Search results for: multiple deprivation
2497 Sound Performance of a Composite Acoustic Coating With Embedded Parallel Plates Under Hydrostatic Pressure
Authors: Bo Hu, Shibo Wang, Haoyang Zhang, Jie Shi
Abstract:
With the development of sonar detection technology, the acoustic stealth technology of underwater vehicles is facing severe challenges. The underwater acoustic coating is developing towards the direction of low-frequency absorption capability and broad absorption frequency bandwidth. In this paper, an acoustic model of underwater acoustic coating of composite material embedded with periodical steel structure is presented. The model has multiple high absorption peaks in the frequency range of 1kHz-8kHz, where achieves high sound absorption and broad bandwidth performance. It is found that the frequencies of the absorption peaks are related to the classic half-wavelength transmission principle. The sound absorption performance of the acoustic model is investigated by the finite element method using COMSOL software. The sound absorption mechanism of the proposed model is explained by the distributions of the displacement vector field. The influence of geometric parameters of periodical steel structure, including thickness and distance, on the sound absorption ability of the proposed model are further discussed. The acoustic model proposed in this study provides an idea for the design of underwater low-frequency broadband acoustic coating, and the results shows the possibility and feasibility for practical underwater application.Keywords: acoustic coating, composite material, broad frequency bandwidth, sound absorption performance
Procedia PDF Downloads 1742496 Friend or Foe: Decoding the Legal Challenges Posed by Artificial Intellegence in the Era of Intellectual Property
Authors: Latika Choudhary
Abstract:
“The potential benefits of Artificial Intelligence are huge, So are the dangers.” - Dave Water. Artificial intelligence is one of the facet of Information technology domain which despite several attempts does not have a clear definition or ambit. However it can be understood as technology to solve problems via automated decisions and predictions. Artificial intelligence is essentially an algorithm based technology which analyses the large amounts of data and then solves problems by detecting useful patterns. Owing to its automated feature it will not be wrong to say that humans & AI have more utility than humans alone or computers alone.1 For many decades AI experienced enthusiasm as well as setbacks, yet it has today become part and parcel of our everyday life, making it convenient or at times problematic. AI and related technology encompass Intellectual Property in multiple ways, the most important being AI technology for management of Intellectual Property, IP for protecting AI and IP as a hindrance to the transparency of AI systems. Thus the relationship between the two is of reciprocity as IP influences AI and vice versa. While AI is a recent concept, the IP laws for protection or even dealing with its challenges are relatively older, raising the need for revision to keep up with the pace of technological advancements. This paper will analyze the relationship between AI and IP to determine how beneficial or conflictual the same is, address how the old concepts of IP are being stretched to its maximum limits so as to accommodate the unwanted consequences of the Artificial Intelligence and propose ways to mitigate the situation so that AI becomes the friend it is and not turn into a potential foe it appears to be.Keywords: intellectual property rights, information technology, algorithm, artificial intelligence
Procedia PDF Downloads 872495 Influence of Some Psychological Factors on the Learning Gains of Distance Learners in Mathematics in Ibadan, Nigeria
Authors: Adeola Adejumo, Oluwole David Adebayo, Muraina Kamilu Olanrewaju
Abstract:
The purpose of this study was to investigate the influence of some psychological factors (i.e, school climate, parental involvement and classroom interaction) on the learning gains of university undergraduates in Mathematics in Ibadan, Nigeria. Three hundred undergraduates who are on open distance learning education programme in the University of Ibadan and thirty mathematics lecturers constituted the study’s sample. Both the independent and dependent variables were measured with relevant standardized instruments and the data obtained was analyzed using multiple regression statistical method. The instruments used were school climate scale, parental involvement scale and classroom interaction scale. Three research questions were answered in the study. The result showed that there was significant relationship between the three independent variables (school climate, parental involvement and classroom interaction) on the students’ learning gain in mathematics and that the independent variables both jointly and relatively contributed significantly to the prediction of students’ learning gain in mathematics. On the strength of these findings, the need to enhance the school climate, improve the parents’ involvement in the student’s education and encourage students’ classroom interaction were stressed and advocated.Keywords: school climate, parental involvement, ODL, learning gains, mathematics
Procedia PDF Downloads 5212494 Short Answer Grading Using Multi-Context Features
Authors: S. Sharan Sundar, Nithish B. Moudhgalya, Nidhi Bhandari, Vineeth Vijayaraghavan
Abstract:
Automatic Short Answer Grading is one of the prime applications of artificial intelligence in education. Several approaches involving the utilization of selective handcrafted features, graphical matching techniques, concept identification and mapping, complex deep frameworks, sentence embeddings, etc. have been explored over the years. However, keeping in mind the real-world application of the task, these solutions present a slight overhead in terms of computations and resources in achieving high performances. In this work, a simple and effective solution making use of elemental features based on statistical, linguistic properties, and word-based similarity measures in conjunction with tree-based classifiers and regressors is proposed. The results for classification tasks show improvements ranging from 1%-30%, while the regression task shows a stark improvement of 35%. The authors attribute these improvements to the addition of multiple similarity scores to provide ensemble of scoring criteria to the models. The authors also believe the work could reinstate that classical natural language processing techniques and simple machine learning models can be used to achieve high results for short answer grading.Keywords: artificial intelligence, intelligent systems, natural language processing, text mining
