Search results for: teaching learning based algorithm
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 34512

Search results for: teaching learning based algorithm

32142 Part of Speech Tagging Using Statistical Approach for Nepali Text

Authors: Archit Yajnik

Abstract:

Part of Speech Tagging has always been a challenging task in the era of Natural Language Processing. This article presents POS tagging for Nepali text using Hidden Markov Model and Viterbi algorithm. From the Nepali text, annotated corpus training and testing data set are randomly separated. Both methods are employed on the data sets. Viterbi algorithm is found to be computationally faster and accurate as compared to HMM. The accuracy of 95.43% is achieved using Viterbi algorithm. Error analysis where the mismatches took place is elaborately discussed.

Keywords: hidden markov model, natural language processing, POS tagging, viterbi algorithm

Procedia PDF Downloads 331
32141 Implementing Search-Based Activities in Mathematics Instruction, Grounded in Intuitive Reasoning

Authors: Zhanna Dedovets

Abstract:

Fostering a mathematical style of thinking is crucial for cultivating intellectual personalities capable of thriving in modern society. Intuitive thinking stands as a cornerstone among the components of mathematical cognition, playing a pivotal role in grasping mathematical truths across various disciplines. This article delves into the exploration of leveraging search activities rooted in students' intuitive thinking, particularly when tackling geometric problems. Emphasizing both student engagement with the task and their active involvement in the search process, the study underscores the importance of heuristic procedures and the freedom for students to chart their own problem-solving paths. Spanning several years (2019-2023) at the Physics and Mathematics Lyceum of Dushanbe, the research engaged 17 teachers and 78 high school students. After assessing the initial levels of intuitive thinking in both control and experimental groups, the experimental group underwent training following the authors' methodology. Subsequent analysis revealed a significant advancement in thinking levels among the experimental group students. The methodological approaches and teaching materials developed through this process offer valuable resources for mathematics educators seeking to enhance their students' learning experiences effectively.

Keywords: teaching of mathematics, intuitive thinking, heuristic procedures, geometric problem, students.

Procedia PDF Downloads 54
32140 Deep Learning Application for Object Image Recognition and Robot Automatic Grasping

Authors: Shiuh-Jer Huang, Chen-Zon Yan, C. K. Huang, Chun-Chien Ting

Abstract:

Since the vision system application in industrial environment for autonomous purposes is required intensely, the image recognition technique becomes an important research topic. Here, deep learning algorithm is employed in image system to recognize the industrial object and integrate with a 7A6 Series Manipulator for object automatic gripping task. PC and Graphic Processing Unit (GPU) are chosen to construct the 3D Vision Recognition System. Depth Camera (Intel RealSense SR300) is employed to extract the image for object recognition and coordinate derivation. The YOLOv2 scheme is adopted in Convolution neural network (CNN) structure for object classification and center point prediction. Additionally, image processing strategy is used to find the object contour for calculating the object orientation angle. Then, the specified object location and orientation information are sent to robotic controller. Finally, a six-axis manipulator can grasp the specific object in a random environment based on the user command and the extracted image information. The experimental results show that YOLOv2 has been successfully employed to detect the object location and category with confidence near 0.9 and 3D position error less than 0.4 mm. It is useful for future intelligent robotic application in industrial 4.0 environment.

Keywords: deep learning, image processing, convolution neural network, YOLOv2, 7A6 series manipulator

Procedia PDF Downloads 256
32139 Online Learning for Modern Business Models: Theoretical Considerations and Algorithms

Authors: Marian Sorin Ionescu, Olivia Negoita, Cosmin Dobrin

Abstract:

This scientific communication reports and discusses learning models adaptable to modern business problems and models specific to digital concepts and paradigms. In the PAC (probably approximately correct) learning model approach, in which the learning process begins by receiving a batch of learning examples, the set of learning processes is used to acquire a hypothesis, and when the learning process is fully used, this hypothesis is used in the prediction of new operational examples. For complex business models, a lot of models should be introduced and evaluated to estimate the induced results so that the totality of the results are used to develop a predictive rule, which anticipates the choice of new models. In opposition, for online learning-type processes, there is no separation between the learning (training) and predictive phase. Every time a business model is approached, a test example is considered from the beginning until the prediction of the appearance of a model considered correct from the point of view of the business decision. After choosing choice a part of the business model, the label with the logical value "true" is known. Some of the business models are used as examples of learning (training), which helps to improve the prediction mechanisms for future business models.

