Search results for: self direction
1557 Contemporary Changes in Agricultural Land Use in Central and Eastern Europe: Direction and Conditions
Authors: Jerzy Bański
Abstract:
Central and Eastern European agriculture is characterized by large spatial variations in the structure of agricultural land and the structure of crops on arable land. In general, field crops predominate among the land used for agriculture. In the southern part of the study area, permanent crops have a relatively large share, which is due to favorable climatic conditions. Clear differences between the north and south of the region concern the structure of crop cultivation. In the north, the cultivation of cereals, mainly wheat, definitely prevails. In the south of the region, on the other hand, the structure of crops is more diverse, as more industrial crops are grown in addition to cereals. The primary cognitive objective of the study is to diagnose and identify the directions of changes in the structure of agricultural land use in the CEE region. Particular attention was paid to the spatial differentiation of this structure and its importance in its formation of various conditions. The analysis included the basic elements of the structure of agricultural land use and the structure of crops on arable land. The decrease in the area of arable land is characteristic of the entire region and is the result of the territorial growth of cities, the development of communications infrastructure (rail and road), and the increase in the rationality of crop production involving, among other things, the exclusion from the cultivation of land with the lowest agro-ecological values and their afforestation. It can be summarized that the directions of changes in the basic categories of agricultural land are related to agro-ecological conditions, which indicates an increase in the rationality of crop production. In countries with lower-quality of agricultural production space, the share of grassland generally increased, while in countries with favorable conditions -mainly soil- the share of arable land increased. As for the structure of field crops, the direction of its changes seems to be mainly due to economic and social reasons. Ownership changes shaping an unfavorable agrarian structure (fragmentation and fragmentation of arable fields) and the process of aging of the rural population resulted in the abandonment of resource- and labor-intensive crops. As a result, the importance of growing fruits and vegetables, and potatoes has declined. The structure of vegetable crops has been greatly influenced by the accession of Central and Eastern European countries to the European Union. This is primarily the increase in the importance of oil crops (rapeseed and sunflower) related to biofuel production. In the case of cereal crops, the main direction of change was the increase in the share of wheat at the expense of other cereal species.Keywords: agriculture, land use, Central and Eastern Europe, crops, arable land
Procedia PDF Downloads 721556 Fighting for What’s Fair: Illegitimacy Appraisals as Drivers of Different Collective Action Responses to Economic Inequality
Authors: Finn Lannon, Jenny Roth, Roland Deutsch, Eric Igou
Abstract:
The world continues to be rife with economic inequality, which has an impact on how people think and behaves in response to large and often growing gaps in wealth. Large gaps in earnings between groups within a particular organization, area or society can create tension between groups. Collective action tendencies (to protest, sign a petition, vote on behalf of an ingroup etc.) are also a growing phenomenon globally. Research shows that economic inequality promotes social processes such as appraisals of illegitimacy, which are recognized antecedents of collective action. This paper examines different types of collective action intentions among middle-status group members in response to economic inequality in two studies. Study 1 (N = 72) demonstrates a causal link between high economic inequality and collective action intentions of middle-status group members both to reduce inequality and to improve group status. A second pre-registered study (N = 432) examines key drivers of these relationships, including illegitimacy appraisals and direction of intergroup comparison. Adding to the current understanding of the topic, distinctions between the illegitimacy of one’s group status and the illegitimacy of societal inequality are found to mediate key relationships between economic inequality and relevant collective action types. The direction of intergroup comparison (upwards vs. downwards) is also shown to have a significant impact on collective action intentions to improve group status. Findings add to the understanding of the consequences of economic inequality and drivers of collective action intentions.Keywords: economic inequality, collective action, legitimacy, social psychology
Procedia PDF Downloads 871555 Displacement Solution for a Static Vertical Rigid Movement of an Interior Circular Disc in a Transversely Isotropic Tri-Material Full-Space
Authors: D. Mehdizadeh, M. Rahimian, M. Eskandari-Ghadi
Abstract:
This article is concerned with the determination of the static interaction of a vertically loaded rigid circular disc embedded at the interface of a horizontal layer sandwiched in between two different transversely isotropic half-spaces called as tri-material full-space. The axes of symmetry of different regions are assumed to be normal to the horizontal interfaces and parallel to the movement direction. With the use of a potential function method, and by implementing Hankel integral transforms in the radial direction, the government partial differential equation for the solely scalar potential function is transformed to an ordinary 4th order differential equation, and the mixed boundary conditions are transformed into a pair of integral equations called dual integral equations, which can be reduced to a Fredholm integral equation of the second kind, which is solved analytically. Then, the displacements and stresses are given in the form of improper line integrals, which is due to inverse Hankel integral transforms. It is shown that the present solutions are in exact agreement with the existing solutions for a homogeneous full-space with transversely isotropic material. To confirm the accuracy of the numerical evaluation of the integrals involved, the numerical results are compared with the solutions exists for the homogeneous full-space. Then, some different cases with different degrees of material anisotropy are compared to portray the effect of degree of anisotropy.Keywords: transversely isotropic, rigid disc, elasticity, dual integral equations, tri-material full-space
Procedia PDF Downloads 4351554 A Model of the Universe without Expansion of Space
Authors: Jia-Chao Wang
Abstract:
A model of the universe without invoking space expansion is proposed to explain the observed redshift-distance relation and the cosmic microwave background radiation (CMB). The main hypothesized feature of the model is that photons traveling in space interact with the CMB photon gas. This interaction causes the photons to gradually lose energy through dissipation and, therefore, experience redshift. The interaction also causes some of the photons to be scattered off their track toward an observer and, therefore, results in beam intensity attenuation. As observed, the CMB exists everywhere in space and its photon density is relatively high (about 410 per cm³). The small average energy of the CMB photons (about 6.3×10⁻⁴ eV) can reduce the energies of traveling photons gradually and will not alter their momenta drastically as in, for example, Compton scattering, to totally blur the images of distant objects. An object moving through a thermalized photon gas, such as the CMB, experiences a drag. The cause is that the object sees a blue shifted photon gas along the direction of motion and a redshifted one in the opposite direction. An example of this effect can be the observed CMB dipole: The earth travels at about 368 km/s (600 km/s) relative to the CMB. In the all-sky map from the COBE satellite, radiation in the Earth's direction of motion appears 0.35 mK hotter than the average temperature, 2.725 K, while radiation on the opposite side of the sky is 0.35 mK colder. The pressure of a thermalized photon gas is given by Pγ = Eγ/3 = αT⁴/3, where Eγ is the energy density of the photon gas and α is the Stefan-Boltzmann constant. The observed CMB dipole, therefore, implies a pressure difference between the two sides of the earth and results in a CMB drag on the earth. By plugging in suitable estimates of quantities involved, such as the cross section of the earth and the temperatures on the two sides, this drag can be estimated to be tiny. But for a photon traveling at the speed of light, 300,000 km/s, the drag can be significant. In the present model, for the dissipation part, it is assumed that a photon traveling from a distant object toward an observer has an effective interaction cross section pushing against the pressure of the CMB photon gas. For the attenuation part, the coefficient of the typical attenuation equation is used as a parameter. The values of these two parameters are determined by fitting the 748 µ vs. z data points compiled from 643 supernova and 105 γ-ray burst observations with z values up to 8.1. The fit is as good as that obtained from the lambda cold dark matter (ΛCDM) model using online cosmological calculators and Planck 2015 results. The model can be used to interpret Hubble's constant, Olbers' paradox, the origin and blackbody nature of the CMB radiation, the broadening of supernova light curves, and the size of the observable universe.Keywords: CMB as the lowest energy state, model of the universe, origin of CMB in a static universe, photon-CMB photon gas interaction
Procedia PDF Downloads 1331553 The Effect of Mechanical Stress on the Magnetic Structure and Properties of Ferromagnetic Microwires in Glass Insulation
Authors: N. N. Orlova, A. S. Aronin, Yu. P. Kabanov, S. I. Bozhko, V. S. Gornakov
Abstract:
We have investigated the change of the magnetic structure and the hysteresis properties of iron-based microwires after decreasing levels of internal mechanical stresses. The magnetic structure was investigated by the method of magneto-optical indicator film and the method of magnetic force microscopy. The hysteresis properties were studied by the vibrating sample magnetometer. The stresses were decreased by removing the glass coat and/or by low-temperature isothermal annealing. Previously, the authors carried out experimentally investigation of the magnetic structure of Fe-based microwire using these methods. According to the obtained results the domain structure of a microwire with a positive magnetostriction is composed of the inner cylindrical domains with the magnetization along the wire axis and the surface layer of the ring shape domains with the radial direction of magnetization. Surface ring domains with opposite magnetization direction (i.e., to the axis or from the axis) alternate with each other. For the first time the size of magnetic domains was determined experimentally. In this study it was found that in the iron-based microwires the value of the coercive force can be reduce more than twice by decreasing levels of internal mechanical stresses. Decrease of the internal stress value by the relaxation annealing influence on the magnetic structure. So in the as-prepared microwires observed local deviations of the magnetization of the magnetic core domains from the axis of the wire. After low-temperature annealing the local deviations of magnetization is not observed.Keywords: amorphous microwire, magnetic structure, internal stress, hysteresis properties, ferromagnetic
Procedia PDF Downloads 5681552 Robust Processing of Antenna Array Signals under Local Scattering Environments
Authors: Ju-Hong Lee, Ching-Wei Liao
Abstract:
An adaptive array beamformer is designed for automatically preserving the desired signals while cancelling interference and noise. Providing robustness against model mismatches and tracking possible environment changes calls for robust adaptive beamforming techniques. The design criterion yields the well-known generalized sidelobe canceller (GSC) beamformer. In practice, the knowledge of the desired steering vector can be imprecise, which often occurs due to estimation errors in the DOA of the desired signal or imperfect array calibration. In these situations, the SOI is considered as interference, and the performance of the GSC beamformer is known to degrade. This undesired behavior results in a reduction of the array output signal-to-interference plus-noise-ratio (SINR). Therefore, it is worth developing robust techniques to deal with the problem due to local scattering environments. As to the implementation of adaptive beamforming, the required computational complexity is enormous when the array beamformer is equipped with massive antenna array sensors. To alleviate this difficulty, a generalized sidelobe canceller (GSC) with partially adaptivity for less adaptive degrees of freedom and faster adaptive response has been proposed in the literature. Unfortunately, it has been shown that the conventional GSC-based adaptive beamformers are usually very sensitive to the mismatch problems due to local scattering situations. In this paper, we present an effective GSC-based beamformer against the mismatch problems mentioned above. The proposed GSC-based array beamformer adaptively estimates the actual direction of the desired signal by using the presumed steering vector and the received array data snapshots. We utilize the predefined steering vector and a presumed angle tolerance range to carry out the required estimation for obtaining an appropriate steering vector. A matrix associated with the direction vector of signal sources is first created. Then projection matrices related to the matrix are generated and are utilized to iteratively estimate the actual direction vector of the desired signal. As a result, the quiescent weight vector and the required signal blocking matrix required for performing adaptive beamforming can be easily found. By utilizing the proposed GSC-based beamformer, we find that the performance degradation due to the considered local scattering environments can be effectively mitigated. To further enhance the beamforming performance, a signal subspace projection matrix is also introduced into the proposed GSC-based beamformer. Several computer simulation examples show that the proposed GSC-based beamformer outperforms the existing robust techniques.Keywords: adaptive antenna beamforming, local scattering, signal blocking, steering mismatch
Procedia PDF Downloads 1111551 Physical-Mechanical Characteristics of Monocrystalline Si1-xGex(X 0,02) Solid Solutions
Authors: I. Kurashvili, A. Sichinava, G. Bokuchava, G. Darsavelidze
Abstract:
Si-Ge solid solutions (bulk poly- and monocrystalline samples, thin films) are characterized by high perspectives for application in semiconductor devices, in particular, optoelectronics and microelectronics. In this light complex studying of structural state of the defects and structural-sensitive physical properties of Si-Ge solid solutions depending on the contents of Si and Ge components is very important. Present work deals with the investigations of microstructure, electrophysical characteristics, microhardness, internal friction and shear modulus of Si1-xGex(x≤0,02) bulk monocrystals conducted at a room temperatures. Si-Ge bulk crystals were obtained by Czochralski method in [111] crystallographic direction. Investigated monocrystalline Si-Ge samples are characterized by p-type conductivity and carriers concentration 5.1014-1.1015cm-3, dislocation density 5.103-1.104cm-2, microhardness according to Vickers method 900-1200 Kg/mm2. Investigate samples are characterized with 0,5x0,5x(10-15) mm3 sizes, oriented along [111] direction at torsion oscillations ≈1Hz, multistage changing of internal friction and shear modulus has been revealed in an interval of strain amplitude of 10-5-5.10-3. Critical values of strain amplitude have been determined at which hysteretic changes of inelastic characteristics and microplasticity are observed. The critical strain amplitude and elasticity limit values are also determined. Tendency to decrease of dynamic mechanical characteristics is shown with increasing Ge content in Si-Ge solid solutions. Observed changes are discussed from the point of view of interaction of various dislocations with point defects and their complexes in a real structure of Si-Ge solid solutions.Keywords: Microhardness, internal friction, shear modulus, Monocrystalline
Procedia PDF Downloads 3511550 Policy Effectiveness in the Situation of Economic Recession
Authors: S. K. Ashiquer Rahman
Abstract:
The proper policy handling might not able to attain the target since some of recessions, e.g., pandemic-led crises, the variables shocks of the economics. At the level of this situation, the Central bank implements the monetary policy to choose increase the exogenous expenditure and level of money supply consecutively for booster level economic growth, whether the monetary policy is relatively more effective than fiscal policy in altering real output growth of a country or both stand for relatively effective in the direction of output growth of a country. The dispute with reference to the relationship between the monetary policy and fiscal policy is centered on the inflationary penalty of the shortfall financing by the fiscal authority. The latest variables socks of economics as well as the pandemic-led crises, central banks around the world predicted just about a general dilemma in relation to increase rates to face the or decrease rates to sustain the economic movement. Whether the prices hang about fundamentally unaffected, the aggregate demand has also been hold a significantly negative attitude by the outbreak COVID-19 pandemic. To empirically investigate the effects of economics shocks associated COVID-19 pandemic, the paper considers the effectiveness of the monetary policy and fiscal policy that linked to the adjustment mechanism of different economic variables. To examine the effects of economics shock associated COVID-19 pandemic towards the effectiveness of Monetary Policy and Fiscal Policy in the direction of output growth of a Country, this paper uses the Simultaneous equations model under the estimation of Two-Stage Least Squares (2SLS) and Ordinary Least Squares (OLS) Method.Keywords: IS-LM framework, pandemic. Economics variables shocks, simultaneous equations model, output growth
Procedia PDF Downloads 941549 Urban Change Detection and Pattern Analysis Using Satellite Data
Authors: Shivani Jha, Klaus Baier, Rafiq Azzam, Ramakar Jha
Abstract:
In India, generally people migrate from rural area to the urban area for better infra-structural facilities, high standard of living, good job opportunities and advanced transport/communication availability. In fact, unplanned urban development due to migration of people causes seriou damage to the land use, water pollution and available water resources. In the present work, an attempt has been made to use satellite data of different years for urban change detection of Chennai metropolitan city along with pattern analysis to generate future scenario of urban development using buffer zoning in GIS environment. In the analysis, SRTM (30m) elevation data and IRS-1C satellite data for the years 1990, 2000, and 2014, are used. The flow accumulation, aspect, flow direction and slope maps developed using SRTM 30 m data are very useful for finding suitable urban locations for industrial setup and urban settlements. Normalized difference vegetation index (NDVI) and Principal Component Analysis (PCA) have been used in ERDAS imagine software for change detection in land use of Chennai metropolitan city. It has been observed that the urban area has increased exponentially in Chennai metropolitan city with significant decrease in agriculture and barren lands. However, the water bodies located in the study regions are protected and being used as freshwater for drinking purposes. Using buffer zone analysis in GIS environment, it has been observed that the development has taken place in south west direction significantly and will do so in future.Keywords: urban change, satellite data, the Chennai metropolis, change detection
Procedia PDF Downloads 4071548 Characterizing Surface Machining-Induced Local Deformation Using Electron Backscatter Diffraction
Authors: Wenqian Zhang, Xuelin Wang, Yujin Hu, Siyang Wang
Abstract:
The subsurface layer of a component plays a significant role in its service performance. Any surface mechanical process during fabrication can introduce a deformed layer near the surface, which can be related to the microstructure alteration and strain hardening, and affects the mechanical properties and corrosion resistance of the material. However, there exists a great difficulty in determining the subsurface deformation induced by surface machining. In this study, electron backscatter diffraction (EBSD) was used to study the deformed layer of surface milled 316 stainless steel. The microstructure change was displayed by the EBSD maps and characterized by misorientation variation. The results revealed that the surface milling resulted in heavily nonuniform deformations in the subsurface layer and even in individual grains. The direction of the predominant grain deformation was about 30-60 deg to the machined surface. Moreover, a local deformation rate (LDR) was proposed to quantitatively evaluate the local deformation degree. Both of the average and maximum LDRs were utilized to characterize the deformation trend along the depth direction. It was revealed that the LDR had a strong correlation with the development of grain and sub-grain boundaries. In this work, a scan step size of 1.2 μm was chosen for the EBSD measurement. A LDR higher than 18 deg/μm indicated a newly developed grain boundary, while a LDR ranged from 2.4 to 18 deg/μm implied the generation of a sub-grain boundary. And a lower LDR than 2.4 deg/μm could only introduce a slighter deformation and no sub-grain boundary was produced. According to the LDR analysis with the evolution of grain or sub grain boundaries, the deformed layer could be classified into four zones: grain broken layer, seriously deformed layer, slightly deformed layer and non-deformed layer.Keywords: surface machining, EBSD, subsurface layer, local deformation
Procedia PDF Downloads 3311547 Numerical Modeling of Timber Structures under Varying Humidity Conditions
Authors: Sabina Huč, Staffan Svensson, Tomaž Hozjan
Abstract:
Timber structures may be exposed to various environmental conditions during their service life. Often, the structures have to resist extreme changes in the relative humidity of surrounding air, with simultaneously carrying the loads. Wood material response for this load case is seen as increasing deformation of the timber structure. Relative humidity variations cause moisture changes in timber and consequently shrinkage and swelling of the material. Moisture changes and loads acting together result in mechano-sorptive creep, while sustained load gives viscoelastic creep. In some cases, magnitude of the mechano-sorptive strain can be about five times the elastic strain already at low stress levels. Therefore, analyzing mechano-sorptive creep and its influence on timber structures’ long-term behavior is of high importance. Relatively many one-dimensional rheological models for rheological behavior of wood can be found in literature, while a number of models coupling creep response in each material direction is limited. In this study, mathematical formulation of a coupled two-dimensional mechano-sorptive model and its application to the experimental results are presented. The mechano-sorptive model constitutes of a moisture transport model and a mechanical model. Variation of the moisture content in wood is modelled by multi-Fickian moisture transport model. The model accounts for processes of the bound-water and water-vapor diffusion in wood, that are coupled through sorption hysteresis. Sorption defines a nonlinear relation between moisture content and relative humidity. Multi-Fickian moisture transport model is able to accurately predict unique, non-uniform moisture content field within the timber member over time. Calculated moisture content in timber members is used as an input to the mechanical analysis. In the mechanical analysis, the total strain is assumed to be a sum of the elastic strain, viscoelastic strain, mechano-sorptive strain, and strain due to shrinkage and swelling. Mechano-sorptive response is modelled by so-called spring-dashpot type of a model, that proved to be suitable for describing creep of wood. Mechano-sorptive strain is dependent on change of moisture content. The model includes mechano-sorptive material parameters that have to be calibrated to the experimental results. The calibration is made to the experiments carried out on wooden blocks subjected to uniaxial compressive loaded in tangential direction and varying humidity conditions. The moisture and the mechanical model are implemented in a finite element software. The calibration procedure gives the required, distinctive set of mechano-sorptive material parameters. The analysis shows that mechano-sorptive strain in transverse direction is present, though its magnitude and variation are substantially lower than the mechano-sorptive strain in the direction of loading. The presented mechano-sorptive model enables observing real temporal and spatial distribution of the moisture-induced strains and stresses in timber members. Since the model’s suitability for predicting mechano-sorptive strains is shown and the required material parameters are obtained, a comprehensive advanced analysis of the stress-strain state in timber structures, including connections subjected to constant load and varying humidity is possible.Keywords: mechanical analysis, mechano-sorptive creep, moisture transport model, timber
Procedia PDF Downloads 2441546 Effects of Channel Orientation on Heat Transfer in a Rotating Rectangular Channel with Jet Impingement Cooling and Film Coolant Extraction
Authors: Hua Li, Hongwu Deng
Abstract:
The turbine blade's leading edge is usually cooled by jet impingement cooling technology due to the heaviest heat load. For a rotating turbine blade, however, the channel orientation (β, the angle between the jet direction and the rotating plane) could play an important role in influencing the flow field and heat transfer. Therefore, in this work, the effects of channel orientation (from 90° to 180°) on heat transfer in a jet impingement cooling channel are experimentally investigated. Furthermore, the investigations are conducted under an isothermal boundary condition. Both the jet-to-target surface distance and jet-to-jet spacing are three times the jet hole diameter. The jet Reynolds number is 5,000, and the maximum jet rotation number reaches 0.24. The results show that the rotation-induced variations of heat transfer are different in each channel orientation. In the cases of 90°≤β≤135°, a vortex generated in the low-radius region of the supply channel changes the mass-flowrate distribution in each jet hole. Therefore, the heat transfer in the low-radius region decreases with the rotation number, whereas the heat transfer in the high-radius region increases, indicating that a larger temperature gradient in the radial direction could appear in the turbine blade's leading edge. When 135°<β≤180°; however, the heat transfer of the entire stagnant zone decreases with the rotation number. The rotation-induced jet deflection is the primary factor that weakens the heat transfer, and jets cannot reach the target surface at high rotation numbers. For the downstream regions, however, the heat transfer is enhanced by 50%-80% in every channel orientation because the dead zone is broken by the rotation-induced secondary flow in the impingement channel.Keywords: heat transfer, jet impingement cooling, channel orientation, high rotation number, isothermal boundary
Procedia PDF Downloads 1041545 Optimization of Springback Prediction in U-Channel Process Using Response Surface Methodology
Authors: Muhamad Sani Buang, Shahrul Azam Abdullah, Juri Saedon
Abstract:
There is not much effective guideline on development of design parameters selection on springback for advanced high strength steel sheet metal in U-channel process during cold forming process. This paper presents the development of predictive model for springback in U-channel process on advanced high strength steel sheet employing Response Surface Methodology (RSM). The experimental was performed on dual phase steel sheet, DP590 in U-channel forming process while design of experiment (DoE) approach was used to investigates the effects of four factors namely blank holder force (BHF), clearance (C) and punch travel (Tp) and rolling direction (R) were used as input parameters using two level values by applying Full Factorial design (24). From a statistical analysis of variant (ANOVA), result showed that blank holder force (BHF), clearance (C) and punch travel (Tp) displayed significant effect on springback of flange angle (β2) and wall opening angle (β1), while rolling direction (R) factor is insignificant. The significant parameters are optimized in order to reduce the springback behavior using Central Composite Design (CCD) in RSM and the optimum parameters were determined. A regression model for springback was developed. The effect of individual parameters and their response was also evaluated. The results obtained from optimum model are in agreement with the experimental valuesKeywords: advance high strength steel, u-channel process, springback, design of experiment, optimization, response surface methodology (rsm)
Procedia PDF Downloads 5401544 Influence of the Seat Arrangement in Public Reading Spaces on Individual Subjective Perceptions
Authors: Jo-Han Chang, Chung-Jung Wu
Abstract:
This study involves a design proposal. The objective of is to create a seat arrangement model for public reading spaces that enable free arrangement without disturbing the users. Through a subjective perception scale, this study explored whether distance between seats and direction of seats influence individual subjective perceptions in a public reading space. This study also involves analysis of user subjective perceptions when reading in the settings on 3 seats at different directions and with 5 distances between seats. The results may be applied to public chair design. This study investigated that (a) whether different directions of seats and distances between seats influence individual subjective perceptions and (b) the acceptable personal space between 2 strangers in a public reading space. The results are shown as follows: (a) the directions of seats and distances between seats influenced individual subjective perceptions. (b) subjective evaluation scores were higher for back-to-back seat directions with Distances A (10 cm) and B (62 cm) compared with face-to-face and side-by-side seat directions; however, when the seat distance exceeded 114 cm (Distance C), no difference existed among the directions of seats. (c) regarding reading in public spaces, when the distance between seats is 10 cm only, we recommend arranging the seats in a back-to-back fashion to increase user comfort and arrangement of face-to-face and side- by-side seat directions should be avoided. When the seat arrangement is limited to face-to-face design, the distance between seats should be increased to at least 62 cm. Moreover, the distance between seats should be increased to at least 114 cm for side- by-side seats to elevate user comfort.Keywords: individual subjective perceptions, personal space, seat arrangement, direction, distances
