Search results for: Saudi Electricity Company
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3264

Search results for: Saudi Electricity Company

894 Quantification of Polychlorinated Biphenyls (PCBs) in Soil Samples of Electrical Power Substations from Different Cities in Nigeria

Authors: Omasan Urhie Urhie, Adenipekun C. O, Eke W., Ogwu K., Erinle K. O

Abstract:

Polychlorinated Biphenyls (PCBs) are Persistent organic pollutants (POPs) that are very toxic; they possess ability to accumulate in soil and in human tissues hence resulting in health issues like birth defect, reproductive disorder and cancer. The air is polluted by PCBs through volatilization and dispersion; they also contaminate soil and sediments and are not easily degraded. Soil samples were collected from a depth of 0-15 cm from three substations (Warri, Ughelli and Ibadan) of Power Holding Company of Nigeria (PHCN) where old transformers were dumped in Nigeria. Extraction and cleanup of soil samples were conducted using Accelerated Solvent Extraction (ASE) with Pressurized Liquid extraction (PLE). The concentration of PCBs was determined using gsas chromatography/mass spectrometry (GC/MS). Mean total PCB concentrations in the soil samples increased in the order Ughelli ˂ Ibadan˂ Warri, 2.457757ppm Ughelli substation 4.198926ppm, for Ibadan substation and 14.05065ppm at Warri substation. In the Warri samples, PCB-167 was the most abundant at about 30% (4.28086ppm) followed by PCB-157 at about 20% (2.77871), of the total PCB concentrations (14.05065ppm). Of the total PCBs in the Ughelli and Ibadan samples, PCB-156 was the most abundant at about 44% and 40%, respectively. This study provides a baseline report on the presence of PCBs in the vicinity of abandoned electrical power facilities in different cities in Nigeria.

Keywords: polychlorintated biphenyls, persistent organic pollutants, soil, transformer

Procedia PDF Downloads 139
893 Bamboo: A Trendy and New Alternative to Wood

Authors: R. T. Aggangan, R. J. Cabangon

Abstract:

Bamboo is getting worldwide attention over the last 20 to 30 years due to numerous uses and it is regarded as the closest material that can be used as substitute to wood. In the domestic market, high quality bamboo products are sold in high-end markets while lower quality products are generally sold to medium and low income consumers. The global market in 2006 stands at about 7 billion US dollars and was projected to increase to US$ 17 B from 2015 to 2020. The Philippines had been actively producing and processing bamboo products for the furniture, handicrafts and construction industry. It was however in 2010 that the Philippine bamboo industry was formalized by virtue of Executive Order 879 that stated that the Philippine bamboo industry development is made a priority program of the government and created the Philippine Bamboo Industry Development Council (PBIDC) to provide the overall policy and program directions of the program for all stakeholders. At present, the most extensive use of bamboo is for the manufacture of engineered bamboo for school desks for all public schools as mandated by EO 879. Also, engineered bamboo products are used for high-end construction and furniture as well as for handicrafts. Development of cheap adhesives, preservatives, and finishing chemicals from local species of plants, development of economical methods of drying and preservation, product development and processing of lesser-used species of bamboo, development of processing tools, equipment and machineries are the strategies that will be employed to reduce the price and mainstream engineered bamboo products in the local and foreign market. In addition, processing wastes from bamboo can be recycled into fuel products such as charcoal are already in use. The more exciting possibility, however, is the production of bamboo pellets that can be used as a substitute for wood pellets for heating, cooking and generating electricity.

Keywords: bamboo charcoal and light distillates, engineered bamboo, furniture and handicraft industries, housing and construction, pellets

Procedia PDF Downloads 248
892 Numerical Investigation of the Needle Opening Process in a High Pressure Gas Injector

Authors: Matthias Banholzer, Hagen Müller, Michael Pfitzner

Abstract:

Gas internal combustion engines are widely used as propulsion systems or in power plants to generate heat and electricity. While there are different types of injection methods including the manifold port fuel injection and the direct injection, the latter has more potential to increase the specific power by avoiding air displacement in the intake and to reduce combustion anomalies such as backfire or pre-ignition. During the opening process of the injector, multiple flow regimes occur: subsonic, transonic and supersonic. To cover the wide range of Mach numbers a compressible pressure-based solver is used. While the standard Pressure Implicit with Splitting of Operators (PISO) method is used for the coupling between velocity and pressure, a high-resolution non-oscillatory central scheme established by Kurganov and Tadmor calculates the convective fluxes. A blending function based on the local Mach- and CFL-number switches between the compressible and incompressible regimes of the developed model. As the considered operating points are well above the critical state of the used fluids, the ideal gas assumption is not valid anymore. For the real gas thermodynamics, the models based on the Soave-Redlich-Kwong equation of state were implemented. The caloric properties are corrected using a departure formalism, for the viscosity and the thermal conductivity the empirical correlation of Chung is used. For the injector geometry, the dimensions of a diesel injector were adapted. Simulations were performed using different nozzle and needle geometries and opening curves. It can be clearly seen that there is a significant influence of all three parameters.