Keywords: machine learning, business models, convex analysis, online learning

Procedia PDF Downloads 145
32138 Teaching Business Process Management using IBM’s INNOV8 BPM Simulation Game

Authors: Hossam Ali-Hassan, Michael Bliemel

Abstract:

This poster reflects upon our experiences using INNOV8, IBM’s Business Process Management (BPM) simulation game, in online MBA and undergraduate MIS classes over a period of 2 years. The game is designed to gives both business and information technology players a better understanding of how effective BPM impacts an entire business ecosystem. The game includes three different scenarios: Smarter Traffic, which is used to evaluate existing traffic patterns and re-route traffic based on incoming metrics; Smarter Customer Service where players develop more efficient ways to respond to customers in a call centre environment; and Smarter Supply Chains where players balance supply and demand and reduce environmental impact in a traditional supply chain model. We use the game as an experiential learning tool, where students have to act as managers making real time changes to business processes to meet changing business demands and environments. The students learn how information technology (IT) and information systems (IS) can be used to intelligently solve different problems and how computer simulations can be used to test different scenarios or models based on business decisions without having to actually make the potentially costly and/or disruptive changes to business processes. Moreover, when students play the three different scenarios, they quickly see how practical process improvements can help meet profitability, customer satisfaction and environmental goals while addressing real problems faced by municipalities and businesses today. After spending approximately two hours in the game, students reflect on their experience from it to apply several BPM principles that were presented in their textbook through the use of a structured set of assignment questions. For each final scenario students submit a screenshot of their solution followed by one paragraph explaining what criteria you were trying to optimize, and why they picked their input variables. In this poster we outline the course and the module’s learning objectives where we used the game to place this into context. We illustrate key features of the INNOV8 Simulation Game, and describe how we used them to reinforce theoretical concepts. The poster will also illustrate examples from the simulation, assignment, and learning outcomes.

Keywords: experiential learning, business process management, BPM, INNOV8, simulation, game

Procedia PDF Downloads 332
32137 Deep Learning Based Unsupervised Sport Scene Recognition and Highlights Generation

Authors: Ksenia Meshkova

Abstract:

With increasing amount of multimedia data, it is very important to automate and speed up the process of obtaining meta. This process means not just recognition of some object or its movement, but recognition of the entire scene versus separate frames and having timeline segmentation as a final result. Labeling datasets is time consuming, besides, attributing characteristics to particular scenes is clearly difficult due to their nature. In this article, we will consider autoencoders application to unsupervised scene recognition and clusterization based on interpretable features. Further, we will focus on particular types of auto encoders that relevant to our study. We will take a look at the specificity of deep learning related to information theory and rate-distortion theory and describe the solutions empowering poor interpretability of deep learning in media content processing. As a conclusion, we will present the results of the work of custom framework, based on autoencoders, capable of scene recognition as was deeply studied above, with highlights generation resulted out of this recognition. We will not describe in detail the mathematical description of neural networks work but will clarify the necessary concepts and pay attention to important nuances.

Keywords: neural networks, computer vision, representation learning, autoencoders

Procedia PDF Downloads 130
32136 Action Research for School Development

Authors: Beate Weyland

Abstract:

The interdisciplinary laboratory EDEN, Educational Environments with Nature, born in 2020 at the Faculty of Education of the Free University of Bolzano, is working on a research path initiated in 2012 on the relationship between pedagogy and architecture in the design process of school buildings. Between 2016 and 2018, advisory support activity for schools was born, which combined the need to qualify the physical spaces of the school with the need to update teaching practices and develop school organization with the aim of improving pupils' and teachers' sense of well-being. The goal of accompanying the development of school communities through research-training paths concerns the process of designing together pedagogical-didactic and architectural environments in which to stage the educational relationship, involving professionals from education, educational research, architecture and design, and local administration. Between 2019 and 2024, more than 30 schools and educational communities throughout Italy have entered into research-training agreements with the university, focusing increasingly on the need to create new spaces and teaching methods capable of imagining educational spaces as places of well-being and where cultural development can be presided over. The paper will focus on the presentation of the research path and on the mixed methods used to support schools and educational communities: identification of the research question, development of the research objective, experimentation, and data collection for analysis and reflection. School and educational communities are involved in a participative and active manner. The quality of the action-research work is enriched by a special focus on the relationship with plants and nature in general. Plants are seen as mediators of processes that unhinge traditional didactics and invite teachers, students, parents, and administrators to think about the quality of learning spaces and relationships based on well-being. The contribution is characterized by a particular focus on research methodologies and tools developed together with teachers to answer the issues raised and to measure the impact of the actions undertaken.