Procedia PDF Downloads 1332493 Attachment Style, Attachment Figure, and Intimate Relationship among Emerging Adults with Anxiety and Depression
Authors: P. K. Raheemudheen, Vibha Sharma, C. B. Tripathi
Abstract:
Background and Aim: Intimate relationships are one of the major sources of unhappiness for emerging adults(18-25 years) and the extent of worry from it is higher for them as compared to older adults. This increases their vulnerability to develop anxiety and depression. Current academic literature have highlighted adult attachment have a crucial role in determining the psycho social adjustment and psychopathology in Emerging Adulthood. In this context, present study is an attempt to explore patterns of adult attachment styles, availability of attachment figures and dimensions of intimate relationship among emerging adults. Method: The participants(n=30) were emerging adults diagnosed with anxiety or/and depression seeking treatment from IHBAS, Delhi. Relationship Style Questionnaire was used to assess the adult attachment styles and Multidimensional Relationship Questionnaire was used to assess dimensions of intimate relationship. Results& Discussion: Results showed that majority of the participants have insecure attachment styles. They perceived their attachment figure as insensitive and unavailable. Further, it was found that participants experience multiple difficulties to establish and maintain healthy intimate relationships. These findings highlight Adult attachment insecurities seem to contribute to anxiety and depression among emerging adults. It proved a conceptual foundation for planning interventions to deal with these attachment based correlate of anxiety and depression which may be more amenable to therapeutic change.Keywords: emerging adult, adult attachment, intimate relationship, anxiety
Procedia PDF Downloads 3072492 The Impact of Size of the Regional Economic Blocs to the Country’s Flows of Trade: Evidence from COMESA, EAC and Tanzania
Authors: Mosses E. Lufuke, Lorna M. Kamau
Abstract:
This paper attempted to assess whether the size of the regional economic bloc has an impact to the flow of trade to a particular country. Two different sized blocs (COMESA and EAC) and one country (Tanzania) have been used as the point of references. Using the results from of the analyses, the paper also was anticipated to establish whether it was rational for Tanzania to withdraw its membership from COMESA (the larger bloc) to join EAC (the small one). Gravity model has been used to estimate the relationship between the variables, from which the bilateral trade flows between Tanzania and the eighteen member countries of the two blocs (COMESA and EAC) was employed for the time between 2000 and 2013. In the model, the dummy variable for regional bloc (bloc) at which the Tanzania trade partner countries belong are also added to the model to understand which trade bloc exhibit higher trade flow with Tanzania. From the findings, it was noted that over the period of study (2000-2013) Tanzania acknowledged more than 257% of trade volume in EAC than in COMESA. Conclusive, it was noted that the flow of trade is explained by many other variables apart from the size of regional bloc; and that the size by itself offer insufficient evidence in causality relationship. The paper therefore remain neutral on such staggered switching decision since more analyses are required to establish the country’s trade flow, especially when if it had been in multiple membership of COMESA and EAC.Keywords: economic bloc, flow of trade, size of bloc, switching
Procedia PDF Downloads 2472491 Correlation between Dynamic Knee Valgus with Isometric Hip Abductors Strength during Single-Leg Landing
Authors: Ahmed Fawzy, Khaled Ayad, Gh. M. Koura, W. Reda
Abstract:
The knee joint complex is one of the most commonly injured areas of the body in athletes. Excessive frontal plane knee excursion is considered a risk factor for multiple knee pathologies such as anterior cruciate ligament and patellofemoral joint injuries, however, little is known about the biomechanical factors that contribute to this loading pattern. Objectives: The purpose of this study was to investigate if there is a relationship between hip abductors isometric strength and the value of FPPA during single leg landing tasks in normal male subjects. Methods: One hundred (male) subjects free from lower extremity injuries for at least six months ago participated in this study. Their mean age was (23.25 ± 2.88) years, mean weight was (74.76 ± 13.54) (Kg), mean height was (174.23 ± 6.56) (Cm). The knee frontal plane projection angle was measured by digital video camera using single leg landing task. Hip abductors isometric strength were assessed by portable hand-held dynamometer. Muscle strength had been normalized to the body weight to obtain more accurate measurements. Results: The results demonstrated that there was no significant relationship between hip abductors isometric strength and the value of FPPA during single leg landing tasks in normal male subjects. Conclusion: It can be concluded that there is no relationship between hip abductors isometric strength and the value of FPPA during functional activities in normal male subjects.Keywords: 2-dimensional motion analysis, hip strength, kinematics, knee injuries
Procedia PDF Downloads 2482490 Information Requirements for Vessel Traffic Service Operations
Authors: Fan Li, Chun-Hsien Chen, Li Pheng Khoo
Abstract:
Operators of vessel traffic service (VTS) center provides three different types of services; namely information service, navigational assistance and traffic organization to vessels. To provide these services, operators monitor vessel traffic through computer interface and provide navigational advice based on the information integrated from multiple sources, including automatic identification system (AIS), radar system, and closed circuit television (CCTV) system. Therefore, this information is crucial in VTS operation. However, what information the VTS operator actually need to efficiently and properly offer services is unclear. The aim of this study is to investigate into information requirements for VTS operation. To achieve this aim, field observation was carried out to elicit the information requirements for VTS operation. The study revealed that the most frequent and important tasks were handling arrival vessel report, potential conflict control and abeam vessel report. Current location and vessel name were used in all tasks. Hazard cargo information was particularly required when operators handle arrival vessel report. The speed, the course, and the distance of two or several vessels were only used in potential conflict control. The information requirements identified in this study can be utilized in designing a human-computer interface that takes into consideration what and when information should be displayed, and might be further used to build the foundation of a decision support system for VTS.Keywords: vessel traffic service, information requirements, hierarchy task analysis, field observation