Keywords: high pressure gas injection, hybrid solver, hydrogen injection, needle opening process, real-gas thermodynamics

Procedia PDF Downloads 461
891 Ultrastructural Changes Occur in Mice Lungs After Cessation to Exposure of Incense Smoke

Authors: Samar Rabah

Abstract:

Background: Incense woods are special kind of trees called Agarwood, which characterized by good smelling odors and many medical benefits. Incense smoke is heavily used in Saudi Arabia although comprehensive studies of its effects on health are limited. The present study demonstrated lung ultrastructure changes of mice after exposure and cessation to Incense smoke. Eighty mice are divided equally into four groups, three groups are exposed to different concentrations of Incense smoke (2, 4 and 6 gm) for three months, while the fourth group is control one. At the end of each month, lungs of five animals from each group are gathered, while the last five animals from each group are kept for another 60 days without exposure to the Incense smoke to allow for recovery. Results: Transmission electron microscope investigations of all exposed groups showed hypertrophy and hyperplasia in Clara Cells and some an enlargement of the macrophage to the point that it fills a large part of the alveolar lumen. Scanning electron microscope marks presence of mucus materials attached to the epithelial bronchioles. After prevention of exposure to the Incense smoke for 60 days, necrosis and degeneration in some cells of epithelial bronchioles, fibrosis of peribronchial, thickening in alveolar walls and aggregation of lymphoid cells were demonstrated. Conclusion: Based on the above findings and other related studies (not published), we conclude that exposure to Incense smoke causes harmful effects due to sever changes in pulmonary ultrastructure, such effects do not disappear even when Incense smoke inhalation was stopped. Therefore, we recommend that Incense smoke should use only in open places to reduce its harms.

Keywords: Incense smoke, lungs, ultrastructure of lungs, Agarwood

Procedia PDF Downloads 413
890 Eliminating Arm, Neck and Leg Fatigue of United Asia International Plastics Corporation Workers through Rapid Entire Body Assessment

Authors: John Cheferson R. De Belen, John Paul G. Elizares, Ronald John G. Raz, Janina Elyse A. Reyes, Charie G. Salengua, Aristotle L. Soriano

Abstract:

Plastic is a type of synthetic or man-made polymer that can readily be molded into a variety of products. Its usage over the past century has enabled society to make huge technological advances. The workers of United Asia International Plastics Corporation (UAIPC), a plastic manufacturing company performs manual packaging which causes fatigue and stress on their arm, neck, and legs due to extended periods of standing and repetitive motions. With the use of the Fishbone Diagram, Five-Why Analysis, Rapid Entire Body Assessment (REBA), and Anthropometry, the stressful tasks and activities were identified and analyzed. Given the anthropometric measurements obtained from the workers, improved dimensions for the tables and chairs should be used and provide a new packaging machine. The validation of this proposal shall follow after its implementation. By eliminating fatigue during working hours in the production, the workers will be at ease at performing their work properly; productivity will increase that will lead to more profit. Further areas for study include measurement and comparison of the worker’s anthropometric measurement with the industry standard.

Keywords: anthropometry, fishbone diagram, five-why analysis, rapid entire body assessment

Procedia PDF Downloads 264
889 Investigating the Effects of Managerial Competencies on Organizational Performance through the Mediating Role of Entrepreneurship and Social Capital

Authors: Nader Chavoshi Boroujeni, Naser Chavoshi Boroujeni

Abstract:

Considering the importance of managerial competencies on organizational performance as well as the role of social capital and entrepreneurship as mediator parameters affecting organizational performance, this study attempts to examine the impact carefully. In this regard, Isfahan Science and Technology Town (ISTT) as an effective and knowledge generator company that has a great effect on improving organizational performances of many other companies such as Knowledge-Based Companies (KBCs) activing in the ISTT's site was selected as statistical population. According to coordination with the Department of Development and Technology of ISTT, all employees of ISTT and active KBCs were selected as sample. Then, to analyze the variables a standard and self-made questionnaire containing 98 questions was designed and distributed. Of the 350 questionnaires distributed, 319 questionnaires were collected that 313 cases were confirmed and analyzed. To confirm the reliability of questionnaire, the Leader professor and two other professors approved it. Cronbach's alpha coefficient was used to validate the questionnaire that all coefficient was between 0/7 and 0/95. So, the validity was confirmed. After descriptive study population, the normality of distribution was investigated with Kolmogorov-Smirnov test. Finally, the results obtained from the questionnaires were analyzed by Amos software that all hypotheses were confirmed.

Keywords: managerial competencies, personnel organizational performance, entrepreneurship, social capital

Procedia PDF Downloads 269
888 Predicting Root Cause of a Fire Incident through Transient Simulation

Authors: Mira Ezora Zainal Abidin, Siti Fauzuna Othman, Zalina Harun, M. Hafiz M. Pikri

Abstract:

In a fire incident involving a Nitrogen storage tank that over-pressured and exploded, resulting in a fire in one of the units in a refinery, lack of data and evidence hampered the investigation to determine the root cause. Instrumentation and fittings were destroyed in the fire. To make it worst, this incident occurred during the COVID-19 pandemic, making collecting and testing evidence delayed. In addition to that, the storage tank belonged to a third-party company which requires legal agreement prior to the refinery getting approval to test the remains. Despite all that, the investigation had to be carried out with stakeholders demanding answers. The investigation team had to devise alternative means to support whatever little evidence came out as the most probable root cause. International standards, practices, and previous incidents on similar tanks were referred. To narrow down to just one root cause from 8 possible causes, transient simulations were conducted to simulate the overpressure scenarios to prove and eliminate the other causes, leaving one root cause. This paper shares the methodology used and details how transient simulations were applied to help solve this. The experience and lessons learned gained from the event investigation and from numerous case studies via transient analysis in finding the root cause of the accident leads to the formulation of future mitigations and design modifications aiming at preventing such incidents or at least minimize the consequences from the fire incident.

Keywords: fire, transient, simulation, relief

Procedia PDF Downloads 95
887 Supervisory Controller with Three-State Energy Saving Mode for Induction Motor in Fluid Transportation

Authors: O. S. Ebrahim, K. O. Shawky, M. O. S. Ebrahim, P. K. Jain

Abstract:

Induction Motor (IM) driving pump is the main consumer of electricity in a typical fluid transportation system (FTS). It was illustrated that changing the connection of the stator windings from delta to star at no load could achieve noticeable active and reactive energy savings. This paper proposes a supervisory hysteresis liquid-level control with three-state energy saving mode (ESM) for IM in FTS including storage tank. The IM pump drive comprises modified star/delta switch and hydromantic coupler. Three-state ESM is defined, along with the normal running, and named analog to computer ESMs as follows: Sleeping mode in which the motor runs at no load with delta stator connection, hibernate mode in which the motor runs at no load with a star connection, and motor shutdown is the third energy saver mode. A logic flow-chart is synthesized to select the motor state at no-load for best energetic cost reduction, considering the motor thermal capacity used. An artificial neural network (ANN) state estimator, based on the recurrent architecture, is constructed and learned in order to provide fault-tolerant capability for the supervisory controller. Sequential test of Wald is used for sensor fault detection. Theoretical analysis, preliminary experimental testing and, computer simulations are performed to show the effectiveness of the proposed control in terms of reliability, power quality and energy/coenergy cost reduction with the suggestion of power factor correction.

