Search results for: pixel entropy
376 Nonstationary Increments and Casualty in the Aluminum Market
Authors: Andrew Clark
Abstract:
McCauley, Bassler, and Gunaratne show that integration I(d) processes as used in economics and finance do not necessarily produce stationary increments, which are required to determine causality in both the short term and the long term. This paper follows their lead and shows I(d) aluminum cash and futures log prices at daily and weekly intervals do not have stationary increments, which means prior causality studies using I(d) processes need to be re-examined. Wavelets based on undifferenced cash and futures log prices do have stationary increments and are used along with transfer entropy (versus cointegration) to measure causality. Wavelets exhibit causality at most daily time scales out to 1 year, and weekly time scales out to 1 year and more. To determine stationarity, localized stationary wavelets are used. LSWs have the benefit, versus other means of testing for stationarity, of using multiple hypothesis tests to determine stationarity. As informational flows exist between cash and futures at daily and weekly intervals, the aluminum market is efficient. Therefore, hedges used by producers and consumers of aluminum need not have a big concern in terms of the underestimation of hedge ratios. Questions about arbitrage given efficiency are addressed in the paper.Keywords: transfer entropy, nonstationary increments, wavelets, localized stationary wavelets, localized stationary wavelets
Procedia PDF Downloads 202375 Kannada HandWritten Character Recognition by Edge Hinge and Edge Distribution Techniques Using Manhatan and Minimum Distance Classifiers
Authors: C. V. Aravinda, H. N. Prakash
Abstract:
In this paper, we tried to convey fusion and state of art pertaining to SIL character recognition systems. In the first step, the text is preprocessed and normalized to perform the text identification correctly. The second step involves extracting relevant and informative features. The third step implements the classification decision. The three stages which involved are Data acquisition and preprocessing, Feature extraction, and Classification. Here we concentrated on two techniques to obtain features, Feature Extraction & Feature Selection. Edge-hinge distribution is a feature that characterizes the changes in direction of a script stroke in handwritten text. The edge-hinge distribution is extracted by means of a windowpane that is slid over an edge-detected binary handwriting image. Whenever the mid pixel of the window is on, the two edge fragments (i.e. connected sequences of pixels) emerging from this mid pixel are measured. Their directions are measured and stored as pairs. A joint probability distribution is obtained from a large sample of such pairs. Despite continuous effort, handwriting identification remains a challenging issue, due to different approaches use different varieties of features, having different. Therefore, our study will focus on handwriting recognition based on feature selection to simplify features extracting task, optimize classification system complexity, reduce running time and improve the classification accuracy.Keywords: word segmentation and recognition, character recognition, optical character recognition, hand written character recognition, South Indian languages
Procedia PDF Downloads 494374 Autonomous Ground Vehicle Navigation Based on a Single Camera and Image Processing Methods
Authors: Auday Al-Mayyahi, Phil Birch, William Wang
Abstract:
A vision system-based navigation for autonomous ground vehicle (AGV) equipped with a single camera in an indoor environment is presented. A proposed navigation algorithm has been utilized to detect obstacles represented by coloured mini- cones placed in different positions inside a corridor. For the recognition of the relative position and orientation of the AGV to the coloured mini cones, the features of the corridor structure are extracted using a single camera vision system. The relative position, the offset distance and steering angle of the AGV from the coloured mini-cones are derived from the simple corridor geometry to obtain a mapped environment in real world coordinates. The corridor is first captured as an image using the single camera. Hence, image processing functions are then performed to identify the existence of the cones within the environment. Using a bounding box surrounding each cone allows to identify the locations of cones in a pixel coordinate system. Thus, by matching the mapped and pixel coordinates using a projection transformation matrix, the real offset distances between the camera and obstacles are obtained. Real time experiments in an indoor environment are carried out with a wheeled AGV in order to demonstrate the validity and the effectiveness of the proposed algorithm.Keywords: autonomous ground vehicle, navigation, obstacle avoidance, vision system, single camera, image processing, ultrasonic sensor
Procedia PDF Downloads 302373 Structural, Magnetic and Magnetocaloric Properties of Iron-Doped Nd₀.₆Sr₀.₄MnO₃ Perovskite