Procedia PDF Downloads 2502489 Shifting Paradigms of Culture: Rise of Secular Sensibility in Indian Literature
Authors: Nidhi Chouhan
Abstract:
Burgeoning demand of ‘Secularism’ has shaken the pillars of cultural studies in the contemporary literature. The perplexity of the culturally estranged term ‘secular’ gives rise to temporal ideologies across the world. Hence, it is high time to scan this concept in the context of Indian lifestyle which is a blend of assimilated cultures woven in multiple religious fabrics. The infliction of such secular taste is depicted in literary productions like ‘Satanic Verses’ and ‘An Area of Darkness’. The paper conceptually makes a cross-cultural analysis of anti-religious Indian literary texts, assessing its revitalization in current times. Further, this paper studies the increasing popularity of secular sensibility in the contemporary times. The mushrooming elements of secularism such as abstraction, spirituality, liberation, individualism give rise to a seemingly newer idea i.e. ‘Plurality’ making the literature highly hybrid. This approach has been used to study Indian modernity reflected in its literature. Seminal works of stalwarts are used to understand the consequence of this cultural synthesis. Conclusively, this theoretical research inspects the efficiency of secular culture, intertwined with internal coherence and throws light on the plurality of texts in Indian literature.Keywords: culture, indian, literature, plurality, secular, secularism
Procedia PDF Downloads 1032488 Rhythmic Sound: Presence and Significance: A Study of the Yue Drum Used in the Han Chinese Shigong Ritual in Guangxi, China
Authors: Li-Jun Zheng
Abstract:
The use of drums as an accompanying instrument is a common phenomenon in traditional Chinese folk rituals and musical culture. Especially, some folk rituals construct ritual-related sounds and give them ritual-specific symbolic and meaningful systems through the combination and use of multiple percussion instruments. The Yue drum(岳鼓), an asymmetrically shaped thin waist drum, is currently used in Han Chinese Shigong(师公)rituals in Guangxi, China, and is an important ritual instrument in Shigong rituals. This paper examines the use of the Yue drum and other percussion instruments in Han Chinese Shigong rituals in Guangxi, China, and shows the current status of combining instrumental accompaniment forms with human voices in Shigong rituals. Through further analysis of the musical and dance forms of Han Chinese Shigong rituals, this paper shows how Han Chinese Shigong ritual performers construct the ritual field through "sound-human-dance" and further explains the relationship between the existing and fictitious performance fields in the rituals. In addition, this paper demonstrates the relationship between Han Chinese Shigong rituals and the religious beliefs they involve, such as Taoism and Buddhism. And it further explores how performers in Han Chinese Shigong rituals use Yue drums for the dual purpose of "entertaining the gods" and "entertaining the people".Keywords: sound research, the Han Chinese Shigong ritual, the thin waist drum, folk beliefs, ritual music
Procedia PDF Downloads 652487 Developing an ANN Model to Predict Anthropometric Dimensions Based on Real Anthropometric Database
Authors: Waleed A. Basuliman, Khalid S. AlSaleh, Mohamed Z. Ramadan
Abstract:
Applying the anthropometric dimensions is considered one of the important factors when designing any human-machine system. In this study, the estimation of anthropometric dimensions has been improved by developing artificial neural network that aims to predict the anthropometric measurements of the male in Saudi Arabia. A total of 1427 Saudi males from age 6 to 60 participated in measuring twenty anthropometric dimensions. These anthropometric measurements are important for designing the majority of work and life applications in Saudi Arabia. The data were collected during 8 months from different locations in Riyadh City. Five of these dimensions were used as predictors variables (inputs) of the model, and the remaining fifteen dimensions were set to be the measured variables (outcomes). The hidden layers have been varied during the structuring stage, and the best performance was achieved with the network structure 6-25-15. The results showed that the developed Neural Network model was significantly able to predict the body dimensions for the population of Saudi Arabia. The network mean absolute percentage error (MAPE) and the root mean squared error (RMSE) were found 0.0348 and 3.225 respectively. The accuracy of the developed neural network was evaluated by compare the predicted outcomes with a multiple regression model. The ANN model performed better and resulted excellent correlation coefficients between the predicted and actual dimensions.Keywords: artificial neural network, anthropometric measurements, backpropagation, real anthropometric database
Procedia PDF Downloads 5762486 Effect of Erythropoietin Hormone Supplementation on Hypoxia-Inducible Factor1-Alpha in Rat Kidneys with Experimental Diabetic Nephropathy
Authors: Maha Deif, Alaa Eldin Hassan, Eman Shaat, Nesrine Elazhary, Eman Magdy
Abstract:
Background: Erythropoietin (EPO) is a hematopoietic factor with multiple protective effects. The aim of the present study was to investigate the potential effect of EPO administration on renal functions and hypoxia inducible factor 1-alpha (HIF-1a) in diabetic rat kidneys. Methodology: The current study was carried out on 40 male albino rats divided into four groups (n= 10 in each). Group I served as normal control, group II was the diabetic control, group III rats received EPO on the same day of diagnosis of diabetes mellitus (DM), while group IV received the first dose of EPO 2 weeks after the diagnosis of DM. Results: The results showed that EPO supplementation leads to a significant decrease in serum urea, urinary protein and creatinine clearance as well as a significant increase in renal HIF-1a in group III and IV rats compared to the diabetic control group (group II). However, fasting blood glucose was significantly decreased in group III as compared to the diabetic control group in the third week, but no significant difference was reported in the fourth week among groups II, III and IV. Conclusion: EPO administration leads to the improvement of renal functions and increased levels of HIF-1a in diabetic rats.Keywords: erythropoietin, diabetic nephropathy, hypoxia-inducible factor1-alpha, renal functions
