip Test, Thermogravimetry-Differential Thermal Analysis (TG-DTA), Differential Scanning Calorimetry, Calorific Value, Viscosity Test, Creep Test, and Anti-Sag Resistance Test to determine and analyze the five (5) material properties of the sealant. The numerical values of the mentioned tests are determined using product application, testing, and calculation. These values are then used to calculate the efficiency of the experimental sealant. Accordingly, this efficiency is the means of comparison between the experimental and commercial sealant. Based on the results of the different standard testing conducted, the experimental sealant exceeded all the data results of the commercial sealant. This result shows that the physicochemical-mechanical, thermal, and rheological properties of the experimental sealant are far more effective as an aircraft integral fuel tank sealant alternative in comparison to the commercial sealant. Therefore, Pili Tree possesses a new role and function: a source of ingredients in sealant production.Keywords: Aircraft Integral Fuel Tank, Physicochemi-mechanical, Pili Tree Resin, Properties, Rheological, Sealant, Thermal
Procedia PDF Downloads 2942364 Machine Learning Approaches Based on Recency, Frequency, Monetary (RFM) and K-Means for Predicting Electrical Failures and Voltage Reliability in Smart Cities
Authors: Panaya Sudta, Wanchalerm Patanacharoenwong, Prachya Bumrungkun
Abstract:
As With the evolution of smart grids, ensuring the reliability and efficiency of electrical systems in smart cities has become crucial. This paper proposes a distinct approach that combines advanced machine learning techniques to accurately predict electrical failures and address voltage reliability issues. This approach aims to improve the accuracy and efficiency of reliability evaluations in smart cities. The aim of this research is to develop a comprehensive predictive model that accurately predicts electrical failures and voltage reliability in smart cities. This model integrates RFM analysis, K-means clustering, and LSTM networks to achieve this objective. The research utilizes RFM analysis, traditionally used in customer value assessment, to categorize and analyze electrical components based on their failure recency, frequency, and monetary impact. K-means clustering is employed to segment electrical components into distinct groups with similar characteristics and failure patterns. LSTM networks are used to capture the temporal dependencies and patterns in customer data. This integration of RFM, K-means, and LSTM results in a robust predictive tool for electrical failures and voltage reliability. The proposed model has been tested and validated on diverse electrical utility datasets. The results show a significant improvement in prediction accuracy and reliability compared to traditional methods, achieving an accuracy of 92.78% and an F1-score of 0.83. This research contributes to the proactive maintenance and optimization of electrical infrastructures in smart cities. It also enhances overall energy management and sustainability. The integration of advanced machine learning techniques in the predictive model demonstrates the potential for transforming the landscape of electrical system management within smart cities. The research utilizes diverse electrical utility datasets to develop and validate the predictive model. RFM analysis, K-means clustering, and LSTM networks are applied to these datasets to analyze and predict electrical failures and voltage reliability. The research addresses the question of how accurately electrical failures and voltage reliability can be predicted in smart cities. It also investigates the effectiveness of integrating RFM analysis, K-means clustering, and LSTM networks in achieving this goal. The proposed approach presents a distinct, efficient, and effective solution for predicting and mitigating electrical failures and voltage issues in smart cities. It significantly improves prediction accuracy and reliability compared to traditional methods. This advancement contributes to the proactive maintenance and optimization of electrical infrastructures, overall energy management, and sustainability in smart cities.Keywords: electrical state prediction, smart grids, data-driven method, long short-term memory, RFM, k-means, machine learning
Procedia PDF Downloads 562363 Mostar Type Indices and QSPR Analysis of Octane Isomers
Authors: B. Roopa Sri, Y Lakshmi Naidu
Abstract:
Chemical Graph Theory (CGT) is the branch of mathematical chemistry in which molecules are modeled to study their physicochemical properties using molecular descriptors. Amongst these descriptors, topological indices play a vital role in predicting the properties by defining the graph topology of the molecule. Recently, the bond-additive topological index known as the Mostar index has been proposed. In this paper, we compute the Mostar-type indices of octane isomers and use the data obtained to perform QSPR analysis. Furthermore, we show the correlation between the Mostar type indices and the properties.Keywords: chemical graph theory, mostar type indices, octane isomers, qspr analysis, topological index