Keywords: school development, learning space, wellbeing, plants and nature

Procedia PDF Downloads 41
32135 An Electronic and Performance Test for the Applicants to Faculty of Education for Early Childhood in Egypt for Measuring the Skills of Teacher Students

Authors: Ahmed Amin Mousa, Gehan Azam

Abstract:

The current study presents an electronic test to measure teaching skills. This test is a part of the admission system of the Faculty of Education for Early Childhood, Cairo University. The test has been prepared to evaluate university students who apply for admission the Faculty. It measures some social and physiological skills which are important for successful teachers, such as emotional adjustment and problem solving; moreover, the extent of their love for children and their capability to interact with them. The test has been approved by 13 experts. Finally, it has been introduced to 1,100 students during the admission system of the academic year 2016/2017. The results showed that most of the applicants have an auditory learning style. In addition, 97% of them have the minimum requirement skills for teaching children.

Keywords: electronic test, performance, early childhood, skills, teacher student

Procedia PDF Downloads 260
32134 Learning to Recommend with Negative Ratings Based on Factorization Machine

Authors: Caihong Sun, Xizi Zhang

Abstract:

Rating prediction is an important problem for recommender systems. The task is to predict the rating for an item that a user would give. Most of the existing algorithms for the task ignore the effect of negative ratings rated by users on items, but the negative ratings have a significant impact on users’ purchasing decisions in practice. In this paper, we present a rating prediction algorithm based on factorization machines that consider the effect of negative ratings inspired by Loss Aversion theory. The aim of this paper is to develop a concave and a convex negative disgust function to evaluate the negative ratings respectively. Experiments are conducted on MovieLens dataset. The experimental results demonstrate the effectiveness of the proposed methods by comparing with other four the state-of-the-art approaches. The negative ratings showed much importance in the accuracy of ratings predictions.

Keywords: factorization machines, feature engineering, negative ratings, recommendation systems

Procedia PDF Downloads 245
32133 Creating Positive Learning Environment

Authors: Samia Hassan, Fouzia Latif

Abstract:

In many countries, education is still far from being a knowledge industry in the sense of own practices that are not yet being transformed by knowledge about the efficacy of those practices. The core question of this paper is why students get bored in class? Have we balanced between the creation and advancement of an engaging learning community and effective learning environment? And between, giving kids confidence to achieve their maximum and potential goals, we sand managing student’s behavior. We conclude that creating a positive learning environment enhances opportunities for young children to feel safe, secure, and to supported in order to do their best learning. Many factors can use in classrooms aid to the positive environment like course content, class preparation, and behavior.

Keywords: effective, environment, learning, positive

Procedia PDF Downloads 584
32132 The Mentoring in Professional Development of University Teachers

Authors: Nagore Guerra Bilbao, Clemente Lobato Fraile

Abstract:

Mentoring is provided by professionals with a higher level of experience and competence as part of the professional development of a university faculty. This paper explores the characteristics of the mentoring provided by those teachers participating in the development of an active methodology program run at the University of the Basque Country: to examine and to analyze mentors’ performance with the aim of providing empirical evidence regarding its value as a lifelong learning strategy for teaching staff. A total of 183 teachers were trained during the first three programs. The analysis method uses a coding technique and is based on flexible, systematic guidelines for gathering and analyzing qualitative data. The results have confirmed the conception of mentoring as a methodological innovation in higher education. In short, university teachers in general assessed the mentoring they received positively, considering it to be a valid, useful strategy in their professional development. They highlighted the methodological expertise of their mentor and underscored how they monitored the learning process of the active method and provided guidance and advice when necessary. Finally, they also drew attention to traits such as availability, personal commitment and flexibility in. However, a minority critique is pointed to some aspects of the performance of some mentors.

