Search results for: human concept learning
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 17921

Search results for: human concept learning

15521 Erosion of Culture through Democratization

Authors: Mladen Milicevic

Abstract:

This paper explores how the explosion of computer technologies has allowed for the democratization of many aspects of human activities, which were in the past only available through the institutionalized channels of production and distribution. We will going to use as an example the music recording industries, just to illustrate this process, but the analogies to other activities and aspects of human life can easily be extrapolated from it.

Keywords: aura, democratization, music industry, music sharing, paradigm-shift

Procedia PDF Downloads 240
15520 The Role of Human Resource Capabilities and Knowledge Management on Employees’ Performance in the Nuclear Energy Sector of Nigeria

Authors: Hakeem Ade Omokayode Idowu

Abstract:

The extent of the role played by human capabilities developments as well as knowledge management on employees’ performance in the nuclear energy sector of Nigeria remains unclear. This is in view of the important role which human resource capabilities could play in the desire to generate energy using nuclear resources. This study appraised the extent of human resource capabilities available in the nuclear energy sector of Nigeria. It further examined the relationship between knowledge management and employees’ performance in the nuclear energy sector. The study adopted a descriptive research design with a population that comprised all the 1736 members of staff of the selected centres, institutes, and the headquarters of the Nigeria Atomic Energy Commission (NAEC), Nigerian Nuclear Regulatory Authority (NNRA), and Energy Commission of Nigeria (ECN) and a sample size of 332 employees was selected using purposive and convenience sampling techniques. Data collected were subjected to analysis using frequency counts and simple regression. The results showed that majority of the employees perceived that they have to a high extent of availability of knowledge (118, 35.5%), credibility (134, 40.4%), alignment (130, 39.2%), performance (126, 38%) and innovation (138, 41.6%) The result of the hypothesis tested indicated that knowledge management has a positive and significant effect on employees’ performance (Beta weight = 0.336, R2 =0.113, F-value = 41.959, p-value = 0.000< 0.05). The study concluded that human resource capabilities and knowledge management could enhance employee performance within the nuclear energy sector of Nigeria.

Keywords: human resource capabilities, knowledge management, employees productivity, national development

Procedia PDF Downloads 79
15519 Customized Design of Amorphous Solids by Generative Deep Learning

Authors: Yinghui Shang, Ziqing Zhou, Rong Han, Hang Wang, Xiaodi Liu, Yong Yang

Abstract:

The design of advanced amorphous solids, such as metallic glasses, with targeted properties through artificial intelligence signifies a paradigmatic shift in physical metallurgy and materials technology. Here, we developed a machine-learning architecture that facilitates the generation of metallic glasses with targeted multifunctional properties. Our architecture integrates the state-of-the-art unsupervised generative adversarial network model with supervised models, allowing the incorporation of general prior knowledge derived from thousands of data points across a vast range of alloy compositions, into the creation of data points for a specific type of composition, which overcame the common issue of data scarcity typically encountered in the design of a given type of metallic glasses. Using our generative model, we have successfully designed copper-based metallic glasses, which display exceptionally high hardness or a remarkably low modulus. Notably, our architecture can not only explore uncharted regions in the targeted compositional space but also permits self-improvement after experimentally validated data points are added to the initial dataset for subsequent cycles of data generation, hence paving the way for the customized design of amorphous solids without human intervention.

Keywords: metallic glass, artificial intelligence, mechanical property, automated generation

Procedia PDF Downloads 65
15518 Project Work with Design Thinking and Blended Learning: A Practical Report from Teaching in Higher Education

Authors: C. Vogeler

Abstract:

Change processes such as individualization and digitalization have an impact on higher education. Graduates are expected to cooperate in creative work processes in their professional life. During their studies, they need to be prepared accordingly. This includes modern learning scenarios that integrate the benefits of digital media. Therefore, design thinking and blended learning have been combined in the project-based seminar conception introduced here. The presented seminar conception has been realized and evaluated with students of information sciences since September 2017. Within the seminar, the students learn to work on a project. They apply the methods in a problem-based learning scenario. Task of the case study is to arrange a conference on the topic gaming in libraries. In order to collaborative develop creative possibilities of realization within the group of students the design thinking method has been chosen. Design thinking is a method, used to create user-centric, problem-solving and need-driven innovation through creative collaboration in multidisciplinary teams. Central characteristics are the openness of this approach to work results and the visualization of ideas. This approach is now also accepted in the field of higher education. Especially in problem-based learning scenarios, the method offers clearly defined process steps for creative ideas and their realization. The creative process can be supported by digital media, such as search engines and tools for the documentation of brainstorming, creation of mind maps, project management etc. Because the students have to do two-thirds of the workload in their private study, design thinking has been combined with a blended learning approach. This supports students’ preparation and follow-up of the joint work in workshops (flipped classroom scenario) as well as the communication and collaboration during the entire project work phase. For this purpose, learning materials are provided on a Moodle-based learning platform as well as various tools that supported the design thinking process as described above. In this paper, the seminar conception with a combination of design thinking and blended learning is described and the potentials and limitations of the chosen strategy for the development of a course with a multimedia approach in higher education are reflected.