Keywords: ANN, ESM, IM, star/delta switch, supervisory control, FT, reliability, power quality

Procedia PDF Downloads 193
886 The Effectiveness of Using Functional Rehabilitation with Children of Cerebral Palsy

Authors: Bara Yousef

Abstract:

The development of independency and functional participation is an important therapeutic goal for many children with cerebral palsy,They was many therapeutic approach have been used for treatment those children like neurodevelopment treatment, balance training strengthening and stretching exercise. More recently, therapy for children with cerebral palsy has focused on achieving functional goals using task-oriented interventions and summer camping model, which focus on activities that relevant and meaningful to the child, to learn more efficient and effective motor skills. We explore the effectiveness of using functional rehabilitation comparing with regular rehabilitation among 40 Saudi children with cerebral palsy in pediatric unit at Sultan Bin Abdul Aziz Humanitarian City-Ksa ,where 20 children randomly assign in control group who received rehabilitation based on regular therapy approach and other 20 children assign on experiment group who received rehabilitation based on functional therapy approach with an average of 45min OT treatment and 45 min PT treatment- daily within a period of 6 week. Our finding reported that children in experiment group has improved in gross motor function with an average from 49.4 to 57.6 based on GMFM 66 as primary outcome measure and improved in WeeFIM with an average from 52 to 62 while children in control group has improved with an average from 48.4 to 53.7 in GMFM and from 53 to and 58 in WeeFIM. Consequently, there has been growing interest in determining the effects of functional training programs as promising approach for these children.

Keywords: Cerebral Palsy (CP), gross motor function measure (GMFM66), pediatric Functional Independent Measure (WeeFIM), rehabilitation, disability

Procedia PDF Downloads 381
885 Evaluation of Short-Term Load Forecasting Techniques Applied for Smart Micro-Grids

Authors: Xiaolei Hu, Enrico Ferrera, Riccardo Tomasi, Claudio Pastrone

Abstract:

Load Forecasting plays a key role in making today's and future's Smart Energy Grids sustainable and reliable. Accurate power consumption prediction allows utilities to organize in advance their resources or to execute Demand Response strategies more effectively, which enables several features such as higher sustainability, better quality of service, and affordable electricity tariffs. It is easy yet effective to apply Load Forecasting at larger geographic scale, i.e. Smart Micro Grids, wherein the lower available grid flexibility makes accurate prediction more critical in Demand Response applications. This paper analyses the application of short-term load forecasting in a concrete scenario, proposed within the EU-funded GreenCom project, which collect load data from single loads and households belonging to a Smart Micro Grid. Three short-term load forecasting techniques, i.e. linear regression, artificial neural networks, and radial basis function network, are considered, compared, and evaluated through absolute forecast errors and training time. The influence of weather conditions in Load Forecasting is also evaluated. A new definition of Gain is introduced in this paper, which innovatively serves as an indicator of short-term prediction capabilities of time spam consistency. Two models, 24- and 1-hour-ahead forecasting, are built to comprehensively compare these three techniques.

Keywords: short-term load forecasting, smart micro grid, linear regression, artificial neural networks, radial basis function network, gain

Procedia PDF Downloads 468
884 Instructional Immediacy Practices in Asynchronous Learning Environment: Tutors' Perspectives

Authors: Samar Alharbi, Yota Dimitriadi

Abstract:

With the exponential growth of information and communication technologies in higher education, new online teaching strategies have become increasingly important for student engagement and learning. In particular, some institutions depend solely on asynchronous e-learning to provide courses for their students. The major challenge facing these institutions is how to improve the quality of teaching and learning in their asynchronous tools. One of the most important methods that can help e-learner to enhance their social learning and social presence in asynchronous learning setting is immediacy. This study explores tutors perceptions of their instructional immediacy practices as part of their communication actions in online learning environments. It was used a mixed-methods design under the umbrella of pragmatic philosophical assumption. The participants included tutors at an educational institution in a Saudi university. The participants were selected with a purposive sampling approach and chose an institution that offered fully online courses to students. The findings of the quantitative data show the importance of teachers’ immediacy practices in an online text-based learning environment. The qualitative data contained three main themes: the tutors’ encouragement of student interaction; their promotion of class participation; and their addressing of the needs of the students. The findings from these mixed methods can provide teachers with insights into instructional designs and strategies that they can adopt in order to use e-immediacy in effective ways, thus improving their students’ online learning experiences.

Keywords: asynchronous e-learning, higher education, immediacy, tutor

Procedia PDF Downloads 200
883 Performance Enhancement of Autopart Manufacturing Industry Using Lean Manufacturing Strategies: A Case Study

Authors: Raman Kumar, Jasgurpreet Singh Chohan, Chander Shekhar Verma

Abstract:

Today, the manufacturing industries respond rapidly to new demands and compete in this continuously changing environment, thus seeking out new methods allowing them to remain competitive and flexible simultaneously. The aim of the manufacturing organizations is to reduce manufacturing costs and wastes through system simplification, organizational potential, and proper infrastructural planning by using modern techniques like lean manufacturing. In India, large number of medium and large scale manufacturing industries has successfully implemented lean manufacturing techniques. Keeping in view the above-mentioned facts, different tools will be involved in the successful implementation of the lean approach. The present work is focused on the auto part manufacturing industry to improve the performance of the recliner assembly line. There is a number of lean manufacturing tools available, but the experience and complete knowledge of manufacturing processes are required to select an appropriate tool for a specific process. Fishbone diagrams (scrap, inventory, and waiting) have been drawn to identify the root cause of different. Effect of cycle time reduction on scrap and inventory is analyzed thoroughly in the case company. Results have shown that there is a decrease in inventory cost by 7 percent after the successful implementation of the lean tool.