Keywords: higher education, mentoring, professional development, university teachers

Procedia PDF Downloads 245
32131 Understanding Innovation, Mentorship, and Motivation in Teams, a Design-Centric Approach for Undergraduates

Authors: K. Z. Tang, K. Ameek, K. Kuang

Abstract:

Rapid product development cycles and changing economic conditions compel businesses to find new ways to stay relevant and effective. One of the ways which many companies have adopted is to spur innovations within the various team-based units in the organization. It would be relevant and important to ensure our graduates are ready to excel in such evolving conditions within their professional eco-systems. However, it is not easy to understand the interplays of nurturing team innovation and improving students’ learning, in the context of engineering education. In this study, we seek to understand team innovation and explore ways to improve students’ performance and learning, via motivation and mentorship. Learning goals from a group of students are collected during a carefully designed two-week long summer programme to provide insights on the main themes, within the context of learning and working in a team.

Keywords: team innovation, mentorship, motivation, learning

Procedia PDF Downloads 284
32130 Efficient Deep Neural Networks for Real-Time Strawberry Freshness Monitoring: A Transfer Learning Approach

Authors: Mst. Tuhin Akter, Sharun Akter Khushbu, S. M. Shaqib

Abstract:

A real-time system architecture is highly effective for monitoring and detecting various damaged products or fruits that may deteriorate over time or become infected with diseases. Deep learning models have proven to be effective in building such architectures. However, building a deep learning model from scratch is a time-consuming and costly process. A more efficient solution is to utilize deep neural network (DNN) based transfer learning models in the real-time monitoring architecture. This study focuses on using a novel strawberry dataset to develop effective transfer learning models for the proposed real-time monitoring system architecture, specifically for evaluating and detecting strawberry freshness. Several state-of-the-art transfer learning models were employed, and the best performing model was found to be Xception, demonstrating higher performance across evaluation metrics such as accuracy, recall, precision, and F1-score.

Keywords: strawberry freshness evaluation, deep neural network, transfer learning, image augmentation

Procedia PDF Downloads 97
32129 Project-Based Learning in Engineering Education

Authors: M. Greeshma, V. Ashvini, P. Jayarekha

Abstract:

Project based learning (PBL) is a student-driven educational framework and offers the student an opportunity for in-depth investigations of courses. This paper presents the need of PBL in engineering education for the student to graduate with a capacity to design and implement complex problems. The implementation strategy of PBL and its related challenges are presented. The case study that energizes the engineering curriculum with a relevance to the real-world of technology along with its benefits to the students is also included.

Keywords: PBL, engineering education, curriculum, implement complex

Procedia PDF Downloads 477
32128 Trends in Practical Research on Universal Design for Learning (UDL) in Japanese Elementary Schools

Authors: Zolzaya Badmaavanchig, Shoko Miyamoto

Abstract:

In recent years, universal design for learning (hereinafter referred to as "UDL"), which aims to establish an inclusive education system and to make all children, regardless of their disabilities, experts in learning, has been attracting attention, and there have been some attempts to incorporate it into regular classrooms where children with developmental disabilities and those who show such tendencies are enrolled. The purpose of this study was to examine the effectiveness and challenges of implementing UDL in Japanese elementary schools based on the previous literature. As a method, we first searched for articles on UDL for learning and UDL in the classroom from 2010 to 2022. In addition, we selected practice studies that targeted children with special educational support needs and the classroom as a whole. In response to the extracted literature, this bridge examined the following five perspectives: (1) subjects and grades in which UDL was practiced, (2) methods to grasp the actual conditions of the children, (3) consideration for children with special needs during class, (4) form of class, and (5) effects of the practice. Based on the results, we would like to present issues related to future UDL efforts in Japanese elementary schools.

Keywords: universal design for learning, regular elementary school class, children with special education needs, special educational support

Procedia PDF Downloads 65
32127 Tumor Detection Using Convolutional Neural Networks (CNN) Based Neural Network

Authors: Vinai K. Singh

Abstract:

In Neural Network-based Learning techniques, there are several models of Convolutional Networks. Whenever the methods are deployed with large datasets, only then can their applicability and appropriateness be determined. Clinical and pathological pictures of lobular carcinoma are thought to exhibit a large number of random formations and textures. Working with such pictures is a difficult problem in machine learning. Focusing on wet laboratories and following the outcomes, numerous studies have been published with fresh commentaries in the investigation. In this research, we provide a framework that can operate effectively on raw photos of various resolutions while easing the issues caused by the existence of patterns and texturing. The suggested approach produces very good findings that may be used to make decisions in the diagnosis of cancer.