Procedia PDF Downloads 4261543 3D Geomechanical Model the Best Solution of the 21st Century for Perforation's Problems
Authors: Luis Guiliana, Andrea Osorio
Abstract:
The lack of comprehension of the reservoir geomechanics conditions may cause operational problems that cost to the industry billions of dollars per year. The drilling operations at the Ceuta Field, Area 2 South, Maracaibo Lake, have been very expensive due to problems associated with drilling. The principal objective of this investigation is to develop a 3D geomechanical model in this area, in order to optimize the future drillings in the field. For this purpose, a 1D geomechanical model was built at first instance, following the workflow of the MEM (Mechanical Earth Model), this consists of the following steps: 1) Data auditing, 2) Analysis of drilling events and structural model, 3) Mechanical stratigraphy, 4) Overburden stress, 5) Pore pressure, 6) Rock mechanical properties, 7) Horizontal stresses, 8) Direction of the horizontal stresses, 9) Wellbore stability. The 3D MEM was developed through the geostatistic model of the Eocene C-SUP VLG-3676 reservoir and the 1D MEM. With this data the geomechanical grid was embedded. The analysis of the results threw, that the problems occurred in the wells that were examined were mainly due to wellbore stability issues. It was determined that the stress field change as the stratigraphic column deepens, it is normal to strike-slip at the Middle Miocene and Lower Miocene, and strike-slipe to reverse at the Eocene. In agreement to this, at the level of the Eocene, the most advantageous direction to drill is parallel to the maximum horizontal stress (157º). The 3D MEM allowed having a tridimensional visualization of the rock mechanical properties, stresses and operational windows (mud weight and pressures) variations. This will facilitate the optimization of the future drillings in the area, including those zones without any geomechanics information.Keywords: geomechanics, MEM, drilling, stress
Procedia PDF Downloads 2721542 Data Compression in Ultrasonic Network Communication via Sparse Signal Processing
Authors: Beata Zima, Octavio A. Márquez Reyes, Masoud Mohammadgholiha, Jochen Moll, Luca de Marchi
Abstract:
This document presents the approach of using compressed sensing in signal encoding and information transferring within a guided wave sensor network, comprised of specially designed frequency steerable acoustic transducers (FSATs). Wave propagation in a damaged plate was simulated using commercial FEM-based software COMSOL. Guided waves were excited by means of FSATs, characterized by the special shape of its electrodes, and modeled using PIC255 piezoelectric material. The special shape of the FSAT, allows for focusing wave energy in a certain direction, accordingly to the frequency components of its actuation signal, which makes available a larger monitored area. The process begins when a FSAT detects and records reflection from damage in the structure, this signal is then encoded and prepared for transmission, using a combined approach, based on Compressed Sensing Matching Pursuit and Quadrature Amplitude Modulation (QAM). After codification of the signal is in binary chars the information is transmitted between the nodes in the network. The message reaches the last node, where it is finally decoded and processed, to be used for damage detection and localization purposes. The main aim of the investigation is to determine the location of detected damage using reconstructed signals. The study demonstrates that the special steerable capabilities of FSATs, not only facilitate the detection of damage but also permit transmitting the damage information to a chosen area in a specific direction of the investigated structure.Keywords: data compression, ultrasonic communication, guided waves, FEM analysis
Procedia PDF Downloads 1231541 Emotional Intelligence and Gender Role Attitudes of Married Individuals: Moderating Role of Gender and Work Status
Authors: Saima Kalsoom, Sobia Masood, Muhammad Faran
Abstract:
This study aimed to examine the association between emotional intelligence and gender role attitudes of married individuals. Another aim of this study was to test the moderating role of gender work status of married individuals for predicting gender role attitudes from emotional intelligence. A sample of (N = 500) married working men and women (both working & housewives) was approached through purposive convenience sampling technique. The data was collected employing cross-sectional research design. The indigenous versions of the Gender Role Attitudes Scale and perceived Emotional Intelligence Scale were used. The results of alpha coefficients for both the scales and subscales used in this study designated satisfactory evidence for internal consistency and reliability. Assessment of correlation coefficients showed significant positive correlation between gender role attitudes and emotional intelligence, subfactors of emotional intelligence i.e., emotional self-regulation, emotional self-awareness, and interpersonal skills with gender role attitudes. Results of model testing revealed that gender (the effect was significant for women) and work status (the effect was more significant for married working women than married working men and housewives) of the married individuals significantly moderated the relationship between emotional intelligence and gender role attitudes into the positive direction. Further, it was also found that gender and work status also moderated the relationship between emotional self-regulation (as sub factor of emotional intelligence) and gender role attitudes in a positive direction. In conclusion, this empirical evidence is vital contribution derived from the traditional and collectivistic socio-cultural background of Pakistan.Keywords: gender role attitudes, emotional intelligence, emotional self-regulation, gender, work status, married working women
Procedia PDF Downloads 1101540 CO₂/CH₄ Exchange Studies on Shales to Assess the Potential for CO₂ Storage and Enhanced Shale Gas Recovery
Authors: Mateusz Kudasik, Katarzyna Kozieł
Abstract:
The work included detailed studies of CO₂/CH₄ exchange on a shale core from the Lewino-1G2 well (Poland) from a depth of 3408 m. The sample permeability coefficients were determined under conditions of confining pressure from 5 MPa to 35 MPa. These studies showed that at a confining pressure of 35 MPa – corresponding to a depth of about 1000 m, the shale core was impermeable in the direction perpendicular to the bedding, and in the direction parallel to the bedding, the sample had very low permeability (k∞=0.001 mD). The sorption tests performed showed low sorption capacities, which amounted to a maximum of 1.28 cm³/g in relation to CO₂ and 0.87 cm³/g to CH₄ at a pressure of 1.4 MPa. The most important study used to assess the possibilities of CO₂ storage and gas recovery from shale rocks were the CO₂/CH₄ exchange experiments, which were carried out under confining pressure conditions of 5 MPa and 30 MPa. These experiments were carried out on a unique apparatus, which makes it possible to apply a confining pressure corresponding to in situ conditions. The obtained results made it possible to carry out a comprehensive balance of gas exchange during the injection of CO₂ into the shale sample, with simultaneous recovery of CH₄. Based on the conducted sorption and gas exchange studies on the core sample under confining pressure conditions, it was found that in situ conditions, at the depths of shale gas occurrence in Poland of 3000-4000 m, where the confining pressure can be about 100 MPa: (i) poorly developed pore structure, (ii) very low permeability, and (iii) low sorption properties, make shale rocks poorly predisposed to the application of CO₂ storage technology with simultaneous recovery of CH₄. Without the stimulation of CO₂/CH₄ exchange rates through fracturing processes, the effectiveness of CO₂-ESGR technology on shale rock is very low. The research presented in this work is extremely important from the point of view of precise assessment of the potential of CO₂-ESGR technology.Keywords: shale gas, shale rocks, CO₂/CH₄ exchange, permeability, sorption, CO₂, CH₄