Procedia PDF Downloads 2862485 Multi-Source Data Fusion for Urban Comprehensive Management
Authors: Bolin Hua
Abstract:
In city governance, various data are involved, including city component data, demographic data, housing data and all kinds of business data. These data reflects different aspects of people, events and activities. Data generated from various systems are different in form and data source are different because they may come from different sectors. In order to reflect one or several facets of an event or rule, data from multiple sources need fusion together. Data from different sources using different ways of collection raised several issues which need to be resolved. Problem of data fusion include data update and synchronization, data exchange and sharing, file parsing and entry, duplicate data and its comparison, resource catalogue construction. Governments adopt statistical analysis, time series analysis, extrapolation, monitoring analysis, value mining, scenario prediction in order to achieve pattern discovery, law verification, root cause analysis and public opinion monitoring. The result of Multi-source data fusion is to form a uniform central database, which includes people data, location data, object data, and institution data, business data and space data. We need to use meta data to be referred to and read when application needs to access, manipulate and display the data. A uniform meta data management ensures effectiveness and consistency of data in the process of data exchange, data modeling, data cleansing, data loading, data storing, data analysis, data search and data delivery.Keywords: multi-source data fusion, urban comprehensive management, information fusion, government data
Procedia PDF Downloads 3932484 Detecting Music Enjoyment Level Using Electroencephalogram Signals and Machine Learning Techniques
Authors: Raymond Feng, Shadi Ghiasi
Abstract:
An electroencephalogram (EEG) is a non-invasive technique that records electrical activity in the brain using scalp electrodes. Researchers have studied the use of EEG to detect emotions and moods by collecting signals from participants and analyzing how those signals correlate with their activities. In this study, researchers investigated the relationship between EEG signals and music enjoyment. Participants listened to music while data was collected. During the signal-processing phase, power spectral densities (PSDs) were computed from the signals, and dominant brainwave frequencies were extracted from the PSDs to form a comprehensive feature matrix. A machine learning approach was then taken to find correlations between the processed data and the music enjoyment level indicated by the participants. To improve on previous research, multiple machine learning models were employed, including K-Nearest Neighbors Classifier, Support Vector Classifier, and Decision Tree Classifier. Hyperparameters were used to fine-tune each model to further increase its performance. The experiments showed that a strong correlation exists, with the Decision Tree Classifier with hyperparameters yielding 85% accuracy. This study proves that EEG is a reliable means to detect music enjoyment and has future applications, including personalized music recommendation, mood adjustment, and mental health therapy.Keywords: EEG, electroencephalogram, machine learning, mood, music enjoyment, physiological signals
Procedia PDF Downloads 622483 Faster, Lighter, More Accurate: A Deep Learning Ensemble for Content Moderation
Authors: Arian Hosseini, Mahmudul Hasan
Abstract:
To address the increasing need for efficient and accurate content moderation, we propose an efficient and lightweight deep classification ensemble structure. Our approach is based on a combination of simple visual features, designed for high-accuracy classification of violent content with low false positives. Our ensemble architecture utilizes a set of lightweight models with narrowed-down color features, and we apply it to both images and videos. We evaluated our approach using a large dataset of explosion and blast contents and compared its performance to popular deep learning models such as ResNet-50. Our evaluation results demonstrate significant improvements in prediction accuracy, while benefiting from 7.64x faster inference and lower computation cost. While our approach is tailored to explosion detection, it can be applied to other similar content moderation and violence detection use cases as well. Based on our experiments, we propose a "think small, think many" philosophy in classification scenarios. We argue that transforming a single, large, monolithic deep model into a verification-based step model ensemble of multiple small, simple, and lightweight models with narrowed-down visual features can possibly lead to predictions with higher accuracy.Keywords: deep classification, content moderation, ensemble learning, explosion detection, video processing
Procedia PDF Downloads 552482 An Adaptive Distributed Incremental Association Rule Mining System
Authors: Adewale O. Ogunde, Olusegun Folorunso, Adesina S. Sodiya
Abstract:
Most existing Distributed Association Rule Mining (DARM) systems are still facing several challenges. One of such challenges that have not received the attention of many researchers is the inability of existing systems to adapt to constantly changing databases and mining environments. In this work, an Adaptive Incremental Mining Algorithm (AIMA) is therefore proposed to address these problems. AIMA employed multiple mobile agents for the entire mining process. AIMA was designed to adapt to changes in the distributed databases by mining only the incremental database updates and using this to update the existing rules in order to improve the overall response time of the DARM system. In AIMA, global association rules were integrated incrementally from one data site to another through Results Integration Coordinating Agents. The mining agents in AIMA were made adaptive by defining mining goals with reasoning and behavioral capabilities and protocols that enabled them to either maintain or change their goals. AIMA employed Java Agent Development Environment Extension for designing the internal agents’ architecture. Results from experiments conducted on real datasets showed that the adaptive system, AIMA performed better than the non-adaptive systems with lower communication costs and higher task completion rates.Keywords: adaptivity, data mining, distributed association rule mining, incremental mining, mobile agents