Keywords: lean tool, fish-bone diagram, cycle time reduction, case study

Procedia PDF Downloads 127
882 Estimation of Energy Losses of Photovoltaic Systems in France Using Real Monitoring Data

Authors: Mohamed Amhal, Jose Sayritupac

Abstract:

Photovoltaic (PV) systems have risen as one of the modern renewable energy sources that are used in wide ranges to produce electricity and deliver it to the electrical grid. In parallel, monitoring systems have been deployed as a key element to track the energy production and to forecast the total production for the next days. The reliability of the PV energy production has become a crucial point in the analysis of PV systems. A deeper understanding of each phenomenon that causes a gain or a loss of energy is needed to better design, operate and maintain the PV systems. This work analyzes the current losses distribution in PV systems starting from the available solar energy, going through the DC side and AC side, to the delivery point. Most of the phenomena linked to energy losses and gains are considered and modeled, based on real time monitoring data and datasheets of the PV system components. An analysis of the order of magnitude of each loss is compared to the current literature and commercial software. To date, the analysis of PV systems performance based on a breakdown structure of energy losses and gains is not covered enough in the literature, except in some software where the concept is very common. The cutting-edge of the current analysis is the implementation of software tools for energy losses estimation in PV systems based on several energy losses definitions and estimation technics. The developed tools have been validated and tested on some PV plants in France, which are operating for years. Among the major findings of the current study: First, PV plants in France show very low rates of soiling and aging. Second, the distribution of other losses is comparable to the literature. Third, all losses reported are correlated to operational and environmental conditions. For future work, an extended analysis on further PV plants in France and abroad will be performed.

Keywords: energy gains, energy losses, losses distribution, monitoring, photovoltaic, photovoltaic systems

Procedia PDF Downloads 176
881 Application of Innovative Implementations in the SME Sector

Authors: Mateusz Janas

Abstract:

Innovative implementations in the micro, small, and medium-sized enterprises (MSME) sector are among the essential activities considering the current market realities, technological advancements, and digitization trends. MSMEs play a crucial role and significantly influence the economic conditions of countries, as their competitiveness directly impacts the global economy. Business development and investment in innovation and technology are integral parts of every modern enterprise's strategy, seeking to maintain and achieve a desired competitive position. The instability of the socio-economic environment, along with contemporary changes in artificial intelligence implementation and digitization, requires businesses to adopt increasingly newer solutions and actions. Enterprises must strive to survive in the global market and build competitive positions, especially in uncertain conditions. Being aware of the significance of innovative actions is crucial for MSMEs as it enables them to enhance their operations and expand their scope. It is essential for managers and executives of MSMEs to be focused on development and innovation, as their approach will also impact their employees, emphasizing results and maximizing the company's value. Managers of MSMEs must be aware of various threats, costs, opportunities, and gains that can arise from implementing new technical and organizational solutions. Businesses must view development as an integral part of their strategy and continuously strive for improvement.

Keywords: innovation, SME, develop, management

Procedia PDF Downloads 68
880 The Relationship between HR Disclosure and Employee’s Turnover: Study on the Telecommunication Sector in Jordan

Authors: Dina Ahmed Alkhodary

Abstract:

Human Resources are the individual skills, knowledge, attitude, capabilities and experience collected to produce wealth to the company. Human Resource disclosure is the process of involving, reporting, and sharing the Investments made in the Human Resources of an Organization that such as organizations short goals and objectives, employees creation value, training and development plan are presently not accounted for in the conventional accounting practices which is importance nowadays to reduce the employee`s turnover. For the purpose of the study 3 telecommunications companies in Jordan have been selected. Telecommunication industry has been chosen for this study since it is a successful sector in Jordan and Human resource disclosure practices were adopted in all the selected companies and companies was aware to the HR practices. The objective of the study is to find out the HR disclosures practices of the telecommunication Companies in Jordan and to find the relationship between the HR Disclosures practices and employees’ turnover which has been measured by leaver proficiencies, remaining member proficiencies and the new comers proficiencies. The researcher has used the questioner to collect data for the research purpose. Results reveal that There are human resource disclosure practices in telecommunication companies in Jordan but in some areas only and has found There that there is a significant relationship between the human resource disclosure practices of the telecommunication companies in Jordan and Employees turnover. It is important to the companies to disclose more information and it’s important to the researchers to study the HR disclosure in the other industries in Jordan to increase the awareness about it.

Keywords: HR, disclosure, employee, turnover

Procedia PDF Downloads 313
879 Efficiency of Investments, Financed from EU Funds in Small and Medium Enterprises in Poland

Authors: Jolanta Brodowska-Szewczuk

Abstract:

The article includes the results and conclusions from empirical researches that had been done. The research focuses on the impact of investments made in small and medium-sized enterprises financed from EU funds on the competitiveness of these companies. The researches includes financial results in sales revenue and net income, expenses, and many other new products/services on offer, higher quality products and services, more modern methods of production, innovation in management processes, increase in the number of customers, increase in market share, increase in profitability of production and provision of services. The main conclusions are that, companies with direct investments under this measure shall apply the modern methods of production. The consequence of this is to increase the quality of our products and services. Furthermore, both small and medium-sized enterprises have introduced new products and services. Investments were carried out, thus enabling better work organization in enterprises. Entrepreneurs would guarantee higher quality of service, which would result in better relationships with their customers, what is more, noting the rise in number of clients. More than half of the companies indicated that the investments contributed to the increase in market share. Same thing as for market reach and brand recognition of particular company. An interesting finding is that, investments in small enterprises were more effective than medium-sized enterprises.