Procedia PDF Downloads 41539 Potentiality of the Wind Energy in Algeria
Authors: C. Benoudjafer, M. N. Tandjaoui, C. Benachaiba
Abstract:
The use of kinetic energy of the wind is in full rise in the world and it starts to be known in our country but timidly. One or more aero generators can be installed to produce for example electricity on isolated places or not connected to the electrical supply network. To use the wind as energy source, it is necessary to know first the energy needs for the population and study the wind intensity, speed, frequency and direction.Keywords: Algeria, renewable energies, wind, wind power, aero-generators, wind energetic potential
Procedia PDF Downloads 4281538 Powerful Media: Reflection of Professional Audience
Authors: Hamide Farshad, Mohammadreza Javidi Abdollah Zadeh Aval
Abstract:
As a result of the growing penetration of the media into human life, a new role under the title of "audience" is defined in the social life .A kind of role which is dramatically changed since its formation. This article aims to define the audience position in the new media equations which is concluded to the transformation of the media role. By using the Library and Attributive method to study the history, the evolutionary outlook to the audience and the recognition of the audience and the media relation in the new media context is studied. It was perceived in past that public communication would result in receiving the audience. But after the emergence of the interactional media and transformation in the audience social life, a new kind of public communication is formed, and also the imaginary picture of the audience is replaced by the audience impact on the communication process. Part of this impact can be seen in the form of feedback which is one of the public communication elements. In public communication, the audience feedback is completely accepted. But in many cases, and along with the audience feedback, the media changes its direction; this direction shift is known as media feedback. At this state, the media and the audience are both doers and consistently change their positions in an interaction. With the greater number of the audience and the media, this process has taken a new role, and the role of this doer is sometimes taken by an audience while influencing another audience, or a media while influencing another media. In this article, this multiple public communication process is shown through representing a model under the title of ”The bilateral influence of the audience and the media.” Based on this model, the audience and the media power are not the two sides of a coin, and as a result, by accepting these two as the doers, the bilateral power of the audience and the media will be complementary to each other. Also more, the compatibility between the media and the audience is analyzed in the bilateral and interactional relation hypothesis, and by analyzing the action law hypothesis, the dos and don’ts of this role are defined, and media is obliged to know and accept them in order to be able to survive. They also have a determining role in the strategic studies of a media.Keywords: audience, effect, media, interaction, action laws
Procedia PDF Downloads 4871537 Evaluation of the Causes of Exposure to Mobbing of Employees in the Public Sector in Turkey
Authors: Taner Cindik, Ferya Tas Ciftci
Abstract:
Mobbing in the public sector and specific issues (i.e., the demand for non-pecuniary damages) regarding mobbing have become very important in the light of the precedents constituted by the Turkish Council of State in 2010. The legal scope of mobbing is not able to be determined since the concept of mobbing is not defined in Turkish law system. This study aims to reveal three major problems caused by the lack of laws related to mobbing in the Turkish legal system. First, the absence of an arrangement for disciplinary penalties leads that general provisions in the disciplinary law are implemented. This situation, therefore, causes difficulties in practice. Second, not being drawn of the lines in the topic concerning mobbing in public sector leads confusions in being direction of hostility. Third, the fact that there is a legal gap on seeking non-pecuniary compensation when employees in public sector are exposed to mobbing might make it difficult to obtain non-pecuniary compensation. Within the context of these major problems, civil servants in Turkey do not have enough protection mechanism. However, some possible legal arrangements will help civil servants to protect against mobbing. This study may be considered important because of the fact that mobbing in the public sector is at a significant level and has not been evaluated in this context before. This research is mainly a study of Turkish legal system and evaluates critically law case to determine legal problems. As a result of this study, three main problems might be identified because there is legal gap regarding mobbing in the public sector. In conclusion, the introduction of the major problems related to mobbing in this study might shed light on making the proper regulations of this subject in Turkish law system. In this respect, the plaintiff will be provided convenience in the point of non-pecuniary damages and this study will guide the assessment of legal liability of those who implement mobbing.Keywords: human rights violations, mobbing, public sector, direction of hostility, non-pecuniary compensation, disciplinary law
Procedia PDF Downloads 2411536 Optical Breather in Phosphorene Monolayer
Authors: Guram Adamashvili
Abstract:
Surface plasmon polariton is a surface optical wave which undergoes a strong enhancement and spatial confinement of its wave amplitude near an interface of two-dimensional layered structures. Phosphorene (single-layer black phosphorus) and other two-dimensional anisotropic phosphorene-like materials are recognized as promising materials for potential future applications of surface plasmon polariton. A theory of an optical breather of self-induced transparency for surface plasmon polariton propagating in monolayer or few-layer phosphorene is developed. A theory of an optical soliton of self-induced transparency for surface plasmon polariton propagating in monolayer or few-layer phosphorene have been investigated earlier Starting from the optical nonlinear wave equation for surface TM-modes interacting with a two-dimensional layer of atomic systems or semiconductor quantum dots and a phosphorene monolayer (or other two-dimensional anisotropic material), we have obtained the evolution equations for the electric field of the breather. In this case, one finds that the evolution of these pulses become described by the damped Bloch-Maxwell equations. For surface plasmon polariton fields, breathers are found to occur. Explicit relations of the dependence of breathers on the local media, phosphorene anisotropic conductivity, transition layer properties and transverse structures of the SPP, are obtained and will be given. It is shown that the phosphorene conductivity reduces exponentially the amplitude of the surface breather of SIT in the process of propagation. The direction of propagation corresponding to the maximum and minimum damping of the amplitude are assigned along the armchair and zigzag directions of black phosphorus nano-film, respectively. The most rapid damping of the intensity occurs when the polarization of breather is along the armchair direction.Keywords: breathers, nonlinear waves, solitons, surface plasmon polaritons