Procedia PDF Downloads 3932481 Quantitative Structure–Activity Relationship Analysis of Some Benzimidazole Derivatives by Linear Multivariate Method
Authors: Strahinja Z. Kovačević, Lidija R. Jevrić, Sanja O. Podunavac Kuzmanović
Abstract:
The relationship between antibacterial activity of eighteen different substituted benzimidazole derivatives and their molecular characteristics was studied using chemometric QSAR (Quantitative Structure–Activity Relationships) approach. QSAR analysis has been carried out on inhibitory activity towards Staphylococcus aureus, by using molecular descriptors, as well as minimal inhibitory activity (MIC). Molecular descriptors were calculated from the optimized structures. Principal component analysis (PCA) followed by hierarchical cluster analysis (HCA) and multiple linear regression (MLR) was performed in order to select molecular descriptors that best describe the antibacterial behavior of the compounds investigated, and to determine the similarities between molecules. The HCA grouped the molecules in separated clusters which have the similar inhibitory activity. PCA showed very similar classification of molecules as the HCA, and displayed which descriptors contribute to that classification. MLR equations, that represent MIC as a function of the in silico molecular descriptors were established. The statistical significance of the estimated models was confirmed by standard statistical measures and cross-validation parameters (SD = 0.0816, F = 46.27, R = 0.9791, R2CV = 0.8266, R2adj = 0.9379, PRESS = 0.1116). These parameters indicate the possibility of application of the established chemometric models in prediction of the antibacterial behaviour of studied derivatives and structurally very similar compounds.Keywords: antibacterial, benzimidazole, molecular descriptors, QSAR
Procedia PDF Downloads 3642480 Rapid Evidence Remote Acquisition in High-Availability Server and Storage System for Digital Forensic to Unravel Academic Crime
Authors: Bagus Hanindhito, Fariz Azmi Pratama, Ulfah Nadiya
Abstract:
Nowadays, digital system including, but not limited to, computer and internet have penetrated the education system widely. Critical information such as students’ academic records is stored in a server off- or on-campus. Although several countermeasures have been taken to protect the vital resources from outsider attack, the defense from insiders threat is not getting serious attention. At the end of 2017, a security incident that involved academic information system in one of the most respected universities in Indonesia affected not only the reputation of the institution and its academia but also academic integrity in Indonesia. In this paper, we will explain our efforts in investigating this security incident where we have implemented a novel rapid evidence remote acquisition method in high-availability server and storage system thus our data collection efforts do not disrupt the academic information system and can be conducted remotely minutes after incident report has been received. The acquired evidence is analyzed during digital forensic by constructing the model of the system in an isolated environment which allows multiple investigators to work together. In the end, the suspect is identified as a student (insider), and the investigation result is used by prosecutors to charge the suspect as an academic crime.Keywords: academic information system, academic crime, digital forensic, high-availability server and storage, rapid evidence remote acquisition, security incident
Procedia PDF Downloads 1522479 The Challenges to Information Communication Technology Integration in Mathematics Teaching and Learning
Authors: George Onomah
Abstract:
Background: The integration of information communication technology (ICT) in Mathematics education faces notable challenges, which this study aimed to dissect and understand. Objectives: The primary goal was to assess the internal and external factors affecting the adoption of ICT by in-service Mathematics teachers. Internal factors examined included teachers' pedagogical beliefs, prior teaching experience, attitudes towards computers, and proficiency with technology. External factors included the availability of technological resources, the level of ICT training received, the sufficiency of allocated time for technology use, and the institutional culture within educational environments. Methods: A descriptive survey design was employed to methodically investigate these factors. Data collection was carried out using a five-point Likert scale questionnaire, administered to a carefully selected sample of 100 in-service Mathematics teachers through a combination of purposive and convenience sampling techniques. Findings: Results from multiple regression analysis revealed a significant underutilization of ICT in Mathematics teaching, highlighting a pronounced deficiency in current classroom practices. Recommendations: The findings suggest an urgent need for educational department heads to implement regular and comprehensive ICT training programs aimed at enhancing teachers' technological capabilities and promoting the integration of ICT in Mathematics teaching methodologies.Keywords: ICT, Mathematics, integration, barriers
Procedia PDF Downloads 402478 True Single SKU Script: Applying the Automated Test to Set Software Properties in a Global Software Development Environment
Authors: Antonio Brigido, Maria Meireles, Francisco Barros, Gaspar Mota, Fernanda Terra, Lidia Melo, Marcelo Reis, Camilo Souza
Abstract:
As the globalization of the software process advances, companies are increasingly committed to improving software development technologies across multiple locations. On the other hand, working with teams distributed in different locations also raises new challenges. In this sense, automated processes can help to improve the quality of process execution. Therefore, this work presents the development of a tool called TSS Script that automates the sample preparation process for carrier requirements validation tests. The objective of the work is to obtain significant gains in execution time and reducing errors in scenario preparation. To estimate the gains over time, the executions performed in an automated and manual way were timed. In addition, a questionnaire-based survey was developed to discover new requirements and improvements to include in this automated support. The results show an average gain of 46.67% of the total hours worked, referring to sample preparation. The use of the tool avoids human errors, and for this reason, it adds greater quality and speed to the process. Another relevant factor is the fact that the tester can perform other activities in parallel with sample preparation.Keywords: Android, GSD, automated testing tool, mobile products