Keywords: competitiveness, efficiency, EU funds, small and medium-sized enterprises

Procedia PDF Downloads 384
878 Numerical Investigation of the Integration of a Micro-Combustor with a Free Piston Stirling Engine in an Energy Recovery System

Authors: Ayodeji Sowale, Athanasios Kolios, Beatriz Fidalgo, Tosin Somorin, Aikaterini Anastasopoulou, Alison Parker, Leon Williams, Ewan McAdam, Sean Tyrrel

Abstract:

Recently, energy recovery systems are thriving and raising attention in the power generation sector, due to the request for cleaner forms of energy that are friendly and safe for the environment. This has created an avenue for cogeneration, where Combined Heat and Power (CHP) technologies have been recognised for their feasibility, and use in homes and small-scale businesses. The efficiency of combustors and the advantages of the free piston Stirling engines over other conventional engines in terms of output power and efficiency, have been observed and considered. This study presents the numerical analysis of a micro-combustor with a free piston Stirling engine in an integrated model of a Nano Membrane Toilet (NMT) unit. The NMT unit will use the micro-combustor to produce waste heat of high energy content from the combustion of human waste and the heat generated will power the free piston Stirling engine which will be connected to a linear alternator for electricity production. The thermodynamic influence of the combustor on the free piston Stirling engine was observed, based on the heat transfer from the flue gas to working gas of the free piston Stirling engine. The results showed that with an input of 25 MJ/kg of faecal matter, and flue gas temperature of 773 K from the micro-combustor, the free piston Stirling engine generates a daily output power of 428 W, at thermal efficiency of 10.7% with engine speed of 1800 rpm. An experimental investigation into the integration of the micro-combustor and free piston Stirling engine with the NMT unit is currently underway.

Keywords: free piston stirling engine, micro-combustor, nano membrane toilet, thermodynamics

Procedia PDF Downloads 259
877 Algorithmic Approach to Management of Complications of Permanent Facial Filler: A Saudi Experience

Authors: Luay Alsalmi

Abstract:

Background: Facial filler is the most common type of cosmetic surgery next to botox. Permanent filler is preferred nowadays due to the low cost brought about by non-recurring injection appointments. However, such fillers pose a higher risk for complications, with even greater adverse effects when the procedure is done using unknown dermal filler injections. AIM: This study aimed to establish an algorithm to categorize and manage patients that receive permanent fillers. Materials and Methods: Twelve participants were presented to the service through emergency or as outpatient from November 2015 to May 2021. Demographics such as age, sex, date of injection, time of onset, and types of complications were collected. After examination, all cases were managed based on an algorithm established. FACE-Q was used to measure overall satisfaction and psychological well-being. Results: The algorithm to diagnose and manage these patients effectively with a high satisfaction rate was established in this study. All participants were non-smoker females with no known medical comorbidities. The algorithm presented determined the treatment plan when faced with complications. Results revealed high appearance-related psychosocial distress was observed prior to surgery, while it significantly dropped after surgery. FACE-Q was able to establish evidence of satisfactory ratings among patients prior to and after surgery. Conclusion: This treatment algorithm can guide the surgeon in formulating a suitable plan with fewer complications and a high satisfaction rate.

Keywords: facial filler, FACE-Q, psycho-social stress, botox, treatment algorithm

Procedia PDF Downloads 84
876 Comparison of Entropy Coefficient and Internal Resistance of Two (Used and Fresh) Cylindrical Commercial Lithium-Ion Battery (NCR18650) with Different Capacities

Authors: Sara Kamalisiahroudi, Zhang Jianbo, Bin Wu, Jun Huang, Laisuo Su

Abstract:

The temperature rising within a battery cell depends on the level of heat generation, the thermal properties and the heat transfer around the cell. The rising of temperature is a serious problem of Lithium-Ion batteries and the internal resistance of battery is the main reason for this heating up, so the heat generation rate of the batteries is an important investigating factor in battery pack design. The delivered power of a battery is directly related to its capacity, decreases in the battery capacity means the growth of the Solid Electrolyte Interface (SEI) layer which is because of the deposits of lithium from the electrolyte to form SEI layer that increases the internal resistance of the battery. In this study two identical cylindrical Lithium-Ion (NCR18650)batteries from the same company with noticeable different in capacity (a fresh and a used battery) were compared for more focusing on their heat generation parameters (entropy coefficient and internal resistance) according to Brandi model, by utilizing potentiometric method for entropy coefficient and EIS method for internal resistance measurement. The results clarify the effect of capacity difference on cell electrical (R) and thermal (dU/dT) parameters. It can be very noticeable in battery pack design for its Safety.

Keywords: heat generation, Solid Electrolyte Interface (SEI), potentiometric method, entropy coefficient

Procedia PDF Downloads 473
875 The Effect of Photovoltaic Integrated Shading Devices on the Energy Performance of Apartment Buildings in a Mediterranean Climate

Authors: Jenan Abu Qadourah

Abstract:

With the depletion of traditional fossil resources and the growing human population, it is now more important than ever to reduce our energy usage and harmful emissions. In the Mediterranean region, the intense solar radiation contributes to summertime overheating, which raises energy costs and building carbon footprints, alternatively making it suitable for the installation of solar energy systems. In urban settings, where multi-story structures predominate and roof space is limited, photovoltaic integrated shading devices (PVSD) are a clean solution for building designers. However, incorporating photovoltaic (PV) systems into a building's envelope is a complex procedure that, if not executed correctly, might result in the PV system failing. As a result, potential PVSD design solutions must be assessed based on their overall energy performance from the project's early design stage. Therefore, this paper aims to investigate and compare the possible impact of various PVSDs on the energy performance of new apartments in the Mediterranean region, with a focus on Amman, Jordan. To achieve the research aim, computer simulations were performed to assess and compare the energy performance of different PVSD configurations. Furthermore, an energy index was developed by taking into account all energy aspects, including the building's primary energy demand and the PVSD systems' net energy production. According to the findings, the PVSD system can meet 12% to 43% of the apartment building's electricity needs. By highlighting the potential interest in PVSD systems, this study aids the building designer in producing more energy-efficient buildings and encourages building owners to install PV systems on the façade of their buildings.