Keywords: blended learning, design thinking, digital media tools and methods, flipped classroom

Procedia PDF Downloads 201
15517 Recommender Systems for Technology Enhanced Learning (TEL)

Authors: Hailah Alballaa, Azeddine Chikh

Abstract:

Several challenges impede the adoption of Recommender Systems for Technology Enhanced Learning (TEL): to collect and identify possible datasets; to select between different recommender approaches; to evaluate their performances. The aim is of this paper is twofold: First, it aims to introduce a survey on the most significant work in this area. Second, it aims at identifying possible research directions.

Keywords: datasets, content-based filtering, recommender systems, TEL

Procedia PDF Downloads 251
15516 A Study on Big Data Analytics, Applications and Challenges

Authors: Chhavi Rana

Abstract:

The aim of the paper is to highlight the existing development in the field of big data analytics. Applications like bioinformatics, smart infrastructure projects, Healthcare, and business intelligence contain voluminous and incremental data, which is hard to organise and analyse and can be dealt with using the framework and model in this field of study. An organization's decision-making strategy can be enhanced using big data analytics and applying different machine learning techniques and statistical tools on such complex data sets that will consequently make better things for society. This paper reviews the current state of the art in this field of study as well as different application domains of big data analytics. It also elaborates on various frameworks in the process of Analysis using different machine-learning techniques. Finally, the paper concludes by stating different challenges and issues raised in existing research.

Keywords: big data, big data analytics, machine learning, review

Procedia PDF Downloads 90
15515 A Study on Big Data Analytics, Applications, and Challenges

Authors: Chhavi Rana

Abstract:

The aim of the paper is to highlight the existing development in the field of big data analytics. Applications like bioinformatics, smart infrastructure projects, healthcare, and business intelligence contain voluminous and incremental data which is hard to organise and analyse and can be dealt with using the framework and model in this field of study. An organisation decision-making strategy can be enhanced by using big data analytics and applying different machine learning techniques and statistical tools to such complex data sets that will consequently make better things for society. This paper reviews the current state of the art in this field of study as well as different application domains of big data analytics. It also elaborates various frameworks in the process of analysis using different machine learning techniques. Finally, the paper concludes by stating different challenges and issues raised in existing research.

Keywords: big data, big data analytics, machine learning, review

Procedia PDF Downloads 99
15514 The Effectiveness of Humanoid Diagram Teaching Strategy on Retention Rate of Novice Nurses in Taiwan

Authors: Yung-Hui Tang, Yan-Chiou Ku, Li-Chi Huang

Abstract:

Aim: The aim of this study is to explore the effect of the Humanoid Diagram Teaching (HDT) strategy on novice nurses’ care ability and retention rate. Methods: This study was a quasi-experimental study using two groups concurrently with repeat measurements sample consisted of 24 novice nurses (12 in each experimental and control group) in a medical center in southern Taiwan. Both groups all received regular training program (nursing standard techniques and practices, concept map, mini-CEX, CbD, and clinical education and training), and experimental group added the HDT program. The HDT strategy includes the contents of patients’ body humanoid drawing and discussion for 30 minutes each time, three times a week, and continually for four weeks. The effectiveness of HDT was evaluated by mini-CEX, CbD and clinical assessment and retention rate at the 3rd month and 6th month. Results: The novice nurses' care ability were examined, only CbD score in the control group was improved in the 3rd month and with statistical difference, p = .003. The mini-CEX and CbD in the experimental group were significantly improved in both the first and third month with statistical differences p = .00. Although mini-CEX and CbD in the experimental group were higher than the control group, but there was no significant difference p > .05. Retention rate of the experimental group in the third month and sixth month was significantly higher than the control group, and there was a statistically significant difference p < .05. Conclusions: The study reveals that HDT strategy can help novice nurses learning, enhancing their knowledge and technical capability, analytical skills in case-based caring, and retention. The HDT strategy can be served as an effective strategy for novice training for better nurse retention rate.

Keywords: humanoid diagram teaching strategy, novice nurses retention, teaching strategy of nurse retention, visual learning mode

Procedia PDF Downloads 175
15513 Interaction between Human Resource Management and Marketing

Authors: Besa Muthuri

Abstract:

This paper examines the correlation between the organization's human resources (HR) and marketing entities and reviews the literature on customer acquisition and loyalty retention and the various aspects of employer branding. It will also explore how these concepts can be applied to the marketing and human resources departments. HR and marketing teams in the organization function to educate, attract and retain the attention and interests of the modern talent market. While the teams' target products, personas, or services tend to differ, their execution, desired results, and implementation of the respective activities are closely related. Therefore, promoting collaboration between HR and marketing enables the company to enhance business branding and recruitment of top-tier talents that will drive the much-needed change in the organization and promote a higher employee and customer retention rate. To achieve the ultimate HR and marketing relationship, organizations should build their external and internal awareness, track their performance and programs, and promote in-house meetings among employees from all interfacing departments.