Keywords: lobular carcinoma, convolutional neural networks (CNN), deep learning, histopathological imagery scans

Procedia PDF Downloads 140
32126 Penguins Search Optimization Algorithm for Chaotic Synchronization System

Authors: Sofiane Bououden, Ilyes Boulkaibet

Abstract:

In terms of security of the information signal, the meta-heuristic Penguins Search Optimization Algorithm (PeSOA) is applied to synchronize chaotic encryption communications in the case of sensitive dependence on initial conditions in chaotic generator oscillator. The objective of this paper is the use of the PeSOA algorithm to exploring search space with random and iterative processes for synchronization of symmetric keys in both transmission and reception. Simulation results show the effectiveness of the PeSOA algorithm in generating symmetric keys of the encryption process and synchronizing.

Keywords: meta-heuristic, PeSOA, chaotic systems, encryption, synchronization optimization

Procedia PDF Downloads 201
32125 An Optimization Model for Maximum Clique Problem Based on Semidefinite Programming

Authors: Derkaoui Orkia, Lehireche Ahmed

Abstract:

The topic of this article is to exploring the potentialities of a powerful optimization technique, namely Semidefinite Programming, for solving NP-hard problems. This approach provides tight relaxations of combinatorial and quadratic problems. In this work, we solve the maximum clique problem using this relaxation. The clique problem is the computational problem of finding cliques in a graph. It is widely acknowledged for its many applications in real-world problems. The numerical results show that it is possible to find a maximum clique in polynomial time, using an algorithm based on semidefinite programming. We implement a primal-dual interior points algorithm to solve this problem based on semidefinite programming. The semidefinite relaxation of this problem can be solved in polynomial time.

Keywords: semidefinite programming, maximum clique problem, primal-dual interior point method, relaxation

Procedia PDF Downloads 224
32124 A Quinary Coding and Matrix Structure Based Channel Hopping Algorithm for Blind Rendezvous in Cognitive Radio Networks

Authors: Qinglin Liu, Zhiyong Lin, Zongheng Wei, Jianfeng Wen, Congming Yi, Hai Liu

Abstract:

The multi-channel blind rendezvous problem in distributed cognitive radio networks (DCRNs) refers to how users in the network can hop to the same channel at the same time slot without any prior knowledge (i.e., each user is unaware of other users' information). The channel hopping (CH) technique is a typical solution to this blind rendezvous problem. In this paper, we propose a quinary coding and matrix structure-based CH algorithm called QCMS-CH. The QCMS-CH algorithm can guarantee the rendezvous of users using only one cognitive radio in the scenario of the asynchronous clock (i.e., arbitrary time drift between the users), heterogeneous channels (i.e., the available channel sets of users are distinct), and symmetric role (i.e., all users play a same role). The QCMS-CH algorithm first represents a randomly selected channel (denoted by R) as a fixed-length quaternary number. Then it encodes the quaternary number into a quinary bootstrapping sequence according to a carefully designed quaternary-quinary coding table with the prefix "R00". Finally, it builds a CH matrix column by column according to the bootstrapping sequence and six different types of elaborately generated subsequences. The user can access the CH matrix row by row and accordingly perform its channel, hoping to attempt rendezvous with other users. We prove the correctness of QCMS-CH and derive an upper bound on its Maximum Time-to-Rendezvous (MTTR). Simulation results show that the QCMS-CH algorithm outperforms the state-of-the-art in terms of the MTTR and the Expected Time-to-Rendezvous (ETTR).

Keywords: channel hopping, blind rendezvous, cognitive radio networks, quaternary-quinary coding

Procedia PDF Downloads 96
32123 Prediction of the Lateral Bearing Capacity of Short Piles in Clayey Soils Using Imperialist Competitive Algorithm-Based Artificial Neural Networks

Authors: Reza Dinarvand, Mahdi Sadeghian, Somaye Sadeghian

Abstract:

Prediction of the ultimate bearing capacity of piles (Qu) is one of the basic issues in geotechnical engineering. So far, several methods have been used to estimate Qu, including the recently developed artificial intelligence methods. In recent years, optimization algorithms have been used to minimize artificial network errors, such as colony algorithms, genetic algorithms, imperialist competitive algorithms, and so on. In the present research, artificial neural networks based on colonial competition algorithm (ANN-ICA) were used, and their results were compared with other methods. The results of laboratory tests of short piles in clayey soils with parameters such as pile diameter, pile buried length, eccentricity of load and undrained shear resistance of soil were used for modeling and evaluation. The results showed that ICA-based artificial neural networks predicted lateral bearing capacity of short piles with a correlation coefficient of 0.9865 for training data and 0.975 for test data. Furthermore, the results of the model indicated the superiority of ICA-based artificial neural networks compared to back-propagation artificial neural networks as well as the Broms and Hansen methods.