Keywords: photovoltaic integrated shading device, solar energy, architecture, energy performance, simulation, overall energy index, Jordan

Procedia PDF Downloads 84
874 Design and Evaluation of Production Performance Dashboard for Achieving Oil and Gas Production Target

Authors: Ivan Ramos Sampe Immanuel, Linung Kresno Adikusumo, Liston Sitanggang

Abstract:

Achieving the production targets of oil and gas in an upstream oil and gas company represents a complex undertaking necessitating collaborative engagement from a multidisciplinary team. In addition to conducting exploration activities and executing well intervention programs, an upstream oil and gas enterprise must assess the feasibility of attaining predetermined production goals. The monitoring of production performance serves as a critical activity to ensure organizational progress towards the established oil and gas performance targets. Subsequently, decisions within the upstream oil and gas management team are informed by the received information pertaining to the respective production performance. To augment the decision-making process, the implementation of a production performance dashboard emerges as a viable solution, providing an integrated and centralized tool. The deployment of a production performance dashboard manifests as an instrumental mechanism fostering a user-friendly interface for monitoring production performance, while concurrently preserving the intrinsic characteristics of granular data. The integration of diverse data sources into a unified production performance dashboard establishes a singular veritable source, thereby enhancing the organization's capacity to uphold a consolidated and authoritative foundation for its business requisites. Additionally, the heightened accessibility of the production performance dashboard to business users constitutes a compelling substantiation of its consequential impact on facilitating the monitoring of organizational targets.

Keywords: production, performance, dashboard, data analytics

Procedia PDF Downloads 70
873 A Descriptive Study on Micro Living and Its Importance over Large Houses by Understanding Various Scenarios and Case Studies

Authors: Belal Neazi

Abstract:

'Larger Houses Consume More Resources’ – both in construction and during operation. The most important aspect of smaller homes is that it uses less electricity and fuel for construction and maintenance. Here, an urban interpretation of the contemporary minimal existence movement is explained. In an attempt to restrict urban decay and to encourage inner-city renewal, the Tiny House principles are interpreted as alternative ways of dwelling in urban neighbourhoods. These tiny houses are usually pretty different from each other in interior planning, but almost similar in size. The disadvantage of large homes came up when people were asked to vacate as they were not able to pay the massive amount of mortgages. This made them reconsider their housing situation and discover the ideas of minimalism and the general rising inclination in environmental awareness that serve as the basis for the tiny house movement. One of the largest benefits of inhabiting a tiny house is the decrease in carbon footprint. Also, to increase social behaviour and freedom. It’s better for the environmental concern, financial concerns, and desire for more time and freedom. Examples of the tiny house village which are sustaining homeless population and the use of different reclaimed materials for the construction of these tiny houses are explained in the paper. It is proposed in the paper, that these houses will reflect the diversity while proposing an alternative model for the rehabilitation of decaying row-homes and the renewal of fading communities. The core objective is to design small or micro spaces for the economically backward people of the place and increase their social behaviour and freedom. Also, it’s better for the environmental concern, financial concerns, and desire for more time and freedom.

Keywords: city renewal, environmental concern, micro-living, tiny house

Procedia PDF Downloads 182
872 Optimizing Design Works in Construction Consultant Company: A Knowledge-Based Application

Authors: Phan Nghiem Vu, Le Tuan Vu, Ta Quang Tai

Abstract:

The optimal construction design used during the execution of a construction project is a key factor in determining high productivity and customer satisfaction, however, this management process sometimes is carried out without care and the systematic method that it deserves, bringing negative consequences. This study proposes a knowledge management (KM) approach that will enable the intelligent use of experienced and acknowledged engineers to improve the management of construction design works for a project. Then a knowledge-based application to support this decision-making process is proposed and described. To define and design the system for the application, semi-structured interviews were conducted within five construction consulting organizations with the purpose of studying the way that the method’ optimizing process is implemented in practice and the knowledge supported with it. A system of an optimizing construction design works (OCDW) based on knowledge was developed then validated with construction experts. The OCDW was liked as a valuable tool for construction design works’ optimization, by supporting organizations to generate a corporate memory on this issue, reducing the reliance on individual knowledge and also the subjectivity of the decision-making process. The benefits are described as provided by the performance support system, reducing costs and time, improving product design quality, satisfying customer requirements, expanding the brand organization.

Keywords: optimizing construction design work, construction consultant organization, knowledge management, knowledge-based application

Procedia PDF Downloads 129
871 Simulation of a Sustainable Irrigation System Development: The Case of Sitio Kantaling Village Farm Lands, Danao City, Cebu, Philippines

Authors: Amando A. Radomes Jr., LLoyd Jun Benjamin T. Embernatre, Cherssy Kaye F. Eviota, Krizia Allyn L. Nunez, Jose Thaddeus B. Roble III

Abstract:

Sitio Kantaling is one of the 34 villages in Danao City, Cebu, in the central Philippines. As of 2015, the eight households in the mountainous village extending over 40 hectares of land area, including 12 hectares of arable land, are the source of over a fifth of the agricultural products that go into the city. Over the years, however, the local government had been concerned with the decline in agricultural productivity because increasing number of residents are migrating into the urban areas of the region to look for better employment opportunities. One of the major reasons for the agricultural productivity decline is underdeveloped irrigation infrastructure. The local government had partnered with the University of San Carlos to conduct research on developing an irrigation system that could sustainably meet both agricultural and household consumption needs. From a macro-perspective, a dynamic simulation model was developed to understand the long-term behavior of the status quo and proposed the system. Data on population, water supply and demand, household income, and urban migration were incorporated in the 20-year horizon model. The study also developed a smart irrigation system design. Instead of using electricity to pump water, a network of aqueducts with three main nodes had been designed and strategically located to take advantage of gravity to transport water from a spring. Simulation results showed that implementing a sustainable irrigation system would be able to significantly contribute to the socio-economic progress of the local community.