Keywords: branding, employee retention, human resources, marketing

Procedia PDF Downloads 100
15512 The Investigation of Students’ Learning Preference from Native English Speaking Instructor and Non-Native Speaking Instructor

Authors: Yingling Chen

Abstract:

Most current research has been focused on whether NESTs have advantages over NNESTs in English language Teaching. The purpose of this study was to investigate English learners’ preferences toward native English speaking teachers and non-English speaking teachers in four skills of English language learning. This qualitative study consists of 12 participants. Two open-ended questions were investigated and analyzed. The findings revealed that the participants held an overall preference for NESTs over NNESTs in reading, writing, and listening English skills; nevertheless, they believed both NESTs and NNESTs offered learning experiences strengths, and weaknesses to satisfy students’ need in their English instruction.

Keywords: EFL, instruction, Student Rating of Instructions (SRI), perception

Procedia PDF Downloads 219
15511 Scrum Challenges and Mitigation Practices in Global Software Development of an Integrated Learning Environment: Case Study of Science, Technology, Innovation, Mathematics, Engineering for the Young

Authors: Evgeniia Surkova, Manal Assaad, Hleb Makeyeu, Juho Makio

Abstract:

The main objective of STIMEY (Science, Technology, Innovation, Mathematics, Engineering for the Young) project is the delivery of a hybrid learning environment that combines multi-level components such as social media concepts, robotic artefacts, and radio, among others. It is based on a well-researched pedagogical framework to attract European youths to STEM (science, technology, engineering, and mathematics) education and careers. To develop and integrate these various components, STIMEY is executed in iterative research cycles leading to progressive improvements. Scrum was the development methodology of choice in the project, as studies indicated its benefits as an agile methodology in global software development, especially of e-learning and integrated learning projects. This paper describes the project partners’ experience with the Scrum framework, discussing the challenges faced in its implementation and the mitigation practices employed. The authors conclude with exploring user experience tools and principles for future research, as a novel direction in supporting the Scrum development team.

Keywords: e-learning, global software development, scrum, STEM education

Procedia PDF Downloads 181
15510 Professional Learning, Professional Development and Academic Identity of Sessional Teachers: Underpinning Theoretical Frameworks

Authors: Aparna Datey

Abstract:

This paper explores the theoretical frameworks underpinning professional learning, professional development, and academic identity. The focus is on sessional teachers (also called tutors or adjuncts) in architectural design studios, who may be practitioners, masters or doctoral students and academics hired ‘as needed’. Drawing from Schön’s work on reflective practice, learning and developmental theories of Vygotsky (social constructionism and zones of proximal development), informal and workplace learning, this research proposes that sessional teachers not only develop their teaching skills but also shape their identities through their 'everyday' work. Continuing academic staff develop their teaching through a combination of active teaching, self-reflection on teaching, as well as learning to teach from others via formalised programs and informally in the workplace. They are provided professional development and recognised for their teaching efforts through promotion, student citations, and awards for teaching excellence. The teaching experiences of sessional staff, by comparison, may be discontinuous and they generally have fewer opportunities and incentives for teaching development. In the absence of access to formalised programs, sessional teachers develop their teaching informally in workplace settings that may be supportive or unhelpful. Their learning as teachers is embedded in everyday practice applying problem-solving skills in ambiguous and uncertain settings. Depending on their level of expertise, they understand how to teach a subject such that students are stimulated to learn. Adult learning theories posit that adults have different motivations for learning and fall into a matrix of readiness, that an adult’s ability to make sense of their learning is shaped by their values, expectations, beliefs, feelings, attitudes, and judgements, and they are self-directed. The level of expertise of sessional teachers depends on their individual attributes and motivations, as well as on their work environment, the good practices they acquire and enhance through their practice, career training and development, the clarity of their role in the delivery of teaching, and other factors. The architectural design studio is ideal for study due to the historical persistence of the vocational learning or apprenticeship model (learning under the guidance of experts) and a pedagogical format using two key approaches: project-based problem solving and collaborative learning. Hence, investigating the theoretical frameworks underlying academic roles and informal professional learning in the workplace would deepen understanding of their professional development and how they shape their academic identities. This qualitative research is ongoing at a major university in Australia, but the growing trend towards hiring sessional staff to teach core courses in many disciplines is a global one. This research will contribute to including transient sessional teachers in the discourse on institutional quality, effectiveness, and student learning.

Keywords: academic identity, architectural design learning, pedagogy, teaching and learning, sessional teachers

Procedia PDF Downloads 126
15509 Insider Theft Detection in Organizations Using Keylogger and Machine Learning

Authors: Shamatha Shetty, Sakshi Dhabadi, Prerana M., Indushree B.

Abstract:

About 66% of firms claim that insider attacks are more likely to happen. The frequency of insider incidents has increased by 47% in the last two years. The goal of this work is to prevent dangerous employee behavior by using keyloggers and the Machine Learning (ML) model. Every keystroke that the user enters is recorded by the keylogging program, also known as keystroke logging. Keyloggers are used to stop improper use of the system. This enables us to collect all textual data, save it in a CSV file, and analyze it using an ML algorithm and the VirusTotal API. Many large companies use it to methodically monitor how their employees use computers, the internet, and email. We are utilizing the SVM algorithm and the VirusTotal API to improve overall efficiency and accuracy in identifying specific patterns and words to automate and offer the report for improved monitoring.