Keywords: artificial neural network, clayey soil, imperialist competition algorithm, lateral bearing capacity, short pile

Procedia PDF Downloads 156
32122 The Application of Cognitive Linguistics to Teaching EFL Students to Understand Spoken Coinages: Based on an Experiment with Speakers of Russian

Authors: Ekaterina Lukianchenko

Abstract:

The present article addresses the nuances of teaching English vocabulary to Russian-speaking students. The experiment involving 39 participants aged 17 to 21 proves that the key to understanding spoken coinages is not only the knowledge of their constituents, but rather the understanding of the context and co-text. The volunteers who took part knew the constituents, but did not know the meaning of the words. The assumption of the authors consists in the fact that the structure of the concept has a direct relation with the form of the particular vocabulary unit, but its form is secondary to its meaning, if the word is a spoken coinage, which is partly proved by the fact that in modern slang words have multiple meanings, as well as one notion can have various embodiments that have virtually nothing in common. The choice of vocabulary items that youngsters use is not exactly arbitrary, but, even if complex nominals are taken into consideration, whose meaning seems clear, as it looks like a sum of their constituents’ meanings, they are still impossible to understand without any context or co-text, as a lot of them are idiomatic, non-transparent. It is further explained what methods might be effective in teaching students how to deal with new words they encounter in real-life situations and how student’s knowledge of vocabulary might be enhanced.

Keywords: spoken language, cognitive linguistics, complex nominals, nominals with the incorporated object, concept, EFL, communicative language teaching

Procedia PDF Downloads 282
32121 Experience of the Formation of Professional Competence of Students of IT-Specialties

Authors: B. I. Zhumagaliyev, L. Sh. Balgabayeva, G. S. Nabiyeva, B. A. Tulegenova, P. Oralkhan, B. S. Kalenova, S. S. Akhmetov

Abstract:

The article describes an approach to build competence in research of Bachelor and Master, which is now an important feature of modern specialist in the field of engineering. Provides an example of methodical teaching methods with the research aspect, is including the formulation of the problem, the method of conducting experiments, analysis of the results. Implementation of methods allows the student to better consolidate their knowledge and skills at the same time to get research. Knowledge on the part of the media requires some training in the subject area and teaching methods.

Keywords: professional competence, model of it-specialties, teaching methods, educational technology, decision making

Procedia PDF Downloads 441
32120 Teaching Method in Situational Crisis Communication Theory: A Literature Review

Authors: Proud Arunrangsiwed

Abstract:

Crisis management strategies could be found in various curriculums, not only in schools of business, but also schools of communication. Young students, such as freshmen and sophomores of undergraduate schools, may not care about learning crisis management strategies. Moreover, crisis management strategies are not a topic art students are familiar with. The current paper discusses a way to adapt entertainment media into a crisis management lesson, and the importance of learning crisis management strategies in the school of animation. Students could learn crisis management strategies by watching movies with content about a crisis and responding to crisis responding. The students should then participate in follow up discussions related to the strategies that were used to address the crisis, as well as their success in solving the crisis.

Keywords: situational crisis communication theory, crisis response strategies, media effect, unintentional effect

Procedia PDF Downloads 329
32119 Use Cloud-Based Watson Deep Learning Platform to Train Models Faster and More Accurate

Authors: Susan Diamond

Abstract:

Machine Learning workloads have traditionally been run in high-performance computing (HPC) environments, where users log in to dedicated machines and utilize the attached GPUs to run training jobs on huge datasets. Training of large neural network models is very resource intensive, and even after exploiting parallelism and accelerators such as GPUs, a single training job can still take days. Consequently, the cost of hardware is a barrier to entry. Even when upfront cost is not a concern, the lead time to set up such an HPC environment takes months from acquiring hardware to set up the hardware with the right set of firmware, software installed and configured. Furthermore, scalability is hard to achieve in a rigid traditional lab environment. Therefore, it is slow to react to the dynamic change in the artificial intelligent industry. Watson Deep Learning as a service, a cloud-based deep learning platform that mitigates the long lead time and high upfront investment in hardware. It enables robust and scalable sharing of resources among the teams in an organization. It is designed for on-demand cloud environments. Providing a similar user experience in a multi-tenant cloud environment comes with its own unique challenges regarding fault tolerance, performance, and security. Watson Deep Learning as a service tackles these challenges and present a deep learning stack for the cloud environments in a secure, scalable and fault-tolerant manner. It supports a wide range of deep-learning frameworks such as Tensorflow, PyTorch, Caffe, Torch, Theano, and MXNet etc. These frameworks reduce the effort and skillset required to design, train, and use deep learning models. Deep Learning as a service is used at IBM by AI researchers in areas including machine translation, computer vision, and healthcare. 

Keywords: deep learning, machine learning, cognitive computing, model training

Procedia PDF Downloads 214
32118 A Multi-Agent Simulation of Serious Games to Predict Their Impact on E-Learning Processes

Authors: Ibtissem Daoudi, Raoudha Chebil, Wided Lejouad Chaari

Abstract:

Serious games constitute actually a recent and attractive way supposed to replace the classical boring courses. However, the choice of the adapted serious game to a specific learning environment remains a challenging task that makes teachers unwilling to adopt this concept. To fill this gap, we present, in this paper, a multi-agent-based simulator allowing to predict the impact of a serious game integration in a learning environment given several game and players characteristics. As results, the presented tool gives intensities of several emotional aspects characterizing learners reactions to the serious game adoption. The presented simulator is tested to predict the effect of basing a coding course on the serious game ”CodeCombat”. The obtained results are compared with feedbacks of using the same serious game in a real learning process.

Keywords: emotion, learning process, multi-agent simulation, serious games

Procedia PDF Downloads 403
32117 A Support Vector Machine Learning Prediction Model of Evapotranspiration Using Real-Time Sensor Node Data

Authors: Waqas Ahmed Khan Afridi, Subhas Chandra Mukhopadhyay, Bandita Mainali

Abstract:

The research paper presents a unique approach to evapotranspiration (ET) prediction using a Support Vector Machine (SVM) learning algorithm. The study leverages real-time sensor node data to develop an accurate and adaptable prediction model, addressing the inherent challenges of traditional ET estimation methods. The integration of the SVM algorithm with real-time sensor node data offers great potential to improve spatial and temporal resolution in ET predictions. In the model development, key input features are measured and computed using mathematical equations such as Penman-Monteith (FAO56) and soil water balance (SWB), which include soil-environmental parameters such as; solar radiation (Rs), air temperature (T), atmospheric pressure (P), relative humidity (RH), wind speed (u2), rain (R), deep percolation (DP), soil temperature (ST), and change in soil moisture (∆SM). The one-year field data are split into combinations of three proportions i.e. train, test, and validation sets. While kernel functions with tuning hyperparameters have been used to train and improve the accuracy of the prediction model with multiple iterations. This paper also outlines the existing methods and the machine learning techniques to determine Evapotranspiration, data collection and preprocessing, model construction, and evaluation metrics, highlighting the significance of SVM in advancing the field of ET prediction. The results demonstrate the robustness and high predictability of the developed model on the basis of performance evaluation metrics (R2, RMSE, MAE). The effectiveness of the proposed model in capturing complex relationships within soil and environmental parameters provide insights into its potential applications for water resource management and hydrological ecosystem.

Keywords: evapotranspiration, FAO56, KNIME, machine learning, RStudio, SVM, sensors

Procedia PDF Downloads 76
32116 Academic Writing vs Creative Writing for Arabic Speaking Students

Authors: Yacoub Aljaffery

Abstract:

Many English writing instructors try to avoid creative writing in their classrooms thinking they need to teach essay rules and organization skills. They seem to forget that creative writing has do’s and don’ts as well. While academic writing is different from fiction writing in some important ways (although perhaps the boundaries are fruitfully blurring), there is much that can be writerly selves. The differences between creative writing and academic writing are that creative writing is written mainly to entertain with the creativity of the mind and academic writing is written mainly to inform in a formal manner or to incite the reader to make an action such as purchase the writer’s product. In this research paper, we are going to find out how could Arabic speaking students, who are learning academic writing in universities, benefit from creative writing such as literature, theatrical scripts, music, and poems. Since Arabic language is known as poetic language, students from this culture tend to like writing with creativity. We will investigate the positive influence of creative writing rules on academic essays and paragraphs in universities, and We will prove the importance of using creative writing activities in any academic writing classroom.