Authors: Ismail Al-Yahmadi, Abbasher Gismelseed, Fatma Al-Mammari, Ahmed Al-Rawas, Ali Yousif, Imaddin Al-Omari, Hisham Widatallah, Mohamed Elzain
Abstract:
The influence of Fe-doping on the structural, magnetic and magnetocaloric properties of Nd₀.₆Sr₀.₄FeₓMn₁₋ₓO₃ (0≤ x ≤0.5) were investigated. The samples were synthesized by auto-combustion Sol-Gel method. The phase purity, crystallinity, and the structural properties for all prepared samples were examined by X-ray diffraction. XRD refinement indicates that the samples are crystallized in the orthorhombic single-phase with Pnma space group. Temperature dependence of magnetization measurements under a magnetic applied field of 0.02 T reveals that the samples with (x=0.0, 0.1, 0.2 and 0.3) exhibit a paramagnetic (PM) to ferromagnetic (FM) transition with decreasing temperature. The Curie temperature decreased with increasing Fe content from 256 K for x =0.0 to 80 K for x =0.3 due to increasing of antiferromagnetic superexchange (SE) interaction coupling. Moreover, the magnetization as a function of applied magnetic field (M-H) curves was measured at 2 K, and 300 K. the results of such measurements confirm the temperature dependence of magnetization measurements. The magnetic entropy change|∆SM | was evaluated using Maxwell's relation. The maximum values of the magnetic entropy change |-∆SMax |for x=0.0, 0.1, 0.2, 0.3 are found to be 15.35, 5.13, 3.36, 1.08 J/kg.K for an applied magnetic field of 9 T. Our result on magnetocaloric properties suggests that the parent sample Nd₀.₆Sr₀.₄MnO₃ could be a good refrigerant for low-temperature magnetic refrigeration.Keywords: manganite perovskite, magnetocaloric effect, X-ray diffraction, relative cooling power
Procedia PDF Downloads 159372 Clinical Application of Measurement of Eyeball Movement for Diagnose of Autism
Authors: Ippei Torii, Kaoruko Ohtani, Takahito Niwa, Naohiro Ishii
Abstract:
This paper shows developing an objectivity index using the measurement of subtle eyeball movement to diagnose autism. The developmentally disabled assessment varies, and the diagnosis depends on the subjective judgment of professionals. Therefore, a supplementary inspection method that will enable anyone to obtain the same quantitative judgment is needed. The diagnosis are made based on a comparison of the time of gazing an object in the conventional autistic study, but the results do not match. First, we divided the pupil into four parts from the center using measurements of subtle eyeball movement and comparing the number of pixels in the overlapping parts based on an afterimage. Then we developed the objective evaluation indicator to judge non-autistic and autistic people more clearly than conventional methods by analyzing the differences of subtle eyeball movements between the right and left eyes. Even when a person gazes at one point and his/her eyeballs always stay fixed at that point, their eyes perform subtle fixating movements (ie. tremors, drifting, microsaccades) to keep the retinal image clear. Particularly, the microsaccades link with nerves and reflect the mechanism that process the sight in a brain. We converted the differences between these movements into numbers. The process of the conversion is as followed: 1) Select the pixel indicating the subject's pupil from images of captured frames. 2) Set up a reference image, known as an afterimage, from the pixel indicating the subject's pupil. 3) Divide the pupil of the subject into four from the center in the acquired frame image. 4) Select the pixel in each divided part and count the number of the pixels of the overlapping part with the present pixel based on the afterimage. 5) Process the images with precision in 24 - 30fps from a camera and convert the amount of change in the pixels of the subtle movements of the right and left eyeballs in to numbers. The difference in the area of the amount of change occurs by measuring the difference between the afterimage in consecutive frames and the present frame. We set the amount of change to the quantity of the subtle eyeball movements. This method made it possible to detect a change of the eyeball vibration in numerical value. By comparing the numerical value between the right and left eyes, we found that there is a difference in how much they move. We compared the difference in these movements between non-autistc and autistic people and analyzed the result. Our research subjects consists of 8 children and 10 adults with autism, and 6 children and 18 adults with no disability. We measured the values through pasuit movements and fixations. We converted the difference in subtle movements between the right and left eyes into a graph and define it in multidimensional measure. Then we set the identification border with density function of the distribution, cumulative frequency function, and ROC curve. With this, we established an objective index to determine autism, normal, false positive, and false negative.Keywords: subtle eyeball movement, autism, microsaccade, pursuit eye movements, ROC curve
Procedia PDF Downloads 278371 Multi-Criteria Test Case Selection Using Ant Colony Optimization
Authors: Niranjana Devi N.