Procedia PDF Downloads 1302362 Digital Watermarking Based on Visual Cryptography and Histogram
Authors: R. Rama Kishore, Sunesh
Abstract:
Nowadays, robust and secure watermarking algorithm and its optimization have been need of the hour. A watermarking algorithm is presented to achieve the copy right protection of the owner based on visual cryptography, histogram shape property and entropy. In this, both host image and watermark are preprocessed. Host image is preprocessed by using Butterworth filter, and watermark is with visual cryptography. Applying visual cryptography on water mark generates two shares. One share is used for embedding the watermark, and the other one is used for solving any dispute with the aid of trusted authority. Usage of histogram shape makes the process more robust against geometric and signal processing attacks. The combination of visual cryptography, Butterworth filter, histogram, and entropy can make the algorithm more robust, imperceptible, and copy right protection of the owner.Keywords: digital watermarking, visual cryptography, histogram, butter worth filter
Procedia PDF Downloads 3582361 Temperature Susceptibility for Optimal Biogas Production
Authors: Ujjal Chattaraj, Pbharat Saikumar, Thinley Dorji
Abstract:
Earth is going to be a planet where no further life can sustain if people continue to pollute the environment. We need energy and fuels everyday for heating and lighting purposes in our life. It’s high time we know this problem and take measures at-least to reduce pollution and take alternative measures for everyday livelihood. Biogas is one of them. It is very essential to define and control the parameters for optimization of biogas production. Biogas plants can be made of different size, but it is very vital to make a biogas which will be cost effective, with greater efficiency (more production) and biogas plants that will sustain for a longer period of time for usage. In this research, experiments were carried out only on cow dung and Chicken manure depending on the substrates people out there (Bhutan) used. The experiment was done within 25 days and was tested for different temperatures and found out which produce more amount. Moreover, it was also statistically tested for their dependency and non-dependency which gave clear idea more on their production.Keywords: digester, mesophilic temperature, organic manure, statistical analysis, thermophilic temperature, t-test
Procedia PDF Downloads 2022360 A CMOS-Integrated Hall Plate with High Sensitivity
Authors: Jin Sup Kim, Min Seo
Abstract:
An improved cross-shaped hall plate with high sensitivity is described in this paper. Among different geometries that have been simulated and measured using Helmholtz coil. The paper describes the physical hall plate design and implementation in a 0.18-µm CMOS technology. In this paper, the biasing is a constant voltage mode. In the voltage mode, magnetic field is converted into an output voltage. The output voltage is typically in the order of micro- to millivolt and therefore, it must be amplified before being transmitted to the outside world. The study, design and performance optimization of hall plate has been carried out with the COMSOL Multiphysics. It is used to estimate the voltage distribution in the hall plate with and without magnetic field and to optimize the geometry. The simulation uses the nominal bias current of 1mA. The applied magnetic field is in the range from 0 mT to 20 mT. Measured results of the one structure over the 10 available samples show for the best sensitivity of 2.5 %/T at 20mT.Keywords: cross-shaped hall plate, sensitivity, CMOS technology, Helmholtz coil
Procedia PDF Downloads 1972359 Methodology for Obtaining Static Alignment Model
Authors: Lely A. Luengas, Pedro R. Vizcaya, Giovanni Sánchez
Abstract:
In this paper, a methodology is presented to obtain the Static Alignment Model for any transtibial amputee person. The proposed methodology starts from experimental data collected on the Hospital Militar Central, Bogotá, Colombia. The effects of transtibial prosthesis malalignment on amputees were measured in terms of joint angles, center of pressure (COP) and weight distribution. Some statistical tools are used to obtain the model parameters. Mathematical predictive models of prosthetic alignment were created. The proposed models are validated in amputees and finding promising results for the prosthesis Static Alignment. Static alignment process is unique to each subject; nevertheless the proposed methodology can be used in each transtibial amputee.Keywords: information theory, prediction model, prosthetic alignment, transtibial prosthesis