Procedia PDF Downloads 3172477 Investigation of Different Stimulation Patterns to Reduce Muscle Fatigue during Functional Electrical Stimulation
Abstract:
Functional electrical stimulation (FES) is a commonly used technique in rehabilitation and often associated with rapid muscle fatigue which becomes the limiting factor in its applications. The objective of this study is to investigate the effects on the onset of fatigue of conventional synchronous stimulation, as well as asynchronous stimulation that mimic voluntary muscle activation targeting different motor units which are activated sequentially or randomly via multiple pairs of stimulation electrodes. We investigate three different approaches with various electrode configurations, as well as different patterns of stimulation applied to the gastrocnemius muscle: Conventional Synchronous Stimulation (CSS), Asynchronous Sequential Stimulation (ASS) and Asynchronous Random Stimulation (ARS). Stimulation was applied repeatedly for 300 ms followed by 700 ms of no-stimulation with 40 Hz effective frequency for all protocols. Ten able-bodied volunteers (28±3 years old) participated in this study. As fatigue indicators, we focused on the analysis of Normalized Fatigue Index (NFI), Fatigue Time Interval (FTI) and pre-post Twitch-Tetanus Ratio (ΔTTR). The results demonstrated that ASS and ARS give higher NFI and longer FTI confirming less fatigue for asynchronous stimulation. In addition, ASS and ARS resulted in higher ΔTTR than conventional CSS. In this study, we proposed a randomly distributed stimulation method for the application of FES and investigated its suitability for reducing muscle fatigue compared to previously applied methods. The results validated that asynchronous stimulation reduces fatigue, and indicates that random stimulation may improve fatigue resistance in some conditions.Keywords: asynchronous stimulation, electrode configuration, functional electrical stimulation (FES), muscle fatigue, pattern stimulation, random stimulation, sequential stimulation, synchronous stimulation
Procedia PDF Downloads 3062476 Thyroid Stimulating Hormone Is a Biomarker for Stress: A Prospective Longitudinal Study
Authors: Jeonghun Lee
Abstract:
Thyroid-stimulating hormone (TSH) is regulated by the negative feedback of T3 and T4 but is affected by cortisol and cytokines during allostasis. Hence, TSH levels can be influenced by stress through cortisol. In the present study, changes in TSH levels under stress and the potential of TSH as a stress marker were examined in patients lacking T3 or T4 feedback after thyroid surgery. The three stress questionnaires (Korean version of the Daily Stress Inventory, Social Readjustment Rating Scale, and Stress Overload Scale-Short [SOSS]), open-ended question (OQ), and thyroid function tests were performed twice in 106 patients enrolled from January 2019 to October 2020. Statistical analysis was performed using the generalized linear mixed effect model (GLMM) in R software version 4.1.0. In a multiple LMM involving 106 patients, T3, T4, SOSS (category), open-ended questions, the extent of thyroidectomy, and preoperative TSH were significantly correlated with lnTSH. T3 and T4 increased by 1 and lnTSH decreased by 0.03, 3.52, respectively. In case of a stressful event on OQ, lnTSH increased by 1.55. In the high-risk group, lnTSH increased by 0.79, compared with the low group (p<0.05). TSH had a significant relationship with stress, together with T3, T4, and the extent of thyroidectomy. As such, it has the potential to be used as a stress marker, though it showed a low correlation with other stress questionnaires. To address this limitation, questionnaires on various social environments and research on copy strategies are necessary for future studies.Keywords: stress, surgery, thyroid stimulating hormone, thyroidectomy
Procedia PDF Downloads 912475 Graph Neural Networks and Rotary Position Embedding for Voice Activity Detection
Authors: YingWei Tan, XueFeng Ding
Abstract:
Attention-based voice activity detection models have gained significant attention in recent years due to their fast training speed and ability to capture a wide contextual range. The inclusion of multi-head style and position embedding in the attention architecture are crucial. Having multiple attention heads allows for differential focus on different parts of the sequence, while position embedding provides guidance for modeling dependencies between elements at various positions in the input sequence. In this work, we propose an approach by considering each head as a node, enabling the application of graph neural networks (GNN) to identify correlations among the different nodes. In addition, we adopt an implementation named rotary position embedding (RoPE), which encodes absolute positional information into the input sequence by a rotation matrix, and naturally incorporates explicit relative position information into a self-attention module. We evaluate the effectiveness of our method on a synthetic dataset, and the results demonstrate its superiority over the baseline CRNN in scenarios with low signal-to-noise ratio and noise, while also exhibiting robustness across different noise types. In summary, our proposed framework effectively combines the strengths of CNN and RNN (LSTM), and further enhances detection performance through the integration of graph neural networks and rotary position embedding.Keywords: voice activity detection, CRNN, graph neural networks, rotary position embedding
Procedia PDF Downloads 722474 Experiences and Perceptions of the Barriers and Facilitators of Continence Care Provision in Residential and Nursing Homes for Older Adults: A Systematic Evidence Synthesis and Qualitative Exploration
Authors: Jennifer Wheeldon, Nick de Viggiani, Nikki Cotterill
Abstract:
Background: Urinary and fecal incontinence affect a significant proportion of older adults aged 65 and over who permanently reside in residential and nursing home facilities. Incontinence symptoms have been linked to comorbidities, an increased risk of infection and reduced quality of life and mental wellbeing of residents. However, continence care provision can often be poor, further compromising the health and wellbeing of this vulnerable population. Objectives: To identify experiences and perceptions of continence care provision in older adult residential care settings and to identify factors that help or hinder good continence care provision. Settings included both residential care homes and nursing homes for older adults. Methods: A qualitative evidence synthesis using systematic review methodology established the current evidence-base. Data from 20 qualitative and mixed-method studies was appraised and synthesized. Following the review process, 10* qualitative interviews with staff working in older adult residential care settings were conducted across six* sites, which included registered managers, registered nurses and nursing/care assistants/aides. Purposive sampling recruited individuals from across England. Both evidence synthesis and interview data was analyzed thematically, both manually and with NVivo software. Results: The evidence synthesis revealed complex barriers and facilitators for continence care provision at three influencing levels: macro (structural and societal external influences), meso (organizational and institutional influences) and micro (day-to-day actions of individuals impacting service delivery). Macro-level barriers included negative stigmas relating to incontinence, aging and working in the older adult social care sector, restriction of continence care resources such as containment products (i.e. pads), short staffing in care facilities, shortfalls in the professional education and training of care home staff and the complex health and social care needs of older adult residents. Meso-level barriers included task-centered organizational cultures, ageist institutional perspectives regarding old age and incontinence symptoms, inadequate care home management and poor communication and teamwork among care staff. Micro-level barriers included poor knowledge and negative attitudes of care home staff and residents regarding incontinence symptoms and symptom management and treatment. Facilitators at the micro-level included proactive and inclusive leadership skills of individuals in management roles. Conclusions: The findings of the evidence synthesis study help to outline the complexities of continence care provision in older adult care homes facilities. Macro, meso and micro level influences demonstrate problematic and interrelated barriers across international contexts, indicating that improving continence care in this setting is extremely challenging due to the multiple levels at which care provision and services are impacted. Both international and national older adult social care policy-makers, researchers and service providers must recognize this complexity, and any intervention seeking to improve continence care in older adult care home settings must be planned accordingly and appreciatively of the complex and interrelated influences. It is anticipated that the findings of the qualitative interviews will shed further light on the national context of continence care provision specific to England; data collection is ongoing*. * Sample size is envisaged to be between 20-30 participants from multiple sites by Spring 2023.Keywords: continence care, residential and nursing homes, evidence synthesis, qualitative
Procedia PDF Downloads 872473 In vitro Antioxidant Activity of Derris scandens Extract
Authors: Nattawit Thiapairat
Abstract:
Multiple diseases have been linked to excessive levels of free radicals, which cause tissue or cell damage as a result of oxidative stress. Many plants are sources of high antioxidant activity. Derris scandens has a high amount of phenolic and flavonoid contents which demonstrated good biological activities. This study focused on the antioxidant activity of polyphenols extracted from D. scandens. This study performs total flavonoids content and various antioxidant assays, which were 2,2-diphenyl-1-picryl-hydrazyl-hydrate (DPPH) and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radical scavenging capacity assays. The total flavonoid content of D. scandens extract was determined and expressed as quercetin equivalents (QE)/g measured by the aluminum chloride colorimetric method. The antioxidant activity of D. scandens extract was also determined by DPPH and ABTS assays. In the DPPH assay, vitamin C was used as a positive control, whereas Trolox was used as a positive control in the ABTS assay. The half-maximal inhibitory concentration (IC50) values for D. scandens extract from DPPH and ABTS assays were 41.79 μg/mL ± 0.783 and 29.42 μg/mL ± 0.890, respectively, in the DPPH assay. To conclude, D. scandens extract consists of a high amount of total phenolic content, which exhibits a significant antioxidant activity. However, further investigation regarding antioxidant activity such as SOD, ROS, and RNS scavenging assays and in vivo experiments should be performed.Keywords: ABTS assay, antioxidant activity, Derris scandens, DPPH assays, total flavonoid content
Procedia PDF Downloads 2132472 Expand Rabies Post-Exposure Prophylaxis to Where It Is Needed the Most
Authors: Henry Wilde, Thiravat Hemachudha
Abstract:
Human rabies deaths are underreported worldwide at 55,000 annual cases; more than of dengue and Japanese encephalitis. Almost half are children. A recent study from the Philippines of nearly 2,000 rabies deaths revealed that none of had received incomplete or no post exposure prophylaxis. Coming from a canine rabies endemic country, this is not unique. There are two major barriers to reducing human rabies deaths: 1) the large number of unvaccinated dogs and 2) post-exposure prophylaxis (PEP) that is not available, incomplete, not affordable, or not within reach for bite victims travel means. Only the first barrier, inadequate vaccination of dogs, is now being seriously addressed. It is also often not done effectively or sustainably. Rabies PEP has evolved as a complex, prolonged process, usually delegated to centers in larger cities. It is virtually unavailable in villages or small communities where most dog bites occur, victims are poor and usually unable to travel a long distance multiple times to receive PEP. Reseacrh that led to better understanding of the pathophysiology of rabies and immune responses to potent vaccines and immunoglobulin have allowed shortening and making PEP more evidence based. This knowledge needs to be adopted and applied so that PEP can be rendered safely and affordably where needed the most: by village health care workers who have long performed more complex services after appropriate training. Recent research makes this an important and long neglected goal that is now within our means to implement.Keywords: rabies, post-exposure prophylaxis, availability, immunoglobulin
Procedia PDF Downloads 2642471 Twitter Sentiment Analysis during the Lockdown on New-Zealand