Keywords: agriculture, aqueduct, simulation, sustainable irrigation system

Procedia PDF Downloads 172
870 The Relationship between Corporate Governance and Intellectual Capital Disclosure: Malaysian Evidence

Authors: Rabiaal Adawiyah Shazali, Corina Joseph

Abstract:

The disclosure of Intellectual Capital (IC) information is getting more vital in today’s era of a knowledge-based economy. Companies are advised by accounting bodies to enhance IC disclosure which complements the conventional financial disclosures. There are no accounting standards for Intellectual Capital Disclosure (ICD), therefore the disclosure is entirely voluntary. Hence, this study aims to investigate the extent of ICD and to examine the relationship between corporate governance and ICD in Malaysia. This study employed content analysis of 100 annual reports by the top 100 public listed companies in Malaysia during 2012. The uniqueness of this study lies on its underpinning theory used where it applies the institutional isomorphism theory to support the effect of the attributes of corporate governance towards ICD. In order to achieve the stated objective, multiple regression analysis were employed to conduct this study. From the descriptive statistics, it was concluded that public listed companies in Malaysia have increased their awareness towards the importance of ICD. Furthermore, results from the multiple regression analysis confirmed that corporate governance affects the company’s ICD where the frequency of audit committee meetings and the board size has positively influenced the level of ICD in companies. Findings from this study would provide an incentive for companies in Malaysia to enhance the disclosure of IC. In addition, this study would assist Bursa Malaysia and other regulatory bodies to come up with a proper guideline for the disclosure of IC.

Keywords: annual report, content analysis, corporate governance, intellectual capital disclosure

Procedia PDF Downloads 215
869 Morphological and Elements Constituent Effects of Allelopathic Activity

Authors: Areej Ali Baeshen

Abstract:

Allelopathy is a complex phenomenon that depends on the concentration of allelochemicals. It has both inhibitory and stimulatory effects, which may be decided by concentration of allelochemicals present in extraction. In the present study, the allelopathic effects of Eruca sativa, Mentha peperina, and Coriandrum sativum water extract prepared by grinding fresh leaves of the medicinal plants in distilled water and three concentrations were taken from the crude extracts (100%, 50% and 25% in addition to 0% as control), and were tested for their effects on seed germination and some growth parameters of Zea mays. The experiment was conducted in sterilized Petri dishes under the natural laboratory conditions at temperature of 25°C, with a 24 h, 48 h, 72 h, 96 h and 120 h time interval for seed germination and 24 h, 48 h and 72 h for radicle length. The effects of different concentrations of aqueous extract were compared to distilled water (control, 0%). In maize, germination percentage was suppressed when plants was treated with 100% extracts, however, 50% and 25% of M. peprina increased germination percentage by 4 times more than the control. Moreover, 50% and 25% extracts of M. peperina and 50% of C. sativum increased maize radicle and plumule length by 3 to 4 times that of the control. Results of plumule fresh and dry weights revealed that concentrations of water extracts of 100% and 50% M. peperina, E. sativa 100% and E. sativa 50% reported almost similar plumule fresh weight as in control plants. The most interesting finding is the reduction in harmful salts and TDS which could be a good factor in saline soils of Saudi Arabia.

Keywords: Zea mays, Eruca sativa, Mentha peperina, Coriandrum sativum, medicinal plants, allelochemicals, aqueous extract

Procedia PDF Downloads 297
868 Supplier Carbon Footprint Methodology Development for Automotive Original Equipment Manufacturers

Authors: Nur A. Özdemir, Sude Erkin, Hatice K. Güney, Cemre S. Atılgan, Enes Huylu, Hüseyin Y. Altıntaş, Aysemin Top, Özak Durmuş

Abstract:

Carbon emissions produced during a product’s life cycle, from extraction of raw materials up to waste disposal and market consumption activities are the major contributors to global warming. In the light of the science-based targets (SBT) leading the way to a zero-carbon economy for sustainable growth of the companies, carbon footprint reporting of the purchased goods has become critical for identifying hotspots and best practices for emission reduction opportunities. In line with Ford Otosan's corporate sustainability strategy, research was conducted to evaluate the carbon footprint of purchased products in accordance with Scope 3 of the Greenhouse Gas Protocol (GHG). The purpose of this paper is to develop a systematic and transparent methodology to calculate carbon footprint of the products produced by automotive OEMs (Original Equipment Manufacturers) within the context of automobile supply chain management. To begin with, primary material data were collected through IMDS (International Material Database System) corresponds to company’s three distinct types of vehicles including Light Commercial Vehicle (Courier), Medium Commercial Vehicle (Transit and Transit Custom), Heavy Commercial Vehicle (F-MAX). Obtained material data was classified as metals, plastics, liquids, electronics, and others to get insights about the overall material distribution of produced vehicles and matched to the SimaPro Ecoinvent 3 database which is one of the most extent versions for modelling material data related to the product life cycle. Product life cycle analysis was calculated within the framework of ISO 14040 – 14044 standards by addressing the requirements and procedures. A comprehensive literature review and cooperation with suppliers were undertaken to identify the production methods of parts used in vehicles and to find out the amount of scrap generated during part production. Cumulative weight and material information with related production process belonging the components were listed by multiplying with current sales figures. The results of the study show a key modelling on carbon footprint of products and processes based on a scientific approach to drive sustainable growth by setting straightforward, science-based emission reduction targets. Hence, this study targets to identify the hotspots and correspondingly provide broad ideas about our understanding of how to integrate carbon footprint estimates into our company's supply chain management by defining convenient actions in line with climate science. According to emission values arising from the production phase including raw material extraction and material processing for Ford OTOSAN vehicles subjected in this study, GHG emissions from the production of metals used for HCV, MCV and LCV account for more than half of the carbon footprint of the vehicle's production. Correspondingly, aluminum and steel have the largest share among all material types and achieving carbon neutrality in the steel and aluminum industry is of great significance to the world, which will also present an immense impact on the automobile industry. Strategic product sustainability plan which includes the use of secondary materials, conversion to green energy and low-energy process design is required to reduce emissions of steel, aluminum, and plastics due to the projected increase in total volume by 2030.