Procedia PDF Downloads 2572358 Mechanical Properties of Sugar Palm Fibre Reinforced Thermoplastic Polyurethane Composites
Authors: Dandi Bachtiar, Mohammed Ausama Abbas, Januar Parlaungan Siregar, Mohd Ruzaimi Bin Mat Rejab
Abstract:
Short sugar palm fibre and thermoplastic polyurethane were combined to produce new composites by using the extrude method. Two techniques used to prepare a new composite material, firstly, extrusion of the base material with short fibre, secondly hot pressing them. The size of sugar palm fibre was fixed at 250µm. Different weight percent (10 wt%, 20 wt% and 30 wt%) were used in order to optimise preparation process. The optimization of process depended on the characterization mechanical properties such as impact, tensile, and flexural of the new (TPU/SPF) composite material. The results proved that best tensile and impact properties of weight additive fibre applied 10 wt%. There was an increasing trend recorded of flexural properties during increased the fibre loading. Meanwhile, the maximum tensile strength was 14.0 MPa at 10 wt% of the fibre. Moreover, there was no significant effect for additions more than 30 wt% of the fibre.Keywords: composites, natural fibre, polyurethane, sugar palm
Procedia PDF Downloads 3842357 Approaches of Flight Level Selection for an Unmanned Aerial Vehicle Round-Trip in Order to Reach Best Range Using Changes in Flight Level Winds
Authors: Dmitry Fedoseyev
Abstract:
The ultimate success of unmanned aerial vehicles (UAVs) depends largely on the effective control of their flight, especially in variable wind conditions. This paper investigates different approaches to selecting the optimal flight level to maximize the range of UAVs. We propose to consider methods based on mathematical models of atmospheric conditions, as well as the use of sensor data and machine learning algorithms to automatically optimize the flight level in real-time. The proposed approaches promise to improve the efficiency and range of UAVs in various wind conditions, which may have significant implications for the application of these systems in various fields, including geodesy, environmental surveillance, and search and rescue operations.Keywords: drone, UAV, flight trajectory, wind-searching, efficiency
Procedia PDF Downloads 622356 Two Spherical Three Degrees of Freedom Parallel Robots 3-RCC and 3-RRS Static Analysis
Authors: Alireza Abbasi Moshaii, Shaghayegh Nasiri, Mehdi Tale Masouleh
Abstract:
The main purpose of this study is static analysis of two three-degree of freedom parallel mechanisms: 3-RCC and 3-RRS. Geometry of these mechanisms is expressed and static equilibrium equations are derived for the whole chains. For these mechanisms due to the equal number of equations and unknowns, the solution is as same as 3-RCC mechanism. Mathematical software is used to solve the equations. In order to prove the results obtained from solving the equations of mechanisms, their CAD model has been simulated and their static is analysed in ADAMS software. Due to symmetrical geometry of the mechanisms, the force and external torque acting on the end-effecter have been considered asymmetric to prove the generality of the solution method. Finally, the results of both softwares, for both mechanisms are extracted and compared as graphs. The good achieved comparison between the results indicates the accuracy of the analysis.Keywords: robotic, static analysis, 3-RCC, 3-RRS
Procedia PDF Downloads 3842355 Mathematical Analysis of Matrix and Filler Formulation in Composite Materials
Authors: Olusegun A. Afolabi, Ndivhuwo Ndou
Abstract:
Composite material is an important area that has gained global visibility in many research fields in recent years. Composite material is the combination of separate materials with different properties to form a single material having different properties from the parent materials. Material composition and combination is an important aspect of composite material. The focus of this study is to provide insight into an easy way of calculating the compositions and formulations of constituent materials that make up any composite material. The compositions of the matrix and filler used for fabricating composite materials are taken into consideration. From the composite fabricated, data can be collected and analyzed based on the test and characterizations such as tensile, flexural, compression, impact, hardness, etc. Also, the densities of the matrix and the filler with regard to their constituent materials are discussed.Keywords: composite material, density, filler, matrix, percentage weight, volume fraction
Procedia PDF Downloads 67