Keywords: cyber security, machine learning, cyclic process, email notification

Procedia PDF Downloads 64
15508 Instruction Program for Human Factors in Maintenance, Addressed to the People Working in Colombian Air Force Aeronautical Maintenance Area to Strengthen Operational Safety

Authors: Rafael Andres Rincon Barrera

Abstract:

Safety in global aviation plays a preponderant role in organizations that seek to avoid accidents in an attempt to preserve their most precious assets (the people and the machines). Human factors-based programs have shown to be effective in managing human-generated risks. The importance of training on human factors in maintenance has not been indifferent to the Colombian Air Force (COLAF). This research, which has a mixed quantitative, qualitative and descriptive approach, deals with its absence of structuring an instruction program in Human Factors in Aeronautical Maintenance, which serves as a tool to improve Operational Safety in the military air units of the COLAF. Research shows the trends and evolution of human factors programs in aeronautical maintenance through the analysis of a data matrix with 33 sources taken from different databases that are about the incorporation of these types of programs in the aeronautical industry in the last 20 years; as well as the improvements in the operational safety process that are presented after the implementation of these ones. Likewise, it compiles different normative guides in force from world aeronautical authorities for training in these programs, establishing a matrix of methodologies that may be applicable to develop a training program in human factors in maintenance. Subsequently, it illustrates the design, validation, and development of a human factors knowledge measurement instrument for maintenance at the COLAF that includes topics on Human Factors (HF), Safety Management System (SMS), and aeronautical maintenance regulations at the COLAF. With the information obtained, it performs the statistical analysis showing the aspects of knowledge and strengthening the staff for the preparation of the instruction program. Performing data triangulation based on the applicable methods and the weakest aspects found in the maintenance people shows a variable crossing from color coding, thus indicating the contents according to a training program for human factors in aeronautical maintenance, which are adjusted according to the competencies that are expected to be developed with the staff in a curricular format established by the COLAF. Among the most important findings are the determination that different authors are dealing with human factors in maintenance agrees that there is no standard model for its instruction and implementation, but that it must be adapted to the needs of the organization, that the Safety Culture in the Companies which incorporated programs on human factors in maintenance increased, that from the data obtained with the instrument for knowledge measurement of human factors in maintenance, the level of knowledge is MEDIUM-LOW with a score of 61.79%. And finally that there is an opportunity to improve Operational Safety for the COLAF through the implementation of the training program of human factors in maintenance for the technicians working in this area.

Keywords: Colombian air force, human factors, safety culture, safety management system, triangulation

Procedia PDF Downloads 139
15507 Comprehensive Interpretation of Leadership from the Narratives in Literature

Authors: Nidhi Kaushal, Sanjit Mishra

Abstract:

Narrative writings in literature are ample source of knowledge and easily understandable. In every old tradition, we found that people learn ethics from oral tales. They had their leaders and lessons of leadership in their stories. In India, we have sufficient amount of stories of leaders. Whether the story is of an ordinary person or a corporate leader of large firm, it always has a unique message of motivation. The objective of this paper is to elaborate the story lines in literature and get the leadership lessons from them, so that we can set up a new concept of leadership based on scholarship of literature. This is our hypothesis that leadership lessons can be learned from the study of literary writings and it can also act an innovative way of learning the management skills through literature. The role of the leader can be familiarly communicated in the form of the tales. Describing a positive psychological narrative from the text is the best way to manifesting an idea into the minds of people. We accomplished this paper that leadership as an attribute can be learned from the folk psychological literary writings.

Keywords: leadership, literature, management, psychology

Procedia PDF Downloads 273
15506 Entrepreneurship Education: The Impact in Today’s World

Authors: Oghenerume V. Edah, Damilola T. Aladejana

Abstract:

Entrepreneurship Education is the process of developing and acquiring entrepreneur skills on how to identify a new business and launching the business with the realization of yielding profit optimally. It’s the process of knowing how to take risk and handle challenges that accompanies a new business without the mindset of closing it when it fails. It includes steps to take when a business is recognized, combined with acquiring resources (e.g. finances, labor, land) in the face of risk and launching the new business. Additionally, Entrepreneurship is defined as the ability and willingness to set a business in the event of making profit. It is the act of starting up a business to solve big problems or present a new life-changing solution in the society to generate profit. It’s a process where a business opportunity is identified; planned, acquired and needful steps are taken to launch a business. This involves taking up financial risk, acquiring natural resources, combined with land, capital and building up a team of people who would individually contribute or add value in order to make the new business a success. Moreover, Education is the learning of new skills or value. It’s the acquiring of knowledge and capability of doing new things. It is been able to differentiate what you know and what you don’t know yet. In this modern world, the emergence of entrepreneurship education has been magnificent. An average of 60 percent humans wants to start a business or become an entrepreneur without knowing the steps on how to startup. Moreover, many of them are good starters and they end up failing when the business is not managed well. The introduction of Entrepreneur Education in our world today would change the face of business phenomenally. It would involve the acquisition of entrepreneur skills, knowledge and attitude towards initiating a business venture. The impact of Entrepreneurship Education in our world today would increase the chances of business success because it would generate better entrepreneurs. The skills, values, concept and processes acquired through learning have changed the face of business to a positive direction globally and the impact can be felt. Entrepreneurship can be taught and also can be learnt. Like any skills it can be known.