Authors: Smah Almotiri
Abstract:
One of the most common fields of natural language processing (NLP) is sentimental analysis. The inferred feeling in the text can be successfully mined for various events using sentiment analysis. Twitter is viewed as a reliable data point for sentimental analytics studies since people are using social media to receive and exchange different types of data on a broad scale during the COVID-19 epidemic. The processing of such data may aid in making critical decisions on how to keep the situation under control. The aim of this research is to look at how sentimental states differed in a single geographic region during the lockdown at two different times.1162 tweets were analyzed related to the COVID-19 pandemic lockdown using keywords hashtags (lockdown, COVID-19) for the first sample tweets were from March 23, 2020, until April 23, 2020, and the second sample for the following year was from March 1, 2020, until April 4, 2020. Natural language processing (NLP), which is a form of Artificial intelligence, was used for this research to calculate the sentiment value of all of the tweets by using AFINN Lexicon sentiment analysis method. The findings revealed that the sentimental condition in both different times during the region's lockdown was positive in the samples of this study, which are unique to the specific geographical area of New Zealand. This research suggests applying machine learning sentimental methods such as Crystal Feel and extending the size of the sample tweet by using multiple tweets over a longer period of time.Keywords: sentiment analysis, Twitter analysis, lockdown, Covid-19, AFINN, NodeJS
Procedia PDF Downloads 1902470 Leveraging Large Language Models to Build a Cutting-Edge French Word Sense Disambiguation Corpus
Authors: Mouheb Mehdoui, Amel Fraisse, Mounir Zrigui
Abstract:
With the increasing amount of data circulating over the Web, there is a growing need to develop and deploy tools aimed at unraveling semantic nuances within text or sentences. The challenges in extracting precise meanings arise from the complexity of natural language, while words usually have multiple interpretations depending on the context. The challenge of precisely interpreting words within a given context is what the task of Word Sense Disambiguation meets. It is a very old domain within the area of Natural Language Processing aimed at determining a word’s meaning that it is going to carry in a particular context, hence increasing the correctness of applications processing the language. Numerous linguistic resources are accessible online, including WordNet, thesauri, and dictionaries, enabling exploration of diverse contextual meanings. However, several limitations persist. These include the scarcity of resources for certain languages, a limited number of examples within corpora, and the challenge of accurately detecting the topic or context covered by text, which significantly impacts word sense disambiguation. This paper will discuss the different approaches to WSD and review corpora available for this task. We will contrast these approaches, highlighting the limitations, which will allow us to build a corpus in French, targeted for WSD.Keywords: semantic enrichment, disambiguation, context fusion, natural language processing, multilingual applications
Procedia PDF Downloads 72469 Value Chain Analysis of Melon “Egusi” (Citrullus lanatus Thunb. Mansf) among Rural Farm Enterprises in South East, Nigeria
Authors: Chigozirim Onwusiribe, Jude Mbanasor
Abstract:
Egusi Melon (Citrullus Lanatus Thunb. Mansf ) is a very important oil seed that serves a major ingredient in the diet of most of the households in Nigeria. Egusi Melon is very nutritious and very important in meeting the food security needs of Nigerians. Egusi Melon is cultivated in most farm enterprise in South East Nigeria but the profitability of its value chain needs to be investigated. This study analyzed the profitability of the Egusi Melon value chain. Specifically this study developed a value chain map for Egusi Melon, analysed the profitability of each stage of the Egusi Melon Value chain and analysed the determinants of the profitability of the Egusi Melon at each stage of the value chain. Multi stage sampling technique was used to select 125 farm enterprises with similar capacity and characteristics. Questionnaire and interview were used to elicit the required data while descriptive statistics, Food and Agriculture Organization Value Chain Analysis Tool, profitability ratios and multiple regression analysis were used for the data analysis. One of the findings showed that the stages of the Egusi Melon value chain are very profitable. Based on the findings, we recommend the provision of grants by government and donor agencies to the farm enterprises through their cooperative societies, this will provide the necessary funds for the local fabrication of value addition and processing equipment to suit their unique value addition needs not met by the imported equipment.Keywords: value, chain, melon, farm, enterprises
Procedia PDF Downloads 1342468 A Novel Small-Molecule Inhibitor of Influenza a Virus Acts by Suppressing PA Endonuclease Activity of the Viral Polymerase
Authors: Shuafeng Yuan, Bojian Zheng
Abstract:
The RNA-dependent RNA polymerase of influenza a virus comprises conserved and independently folded subdomains with defined functionalities. The N-terminal domain of the PA subunit (PAN) harbors the endonuclease function so that it can serve as a desired target for drug discovery. To identify a class of anti-influenza inhibitors that impedes PAN endonuclease activity, a screening approach that integrated the fluorescence resonance energy transfer based endonuclease inhibitor assay with the DNA gel-based endonuclease inhibitor assay was conducted, followed by the evaluation of antiviral efficacies and potential cytotoxicity of the primary hits in vitro and in vivo. A small-molecule compound ANA-0 was identified as a potent inhibitor against the replication of multiple subtypes of influenza A virus, including H1N1, H3N2, H5N1, H7N7, H7N9 and H9N2, in cell cultures. Combinational treatment of zanamivir and ANA-0 exerted synergistic anti-influenza effect in vitro. Intranasal administration of ANA-0 protected mice from lethal challenge and reduced lung viral loads in H1N1 virus infected BALB/c mice. Docking analyses predicted ANA-0 bound the endonuclease cavity of PAN by interacting with the metal-binding and catalytic residues. In summary, ANA-0 shows potential to be developed to novel anti-influenza agents.Keywords: anti-influenza, novel compound, inhibition of endonuclease, PA
Procedia PDF Downloads 245