Keywords: automotive, carbon footprint, IMDS, scope 3, SimaPro, sustainability

Procedia PDF Downloads 108
867 Reducing the Imbalance Penalty Through Artificial Intelligence Methods Geothermal Production Forecasting: A Case Study for Turkey

Authors: Hayriye Anıl, Görkem Kar

Abstract:

In addition to being rich in renewable energy resources, Turkey is one of the countries that promise potential in geothermal energy production with its high installed power, cheapness, and sustainability. Increasing imbalance penalties become an economic burden for organizations since geothermal generation plants cannot maintain the balance of supply and demand due to the inadequacy of the production forecasts given in the day-ahead market. A better production forecast reduces the imbalance penalties of market participants and provides a better imbalance in the day ahead market. In this study, using machine learning, deep learning, and, time series methods, the total generation of the power plants belonging to Zorlu Natural Electricity Generation, which has a high installed capacity in terms of geothermal, was estimated for the first one and two weeks of March, then the imbalance penalties were calculated with these estimates and compared with the real values. These modeling operations were carried out on two datasets, the basic dataset and the dataset created by extracting new features from this dataset with the feature engineering method. According to the results, Support Vector Regression from traditional machine learning models outperformed other models and exhibited the best performance. In addition, the estimation results in the feature engineering dataset showed lower error rates than the basic dataset. It has been concluded that the estimated imbalance penalty calculated for the selected organization is lower than the actual imbalance penalty, optimum and profitable accounts.

Keywords: machine learning, deep learning, time series models, feature engineering, geothermal energy production forecasting

Procedia PDF Downloads 110
866 Security Issues on Smart Grid and Blockchain-Based Secure Smart Energy Management Systems

Authors: Surah Aldakhl, Dafer Alali, Mohamed Zohdy

Abstract:

The next generation of electricity grid infrastructure, known as the "smart grid," integrates smart ICT (information and communication technology) into existing grids in order to alleviate the drawbacks of existing one-way grid systems. Future power systems' efficiency and dependability are anticipated to significantly increase thanks to the Smart Grid, especially given the desire for renewable energy sources. The security of the Smart Grid's cyber infrastructure is a growing concern, though, as a result of the interconnection of significant power plants through communication networks. Since cyber-attacks can destroy energy data, beginning with personal information leaking from grid members, they can result in serious incidents like huge outages and the destruction of power network infrastructure. We shall thus propose a secure smart energy management system based on the Blockchain as a remedy for this problem. The power transmission and distribution system may undergo a transformation as a result of the inclusion of optical fiber sensors and blockchain technology in smart grids. While optical fiber sensors allow real-time monitoring and management of electrical energy flow, Blockchain offers a secure platform to safeguard the smart grid against cyberattacks and unauthorized access. Additionally, this integration makes it possible to see how energy is produced, distributed, and used in real time, increasing transparency. This strategy has advantages in terms of improved security, efficiency, dependability, and flexibility in energy management. An in-depth analysis of the advantages and drawbacks of combining blockchain technology with optical fiber is provided in this paper.

Keywords: smart grids, blockchain, fiber optic sensor, security

Procedia PDF Downloads 120
865 Assessment of a Coupled Geothermal-Solar Thermal Based Hydrogen Production System

Authors: Maryam Hamlehdar, Guillermo A. Narsilio

Abstract:

To enhance the feasibility of utilising geothermal hot sedimentary aquifers (HSAs) for clean hydrogen production, one approach is the implementation of solar-integrated geothermal energy systems. This detailed modelling study conducts a thermo-economic assessment of an advanced Organic Rankine Cycle (ORC)-based hydrogen production system that uses low-temperature geothermal reservoirs, with a specific focus on hot sedimentary aquifers (HSAs) over a 30-year period. In the proposed hybrid system, solar-thermal energy is used to raise the water temperature extracted from the geothermal production well. This temperature increase leads to a higher steam output, powering the turbine and subsequently enhancing the electricity output for running the electrolyser. Thermodynamic modeling of a parabolic trough solar (PTS) collector is developed and integrated with modeling for a geothermal-based configuration. This configuration includes a closed regenerator cycle (CRC), proton exchange membrane (PEM) electrolyser, and thermoelectric generator (TEG). Following this, the study investigates the impact of solar energy use on the temperature enhancement of the geothermal reservoir. It assesses the resulting consequences on the lifecycle performance of the hydrogen production system in comparison with a standalone geothermal system. The results indicate that, with the appropriate solar collector area, a combined solar-geothermal hydrogen production system outperforms a standalone geothermal system in both cost and rate of production. These findings underscore a solar-assisted geothermal hybrid system holds the potential to generate lower-cost hydrogen with enhanced efficiency, thereby boosting the appeal of numerous low to medium-temperature geothermal sources for hydrogen production.

Keywords: clean hydrogen production, integrated solar-geothermal, low-temperature geothermal energy, numerical modelling

Procedia PDF Downloads 69