Keywords: entrepreneurship, education, business, entrepreneur, skills

Procedia PDF Downloads 150
15505 Importance of Human Capital Development and Management in Industries

Authors: Birce Boga Bakirli

Abstract:

In this paper, we investigate ideas on human capital development and management in industries. We structured a model to be able to gather the data from the interviews conducted with worker, specialists and owners of companies. Different aspects of the situation are found in these interviews, and we used the information to model the benefit of the business owners and workers perspectives. These are modelled as a bi-level programming problem. Several instances of the generic cases are solved. The results show the importance of education within and out of the company for workers, and it returns for the company.

Keywords: bi-level programming, corporate strategy, cost tradeoffs, human capital, mixed integer programming, Stackelberg game, supplier relations, strategic planning

Procedia PDF Downloads 358
15504 Implementing Teacher Students’ Coaching in Practical Periods of University Teacher Education: The Significance of Training Cultures

Authors: Rahm Sibylle

Abstract:

The core element in most European teacher training concepts consists in practical periods where teacher students may review the chosen profession before going on to their theoretical studies. In Germany, teacher students learn in practical studies about everyday teaching and learning in schools. Teacher students appreciate opportunities to explore school practice and to feel responsible for students’ learning. In practical studies, teacher students often idealize their teacher mentors (and consequently tend to imitate their teaching style) or contrarily feel disappointed about school practice. Concepts of empowerment through practical experience in school-based academic teacher training have to be developed. Our Swiss-German research project COPRA (Coaching in practical periods; funded by the Swiss National Science Foundation (SNF) and the German Research Foundation (DFG), aims at gaining resilient results about the effectiveness of (peer) coaching in practical school periods. To explore innovative ways of accompanying novice teachers in practical periods we consider different cultures of teacher training institutions. School cultures, including teachers’ beliefs and teaching traditions involve different training cultures as starting positions for our intervention study. In our qualitative study, we describe typologies of teacher training institutions by analyzing group discussions with teacher students, mentor teachers and university lecturers concerning participation, cooperation, and relationships. In our paper, we present the design of our intervention study, our coaching concept as well as typologies of teacher training cultures. We discuss opportunities for teacher students to learn through domain-specific (peer) coaching on the background of these typologies.

Keywords: teacher training (practical periods), teacher students' coaching, training cultures (typologies), COPRA (coaching in practical periods)

Procedia PDF Downloads 249
15503 Documentary Project as an Active Learning Strategy in a Developmental Psychology Course

Authors: Ozge Gurcanli

Abstract:

Recent studies in active-learning focus on how student experience varies based on the content (e.g. STEM versus Humanities) and the medium (e.g. in-class exercises versus off-campus activities) of experiential learning. However, little is known whether the variation in classroom time and space within the same active learning context affects student experience. This study manipulated the use of classroom time for the active learning component of a developmental psychology course that is offered at a four-year university in the South-West Region of United States. The course uses a blended model: traditional and active learning. In the traditional learning component of the course, students do weekly readings, listen to lectures, and take midterms. In the active learning component, students make a documentary on a developmental topic as a final project. Students used the classroom time and space for the documentary in two ways: regular classroom time slots that were dedicated to the making of the documentary outside without the supervision of the professor (Classroom-time Outside) and lectures that offered basic instructions about how to make a documentary (Documentary Lectures). The study used the public teaching evaluations that are administered by the Office of Registrar’s. A total of two hundred and seven student evaluations were available across six semesters. Because the Office of Registrar’s presented the data separately without personal identifiers, One-Way ANOVA with four groups (Traditional, Experiential-Heavy: 19% Classroom-time Outside, 12% for Documentary Lectures, Experiential-Moderate: 5-7% for Classroom-time Outside, 16-19% for Documentary Lectures, Experiential Light: 4-7% for Classroom-time Outside, 7% for Documentary Lectures) was conducted on five key features (Organization, Quality, Assignments Contribution, Intellectual Curiosity, Teaching Effectiveness). Each measure used a five-point reverse-coded scale (1-Outstanding, 5-Poor). For all experiential conditions, the documentary counted towards 30% of the final grade. Organization (‘The instructors preparation for class was’), Quality (’Overall, I would rate the quality of this course as’) and Assignment Contribution (’The contribution of the graded work that made to the learning experience was’) did not yield any significant differences across four course types (F (3, 202)=1.72, p > .05, F(3, 200)=.32, p > .05, F(3, 203)=.43, p > .05, respectively). Intellectual Curiosity (’The instructor’s ability to stimulate intellectual curiosity was’) yielded a marginal effect (F (3, 201)=2.61, p = .053). Tukey’s HSD (p < .05) indicated that the Experiential-Heavy (M = 1.94, SD = .82) condition was significantly different than all other three conditions (M =1.57, 1.51, 1.58; SD = .68, .66, .77, respectively) showing that heavily active class-time did not elicit intellectual curiosity as much as others. Finally, Teaching Effectiveness (’Overall, I feel that the instructor’s effectiveness as a teacher was’) was significant (F (3, 198)=3.32, p <.05). Tukey’s HSD (p <.05) showed that students found the courses with moderate (M=1.49, SD=.62) to light (M=1.52, SD=.70) active class-time more effective than heavily active class-time (M=1.93, SD=.69). Overall, the findings of this study suggest that within the same active learning context, the time and the space dedicated to active learning results in different outcomes in intellectual curiosity and teaching effectiveness.