Procedia PDF Downloads 1481535 The Fefe Indices: The Direction of Donal Trump’s Tweets Effect on the Stock Market
Authors: Sergio Andres Rojas, Julian Benavides Franco, Juan Tomas Sayago
Abstract:
An increasing amount of research demonstrates how market mood affects financial markets, but their primary goal is to demonstrate how Trump's tweets impacted US interest rate volatility. Following that lead, this work evaluates the effect that Trump's tweets had during his presidency on local and international stock markets, considering not just volatility but the direction of the movement. Three indexes for Trump's tweets were created relating his activity with movements in the S&P500 using natural language analysis and machine learning algorithms. The indexes consider Trump's tweet activity and the positive or negative market sentiment they might inspire. The first explores the relationship between tweets generating negative movements in the S&P500; the second explores positive movements, while the third explores the difference between up and down movements. A pseudo-investment strategy using the indexes produced statistically significant above-average abnormal returns. The findings also showed that the pseudo strategy generated a higher return in the local market if applied to intraday data. However, only a negative market sentiment caused this effect on daily data. These results suggest that the market reacted primarily to a negative idea reflected in the negative index. In the international market, it is not possible to identify a pervasive effect. A rolling window regression model was also performed. The result shows that the impact on the local and international markets is heterogeneous, time-changing, and differentiated for the market sentiment. However, the negative sentiment was more prone to have a significant correlation most of the time.Keywords: market sentiment, Twitter market sentiment, machine learning, natural dialect analysis
Procedia PDF Downloads 621534 Optimizing Volume Fraction Variation Profile of Bidirectional Functionally Graded Circular Plate under Mechanical Loading to Minimize Its Stresses
Authors: Javad Jamali Khouei, Mohammadreza Khoshravan
Abstract:
Considering that application of functionally graded material is increasing in most industries, it seems necessary to present a methodology for designing optimal profile of structures such as plate under mechanical loading which is highly consumed in industries. Therefore, volume fraction variation profile of functionally graded circular plate which has been considered two-directional is optimized so that stress of structure is minimized. For this purpose, equilibrium equations of two-directional functionally graded circular plate are solved by applying semi analytical-numerical method under mechanical loading and support conditions. By solving equilibrium equations, deflections and stresses are obtained in terms of control variables of volume fraction variation profile. As a result, the problem formula can be defined as an optimization problem by aiming at minimization of critical von-mises stress under constraints of deflections, stress and a physical constraint relating to structure of material. Then, the related problem can be solved with help of one of the metaheuristic algorithms such as genetic algorithm. Results of optimization for the applied model under constraints and loadings and boundary conditions show that functionally graded plate should be graded only in radial direction and there is no need for volume fraction variation of the constituent particles in thickness direction. For validating results, optimal values of the obtained design variables are graphically evaluated.Keywords: two-directional functionally graded material, single objective optimization, semi analytical-numerical solution, genetic algorithm, graphical solution with contour
Procedia PDF Downloads 2781533 Impact of Boundary Conditions on the Behavior of Thin-Walled Laminated Column with L-Profile under Uniform Shortening
Authors: Jaroslaw Gawryluk, Andrzej Teter
Abstract:
Simply supported angle columns subjected to uniform shortening are tested. The experimental studies are conducted on a testing machine using additional Aramis and the acoustic emission system. The laminate samples are subjected to axial uniform shortening. The tested columns are loaded with the force values from zero to the maximal load destroying the L-shaped column, which allowed one to observe the column post-buckling behavior until its collapse. Laboratory tests are performed at a constant velocity of the cross-bar equal to 1 mm/min. In order to eliminate stress concentrations between sample and support, flexible pads are used. Analyzed samples are made with carbon-epoxy laminate using the autoclave method. The configurations of laminate layers are: [60,0₂,-60₂,60₃,-60₂,0₃,-60₂,0,60₂]T, where direction 0 is along the length of the profile. Material parameters of laminate are: Young’s modulus along the fiber direction - 170GPa, Young’s modulus along the fiber transverse direction - 7.6GPa, shear modulus in-plane - 3.52GPa, Poisson’s ratio in-plane - 0.36. The dimensions of all columns are: length-300 mm, thickness-0.81mm, width of the flanges-40mm. Next, two numerical models of the column with and without flexible pads are developed using the finite element method in Abaqus software. The L-profile laminate column is modeled using the S8R shell elements. The layup-ply technique is used to define the sequence of the laminate layers. However, the model of grips is made of the R3D4 discrete rigid elements. The flexible pad is consists of the C3D20R type solid elements. In order to estimate the moment of the first laminate layer damage, the following initiation criteria were applied: maximum stress criterion, Tsai-Hill, Tsai-Wu, Azzi-Tsai-Hill, and Hashin criteria. The best compliance of results was observed for the Hashin criterion. It was found that the use of the pad in the numerical model significantly influences the damage mechanism. The model without pads characterized a much more stiffness, as evidenced by a greater bifurcation load and damage initiation load in all analyzed criteria, lower shortening, and less deflection of the column in its center than the model with flexible pads. Acknowledgment: The project/research was financed in the framework of the project Lublin University of Technology-Regional Excellence Initiative, funded by the Polish Ministry of Science and Higher Education (contract no. 030/RID/2018/19).Keywords: angle column, compression, experiment, FEM
Procedia PDF Downloads 2051532 Current Characteristic of Water Electrolysis to Produce Hydrogen, Alkaline, and Acid Water
Authors: Ekki Kurniawan, Yusuf Nur Jayanto, Erna Sugesti, Efri Suhartono, Agus Ganda Permana, Jaspar Hasudungan, Jangkung Raharjo, Rintis Manfaati
Abstract:
The purpose of this research is to study the current characteristic of the electrolysis of mineral water to produce hydrogen, alkaline water, and acid water. Alkaline and hydrogen water are believed to have health benefits. Alkaline water containing hydrogen can be an anti-oxidant that captures free radicals, which will increase the immune system. In Indonesia, there are two existing types of alkaline water producing equipment, but the installation is complicated, and the price is relatively expensive. The electrolysis process is slow (6-8 hours) since they are locally made using 311 VDC full bridge rectifier power supply. This paper intends to discuss how to make hydrogen and alkaline water by a simple portable mineral water ionizer. This is an electrolysis device that is easy to carry and able to separate ions of mineral water into acidic and alkaline water. With an electric field, positive ions will be attracted to the cathode, while negative ions will be attracted to the anode. The circuit equivalent can be depicted as RLC transient ciruit. The diode component ensures that the electrolytic current is direct current. Switch S divides the switching times t1, t2, and t3. In the first stage up to t1, the electrolytic current increases exponentially, as does the inductor charging current (L). The molecules in drinking water experience magnetic properties. The direction of the dipole ions, which are random in origin, will regularly flare with the direction of the electric field. In the second stage up to t2, the electrolytic current decreases exponentially, just like the charging current of a capacitor (C). In the 3rd stage, start t3 until it tends to be constant, as is the case with the current flowing through the resistor (R).Keywords: current electrolysis, mineral water, ions, alkaline and acid waters, inductor, capacitor, resistor
Procedia PDF Downloads 1101531 Social Status and Role of Women among the Khasi Tribe of Meghalaya
Authors: Jeffreyson Wahlang
Abstract:
The aim of this paper is to analyse the changes in the social status and role of Khasi women with the advent of modernisation and globalisation. Since all societies inevitably undergo social change, this paper will attempt to enquire about the path and direction to which women in Khasi Hills, Meghalaya is moving.Keywords: status, role, women, Khasi Matriliny, gender
Procedia PDF Downloads 2601530 The Impact of Leadership Styles and Coordination on Employees Performance in the Nigerian Banking Sector
Authors: Temilola Akinbolade, Bukola Okunade, Karounwi Okunade
Abstract:
Leadership is a subject of direction. Direction entails ensuring that employees carryout the jobs assigned to them. In order to direct subordinates, a manager must lead, motivate, communicate and ensure effective co-ordination of activities so that enterprise objectives are achieved. The purpose of the study was to find out the impact of Leadership Styles on Employees Performance, Study of Wema Bank Plc. Leadership has been described as a tool used in influencing people in order to willingly get a particular or task done. The importance of leadership is followership. That is the willingness of people to follow what makes a person a leader. A sample size of 150 was systematically selected from the study population using the statistical packages for Social Science (SPSS) formula. Based on this, questionnaire was designed and administered. Out of the 105 copies of the questionnaire administered. 150 were recovered, 45 were discarded for improper filling and mutilation while the remaining 105 were used for statistical analysis. Chi-square was employed in testing the hypothesis. The following findings were discovered in the course of the study: how leadership enhances employee’s performance, 85.7% of the respondents were in agreement. Also how implementation of workers social welfare packages enhance the employees performance. 88.6 percent of the respondents in agreement. Over the years, some leadership styles adopted by managers and administrators have an impact on the level of employee’s performance in workplace and this has led to the inefficient and ineffective attainment of organizational goals and objectives. Due to the inability of employees to perform to set standard, this research work will also indicate some ways through which high employee performance will be attained most especially with regards to the leadership style adopted by the management that is managers and administrators. It was also discovered that collective intelligence of employees leads to high employee’s performance 82.9 percent of the respondent in agreement.Keywords: leadership, employees, performance, banking sector
Procedia PDF Downloads 2401529 'Performance-Based' Seismic Methodology and Its Application in Seismic Design of Reinforced Concrete Structures
Authors: Jelena R. Pejović, Nina N. Serdar
Abstract:
This paper presents an analysis of the “Performance-Based” seismic design method, in order to overcome the perceived disadvantages and limitations of the existing seismic design approach based on force, in engineering practice. Bearing in mind, the specificity of the earthquake as a load and the fact that the seismic resistance of the structures solely depends on its behaviour in the nonlinear field, traditional seismic design approach based on force and linear analysis is not adequate. “Performance-Based” seismic design method is based on nonlinear analysis and can be used in everyday engineering practice. This paper presents the application of this method to eight-story high reinforced concrete building with combined structural system (reinforced concrete frame structural system in one direction and reinforced concrete ductile wall system in other direction). The nonlinear time-history analysis is performed on the spatial model of the structure using program Perform 3D, where the structure is exposed to forty real earthquake records. For considered building, large number of results were obtained. It was concluded that using this method we could, with a high degree of reliability, evaluate structural behavior under earthquake. It is obtained significant differences in the response of structures to various earthquake records. Also analysis showed that frame structural system had not performed well at the effect of earthquake records on soil like sand and gravel, while a ductile wall system had a satisfactory behavior on different types of soils.Keywords: ductile wall, frame system, nonlinear time-history analysis, performance-based methodology, RC building
Procedia PDF Downloads 3641528 Hydraulic Optimization of an Adjustable Spiral-Shaped Evaporator
Authors: Matthias Feiner, Francisco Javier Fernández García, Michael Arneman, Martin Kipfmüller
Abstract:
To ensure reliability in miniaturized devices or processes with increased heat fluxes, very efficient cooling methods have to be employed in order to cope with small available cooling surfaces. To address this problem, a certain type of evaporator/heat exchanger was developed: It is called a swirl evaporator due to its flow characteristic. The swirl evaporator consists of a concentrically eroded screw geometry in which a capillary tube is guided, which is inserted into a pocket hole in components with high heat load. The liquid refrigerant R32 is sprayed through the capillary tube to the end face of the blind hole and is sucked off against the injection direction in the screw geometry. Its inner diameter is between one and three millimeters. The refrigerant is sprayed into the pocket hole via a small tube aligned in the center of the bore hole and is sucked off on the front side of the hole against the direction of injection. The refrigerant is sucked off in a helical geometry (twisted flow) so that it is accelerated against the hot wall (centrifugal acceleration). This results in an increase in the critical heat flux of up to 40%. In this way, more heat can be dissipated on the same surface/available installation space. This enables a wide range of technical applications. To optimize the design for the needs in various fields of industry, like the internal tool cooling when machining nickel base alloys like Inconel 718, a correlation-based model of the swirl-evaporator was developed. The model is separated into 3 subgroups with overall 5 regimes. The pressure drop and heat transfer are calculated separately. An approach to determine the locality of phase change in the capillary and the swirl was implemented. A test stand has been developed to verify the simulation.Keywords: helically-shaped, oil-free, R-32, swirl-evaporator, twist-flow
Procedia PDF Downloads 107