Keywords: ESL teaching, motivation, teaching methods, academic writing , creative writing

Procedia PDF Downloads 560
32115 Evolved Bat Algorithm Based Adaptive Fuzzy Sliding Mode Control with LMI Criterion

Authors: P.-W. Tsai, C.-Y. Chen, C.-W. Chen

Abstract:

In this paper, the stability analysis of a GA-Based adaptive fuzzy sliding model controller for a nonlinear system is discussed. First, a nonlinear plant is well-approximated and described with a reference model and a fuzzy model, both involving FLC rules. Then, FLC rules and the consequent parameter are decided on via an Evolved Bat Algorithm (EBA). After this, we guarantee a new tracking performance inequality for the control system. The tracking problem is characterized to solve an eigenvalue problem (EVP). Next, an adaptive fuzzy sliding model controller (AFSMC) is proposed to stabilize the system so as to achieve good control performance. Lyapunov’s direct method can be used to ensure the stability of the nonlinear system. It is shown that the stability analysis can reduce nonlinear systems into a linear matrix inequality (LMI) problem. Finally, a numerical simulation is provided to demonstrate the control methodology.

Keywords: adaptive fuzzy sliding mode control, Lyapunov direct method, swarm intelligence, evolved bat algorithm

Procedia PDF Downloads 447
32114 An Experiment with Science Popularization in Rural Schools of Sehore District in Madhya Pradesh, India

Authors: Peeyush Verma, Anil Kumar, Anju Rawlley, Chanchal Mehra

Abstract:

India's school-going population is largely served by an educational system that is, in most rural parts, stuck with methods that emphasize rote learning, endless examinations, and monotonous classroom activities. Rural government schools are generally seen as having poor infrastructure, poor support system and low motivation for teaching as well as learning. It was experienced during the survey of this project that there is lesser motivation of rural boys and girls to attend their schools and still less likely chances to study science, tabooed as “difficult”. An experiment was conducted with the help of Rural Knowledge Network Project through Department of Science and Technology, Govt of India in five remote villages of Sehore District in Madhya Pradesh (India) during 2012-2015. These schools are located about 50-70 Km away from Bhopal, the capital of Madhya Pradesh and can distinctively qualify as average rural schools. Three tier methodology was adapted to unfold the experiment. In first tier randomly selected boys and girls from these schools were taken to a daylong visit to the Regional Science Centre located in Bhopal. In second tier, randomly selected half of those who visited earlier were again taken to the Science Centre to make models of Science. And in third tier, all the boys and girls studying science were exposed to video lectures and study material through web. The results have shown an interesting face towards learning science among youths in rural schools through peer learning or incremental learning. The students who had little or no interest in learning science became good learners and queries started pouring in from the neighbourhood village as well as a few parents requested to take their wards in the project to learn science. The paper presented is a case study of the experiment conducted in five rural schools of Sehore District. It reflects upon the methodology of developing awareness and interest among students and finally engaging them in popularising science through peer-to-peer learning using incremental learning elements. The students, who had a poor perception about science initially, had changed their attitude towards learning science during the project period. The results of this case, however, cannot be generalised unless replicated in the same setting elsewhere.

Keywords: popularisation of science, science temper, incremental learning, peer-to-peer learning

Procedia PDF Downloads 320
32113 Goal Orientation, Learning Strategies and Academic Performance in Adult Distance Learning

Authors: Ying Zhou, Jian-Hua Wang

Abstract:

Based upon the self-determination theory and self-regulated learning theory, this study examined the predictiveness of goal orientation and self-regulated learning strategies on academic achievement of adult students in distance learning. The results show a positive relation between goal orientation and the use of self-regulated strategies, and academic achievements. A significant and positive indirect relation of mastery goal orientation through self-regulated learning strategies was also found. In addition, results pointed to a positive indirect impact of performance-approach goal orientation on academic achievement. The effort regulation strategy fully mediated this relation. The theoretical and instructional implications are discussed. Interventions can be made to motivate students’ mastery or performance approach goal orientation and help them manage their time or efforts.

Keywords: goal orientation, self-regulated strategies, achievement, adult distance students

Procedia PDF Downloads 280