Keywords: active learning, learning outcomes, student experience, learning context

Procedia PDF Downloads 195
15502 The Mental Workload of Intensive Care Unit Nurses in Performing Human-Machine Tasks: A Cross-Sectional Survey

Authors: Yan Yan, Erhong Sun, Lin Peng, Xuchun Ye

Abstract:

Aims: The present study aimed to explore Intensive Care Unit (ICU) nurses’ mental workload (MWL) and associated factors with it in performing human-machine tasks. Background: A wide range of emerging technologies have penetrated widely in the field of health care, and ICU nurses are facing a dramatic increase in nursing human-machine tasks. However, there is still a paucity of literature reporting on the general MWL of ICU nurses performing human-machine tasks and the associated influencing factors. Methods: A cross-sectional survey was employed. The data was collected from January to February 2021 from 9 tertiary hospitals in 6 provinces (Shanghai, Gansu, Guangdong, Liaoning, Shandong, and Hubei). Two-stage sampling was used to recruit eligible ICU nurses (n=427). The data were collected with an electronic questionnaire comprising sociodemographic characteristics and the measures of MWL, self-efficacy, system usability, and task difficulty. The univariate analysis, two-way analysis of variance (ANOVA), and a linear mixed model were used for data analysis. Results: Overall, the mental workload of ICU nurses in performing human-machine tasks was medium (score 52.04 on a 0-100 scale). Among the typical nursing human-machine tasks selected, the MWL of ICU nurses in completing first aid and life support tasks (‘Using a defibrillator to defibrillate’ and ‘Use of ventilator’) was significantly higher than others (p < .001). And ICU nurses’ MWL in performing human-machine tasks was also associated with age (p = .001), professional title (p = .002), years of working in ICU (p < .001), willingness to study emerging technology actively (p = .006), task difficulty (p < .001), and system usability (p < .001). Conclusion: The MWL of ICU nurses is at a moderate level in the context of a rapid increase in nursing human-machine tasks. However, there are significant differences in MWL when performing different types of human-machine tasks, and MWL can be influenced by a combination of factors. Nursing managers need to develop intervention strategies in multiple ways. Implications for practice: Multidimensional approaches are required to perform human-machine tasks better, including enhancing nurses' willingness to learn emerging technologies actively, developing training strategies that vary with tasks, and identifying obstacles in the process of human-machine system interaction.

Keywords: mental workload, nurse, ICU, human-machine, tasks, cross-sectional study, linear mixed model, China

Procedia PDF Downloads 75
15501 Rethinking the Concept of Classroom Management during COVID-19 Times: An EFL Perspective

Authors: Hadjer Chellia

Abstract:

In the light of the recent global pandemic, different issues in educational research seem to invite careful considerations. Following this perspective, this study sets out to question the concept of classroom management in an EFL higher education context during Covid-19. In order to gain an in-depth understanding of their experiences, 6 EFL teachers from different Algerian universities took part in semi-structured interviews. The main emerging themes revealed that EFL teachers have different pedagogical practices in relation to classroom management during the global crisis than those of normal times. In relation to flexible education theory, the teachers’ experiences suggest flexible classroom management during Covid-19; flexibility in the teaching methods, approach and design, flexibility in time, flexibility in space and pace (speed), flexibility in assessment modes and flexibility in coping with students’ well-being. The flexibility awareness helps them to develop readiness towards the future, mainly in terms of maintaining an appropriate pedagogy to face the future crisis. In terms of theoretical concepts, working on classroom management under unusual circumstances in relation to flexible education helped come out with the concept of flexible classroom management (FCM) and virtual classroom management (VCM). It is then important for educators and researchers to rethink different pedagogical concepts and mind a careful application in the case of unusual times.

Keywords: Covid-19, EFL educators, flexible classroom management, flexible education, virtual classroom management

Procedia PDF Downloads 168
15500 Research on Knowledge Graph Inference Technology Based on Proximal Policy Optimization

Authors: Yihao Kuang, Bowen Ding

Abstract:

With the increasing scale and complexity of knowledge graph, modern knowledge graph contains more and more types of entity, relationship, and attribute information. Therefore, in recent years, it has been a trend for knowledge graph inference to use reinforcement learning to deal with large-scale, incomplete, and noisy knowledge graphs and improve the inference effect and interpretability. The Proximal Policy Optimization (PPO) algorithm utilizes a near-end strategy optimization approach. This allows for more extensive updates of policy parameters while constraining the update extent to maintain training stability. This characteristic enables PPOs to converge to improved strategies more rapidly, often demonstrating enhanced performance early in the training process. Furthermore, PPO has the advantage of offline learning, effectively utilizing historical experience data for training and enhancing sample utilization. This means that even with limited resources, PPOs can efficiently train for reinforcement learning tasks. Based on these characteristics, this paper aims to obtain a better and more efficient inference effect by introducing PPO into knowledge inference technology.

Keywords: reinforcement learning, PPO, knowledge inference

Procedia PDF Downloads 248
15499 Increasing Creativity in Virtual Learning Space for Developing Creative Cities

Authors: Elham Fariborzi, Hoda Anvari Kazemabad

Abstract:

Today, ICT plays an important role in all matters and it affects the development of creative cities. According to virtual space in this technology, it use especially for expand terms like smart schools, Virtual University, web-based training and virtual classrooms that is in parallel with the traditional teaching. Nowadays, the educational systems in different countries such as Iran are changing and start increasing creativity in the learning environment. It will contribute to the development of innovative ideas and thinking of the people in this environment; such opportunities might be cause scientific discovery and development issues. The creativity means the ability to generate ideas and numerous, new and suitable solutions for solving the problems of real and virtual individuals and society, which can play a significant role in the development of creative current physical cities or virtual borders ones in the future. The purpose of this paper is to study strategies to increase creativity in a virtual learning to develop a creative city. In this paper, citation/ library study was used. The full description given in the text, including how to create and enhance learning creativity in a virtual classroom by reflecting on performance and progress; attention to self-directed learning guidelines, efficient use of social networks, systematic discussion groups and non-intuitive targeted controls them by involved factors and it may be effective in the teaching process regarding to creativity. Meanwhile, creating a virtual classroom the style of class recognizes formally the creativity. Also the use of a common model of creative thinking between student/teacher is effective to solve problems of virtual classroom. It is recommended to virtual education’ authorities in Iran to have a special review to the virtual curriculum for increasing creativity in educational content and such classes to be witnesses more creative in Iran's cities.

Keywords: virtual learning, creativity, e-learning, bioinformatics, biomedicine

Procedia PDF Downloads 366
15498 Tumor Detection Using Convolutional Neural Networks (CNN) Based Neural Network

Authors: Vinai K. Singh

Abstract:

In Neural Network-based Learning techniques, there are several models of Convolutional Networks. Whenever the methods are deployed with large datasets, only then can their applicability and appropriateness be determined. Clinical and pathological pictures of lobular carcinoma are thought to exhibit a large number of random formations and textures. Working with such pictures is a difficult problem in machine learning. Focusing on wet laboratories and following the outcomes, numerous studies have been published with fresh commentaries in the investigation. In this research, we provide a framework that can operate effectively on raw photos of various resolutions while easing the issues caused by the existence of patterns and texturing. The suggested approach produces very good findings that may be used to make decisions in the diagnosis of cancer.

Keywords: lobular carcinoma, convolutional neural networks (CNN), deep learning, histopathological imagery scans

Procedia PDF Downloads 140
15497 Using Machine Learning to Classify Different Body Parts and Determine Healthiness

Authors: Zachary Pan

Abstract:

Our general mission is to solve the problem of classifying images into different body part types and deciding if each of them is healthy or not. However, for now, we will determine healthiness for only one-sixth of the body parts, specifically the chest. We will detect pneumonia in X-ray scans of those chest images. With this type of AI, doctors can use it as a second opinion when they are taking CT or X-ray scans of their patients. Another ad-vantage of using this machine learning classifier is that it has no human weaknesses like fatigue. The overall ap-proach to this problem is to split the problem into two parts: first, classify the image, then determine if it is healthy. In order to classify the image into a specific body part class, the body parts dataset must be split into test and training sets. We can then use many models, like neural networks or logistic regression models, and fit them using the training set. Now, using the test set, we can obtain a realistic accuracy the models will have on images in the real world since these testing images have never been seen by the models before. In order to increase this testing accuracy, we can also apply many complex algorithms to the models, like multiplicative weight update. For the second part of the problem, to determine if the body part is healthy, we can have another dataset consisting of healthy and non-healthy images of the specific body part and once again split that into the test and training sets. We then use another neural network to train on those training set images and use the testing set to figure out its accuracy. We will do this process only for the chest images. A major conclusion reached is that convolutional neural networks are the most reliable and accurate at image classification. In classifying the images, the logistic regression model, the neural network, neural networks with multiplicative weight update, neural networks with the black box algorithm, and the convolutional neural network achieved 96.83 percent accuracy, 97.33 percent accuracy, 97.83 percent accuracy, 96.67 percent accuracy, and 98.83 percent accuracy, respectively. On the other hand, the overall accuracy of the model that de-termines if the images are healthy or not is around 78.37 percent accuracy.

Keywords: body part, healthcare, machine learning, neural networks

Procedia PDF Downloads 113
15496 Characteization and Optimization of S-Parameters of Microwave Circuits

Authors: N. Ourabia, M. Boubaker Ourabia

Abstract:

An approach for modeling and numerical simulation of passive planar structures using the edge line concept is developed. With this method, we develop an efficient modeling technique for microstrip discontinuities. The technique obtains closed form expressions for the equivalent circuits which are used to model these discontinuities. Then, it would be easy to handle and to characterize complicated structures like T and Y junctions, truncated junctions, arbitrarily shaped junctions, cascading junctions and more generally planar multiport junctions. Another advantage of this method is that the edge line concept for arbitrary shape junctions operates with real parameters circuits. The validity of the method was further confirmed by comparing our results for various discontinuities (bend, filters) with those from HFSS as well as from other published sources.

Keywords: optimization, CAD analysis, microwave circuits, S-parameters

Procedia PDF Downloads 456
15495 Eco-Tourism: A Need for Sustainable Development

Authors: Chandni Laddha

Abstract:

Tourism was earlier considered as an activity performed by people only for the purpose of entertainment. However, the present era demand for adding something more to the concept of tourism. Nowadays, people are more protected towards environment, so this paper focuses on the significance of ecotourism for the attainment of sustainable development. Ecotourism is a way of sustainable growth of tourist spots maintaining their natural and actual status quo. The ecotourism in India becomes all the more important because India is famous on world map. Ecotourism believe that there should be sustainable equation between tourist and tourist place. Various aspects related to environmental tourism will be highlighted in this paper. Government efforts for the promotion of ecotourism will be discussed by explaining the tourism policy of India, some acts, rules etc. will also be discussed. The study comes up with some strategies to be adopted and which will lead in promoting the concept of ecotourism for an ecologically sustainable environment.

Keywords: tourism, eco-tourism, sustainable development, tourism policy, sustainable environment

Procedia PDF Downloads 438
15494 Semantic Differences between Bug Labeling of Different Repositories via Machine Learning

Authors: Pooja Khanal, Huaming Zhang

Abstract:

Labeling of issues/bugs, also known as bug classification, plays a vital role in software engineering. Some known labels/classes of bugs are 'User Interface', 'Security', and 'API'. Most of the time, when a reporter reports a bug, they try to assign some predefined label to it. Those issues are reported for a project, and each project is a repository in GitHub/GitLab, which contains multiple issues. There are many software project repositories -ranging from individual projects to commercial projects. The labels assigned for different repositories may be dependent on various factors like human instinct, generalization of labels, label assignment policy followed by the reporter, etc. While the reporter of the issue may instinctively give that issue a label, another person reporting the same issue may label it differently. This way, it is not known mathematically if a label in one repository is similar or different to the label in another repository. Hence, the primary goal of this research is to find the semantic differences between bug labeling of different repositories via machine learning. Independent optimal classifiers for individual repositories are built first using the text features from the reported issues. The optimal classifiers may include a combination of multiple classifiers stacked together. Then, those classifiers are used to cross-test other repositories which leads the result to be deduced mathematically. The produce of this ongoing research includes a formalized open-source GitHub issues database that is used to deduce the similarity of the labels pertaining to the different repositories.

Keywords: bug classification, bug labels, GitHub issues, semantic differences

Procedia PDF Downloads 206
15493 A Context-Sensitive Algorithm for Media Similarity Search

Authors: Guang-Ho Cha

Abstract:

This paper presents a context-sensitive media similarity search algorithm. One of the central problems regarding media search is the semantic gap between the low-level features computed automatically from media data and the human interpretation of them. This is because the notion of similarity is usually based on high-level abstraction but the low-level features do not sometimes reflect the human perception. Many media search algorithms have used the Minkowski metric to measure similarity between image pairs. However those functions cannot adequately capture the aspects of the characteristics of the human visual system as well as the nonlinear relationships in contextual information given by images in a collection. Our search algorithm tackles this problem by employing a similarity measure and a ranking strategy that reflect the nonlinearity of human perception and contextual information in a dataset. Similarity search in an image database based on this contextual information shows encouraging experimental results.

Keywords: context-sensitive search, image search, similarity ranking, similarity search

Procedia PDF Downloads 368
15492 The Accuracy of Parkinson's Disease Diagnosis Using [123I]-FP-CIT Brain SPECT Data with Machine Learning Techniques: A Survey

Authors: Lavanya Madhuri Bollipo, K. V. Kadambari

Abstract:

Objective: To discuss key issues in the diagnosis of Parkinson disease (PD), To discuss features influencing PD progression, To discuss importance of brain SPECT data in PD diagnosis, and To discuss the essentiality of machine learning techniques in early diagnosis of PD. An accurate and early diagnosis of PD is nowadays a challenge as clinical symptoms in PD arise only when there is more than 60% loss of dopaminergic neurons. So far there are no laboratory tests for the diagnosis of PD, causing a high rate of misdiagnosis especially when the disease is in the early stages. Recent neuroimaging studies with brain SPECT using 123I-Ioflupane (DaTSCAN) as radiotracer shown to be widely used to assist the diagnosis of PD even in its early stages. Machine learning techniques can be used in combination with image analysis procedures to develop computer-aided diagnosis (CAD) systems for PD. This paper addressed recent studies involving diagnosis of PD in its early stages using brain SPECT data with Machine Learning Techniques.

Keywords: Parkinson disease (PD), dopamine transporter, single-photon emission computed tomography (SPECT), support vector machine (SVM)

Procedia PDF Downloads 402