Abstract:
Test case selection is to select the subset of only the fit test cases and remove the unfit, ambiguous, redundant, unnecessary test cases which in turn improve the quality and reduce the cost of software testing. Test cases optimization is the problem of finding the best subset of test cases from a pool of the test cases to be audited. It will meet all the objectives of testing concurrently. But most of the research have evaluated the fitness of test cases only on single parameter fault detecting capability and optimize the test cases using a single objective. In the proposed approach, nine parameters are considered for test case selection and the best subset of parameters for test case selection is obtained using Interval Type-2 Fuzzy Rough Set. Test case selection is done in two stages. The first stage is the fuzzy entropy-based filtration technique, used for estimating and reducing the ambiguity in test case fitness evaluation and selection. The second stage is the ant colony optimization-based wrapper technique with a forward search strategy, employed to select test cases from the reduced test suite of the first stage. The results are evaluated using the Coverage parameters, Precision, Recall, F-Measure, APSC, APDC, and SSR. The experimental evaluation demonstrates that by this approach considerable computational effort can be avoided.Keywords: ant colony optimization, fuzzy entropy, interval type-2 fuzzy rough set, test case selection
Procedia PDF Downloads 668370 Using Non-Negative Matrix Factorization Based on Satellite Imagery for the Collection of Agricultural Statistics
Authors: Benyelles Zakaria, Yousfi Djaafar, Karoui Moussa Sofiane
Abstract:
Agriculture is fundamental and remains an important objective in the Algerian economy, based on traditional techniques and structures, it generally has a purpose of consumption. Collection of agricultural statistics in Algeria is done using traditional methods, which consists of investigating the use of land through survey and field survey. These statistics suffer from problems such as poor data quality, the long delay between collection of their last final availability and high cost compared to their limited use. The objective of this work is to develop a processing chain for a reliable inventory of agricultural land by trying to develop and implement a new method of extracting information. Indeed, this methodology allowed us to combine data from remote sensing and field data to collect statistics on areas of different land. The contribution of remote sensing in the improvement of agricultural statistics, in terms of area, has been studied in the wilaya of Sidi Bel Abbes. It is in this context that we applied a method for extracting information from satellite images. This method is called the non-negative matrix factorization, which does not consider the pixel as a single entity, but will look for components the pixel itself. The results obtained by the application of the MNF were compared with field data and the results obtained by the method of maximum likelihood. We have seen a rapprochement between the most important results of the FMN and those of field data. We believe that this method of extracting information from satellite data leads to interesting results of different types of land uses.Keywords: blind source separation, hyper-spectral image, non-negative matrix factorization, remote sensing
Procedia PDF Downloads 423369 Heuristic Spatial-Spectral Hyperspectral Image Segmentation Using Bands Quartile Box Plot Profiles
Authors: Mohamed A. Almoghalis, Osman M. Hegazy, Ibrahim F. Imam, Ali H. Elbastawessy
Abstract:
This paper presents a new hyperspectral image segmentation scheme with respect to both spatial and spectral contexts. The scheme uses the 8-pixels spatial pattern to build a weight structure that holds the number of outlier bands for each pixel among its neighborhood windows in different directions. The number of outlier bands for a pixel is obtained using bands quartile box plots profile among spatial 8-pixels pattern windows. The quartile box plot weight structure represents the spatial-spectral context in the image. Instead of starting segmentation process by single pixels, the proposed methodology starts by pixels groups that proved to share the same spectral features with respect to their spatial context. As a result, the segmentation scheme starts with Jigsaw pieces that build a mosaic image. The following step builds a model for each Jigsaw piece in the mosaic image. Each Jigsaw piece will be merged with another Jigsaw piece using KNN applied to their bands' quartile box plots profiles. The scheme iterates till required number of segments reached. Experiments use two data sets obtained from Earth Observer 1 (EO-1) sensor for Egypt and France. Initial results qualitative analysis showed encouraging results compared with ground truth. Quantitative analysis for the results will be included in the final paper.Keywords: hyperspectral image segmentation, image processing, remote sensing, box plot
Procedia PDF Downloads 605368 Reconstruction Spectral Reflectance Cube Based on Artificial Neural Network for Multispectral Imaging System
Authors: Iwan Cony Setiadi, Aulia M. T. Nasution
Abstract:
The multispectral imaging (MSI) technique has been used for skin analysis, especially for distant mapping of in-vivo skin chromophores by analyzing spectral data at each reflected image pixel. For ergonomic purpose, our multispectral imaging system is decomposed in two parts: a light source compartment based on LED with 11 different wavelenghts and a monochromatic 8-Bit CCD camera with C-Mount Objective Lens. The software based on GUI MATLAB to control the system was also developed. Our system provides 11 monoband images and is coupled with a software reconstructing hyperspectral cubes from these multispectral images. In this paper, we proposed a new method to build a hyperspectral reflectance cube based on artificial neural network algorithm. After preliminary corrections, a neural network is trained using the 32 natural color from X-Rite Color Checker Passport. The learning procedure involves acquisition, by a spectrophotometer. This neural network is then used to retrieve a megapixel multispectral cube between 380 and 880 nm with a 5 nm resolution from a low-spectral-resolution multispectral acquisition. As hyperspectral cubes contain spectra for each pixel; comparison should be done between the theoretical values from the spectrophotometer and the reconstructed spectrum. To evaluate the performance of reconstruction, we used the Goodness of Fit Coefficient (GFC) and Root Mean Squared Error (RMSE). To validate reconstruction, the set of 8 colour patches reconstructed by our MSI system and the one recorded by the spectrophotometer were compared. The average GFC was 0.9990 (standard deviation = 0.0010) and the average RMSE is 0.2167 (standard deviation = 0.064).Keywords: multispectral imaging, reflectance cube, spectral reconstruction, artificial neural network
Procedia PDF Downloads 321367 Developing Cause-effect Model of Urban Resilience versus Flood in Karaj City using TOPSIS and Shannon Entropy Techniques
Authors: Mohammad Saber Eslamlou, Manouchehr Tabibian, Mahta Mirmoghtadaei
Abstract:
The history of urban development and the increasing complexities of urban life have long been intertwined with different natural and man-made disasters. Sometimes, these unpleasant events have destroyed the cities forever. The growth of the urban population and the increase of social and economic resources in the cities increased the importance of developing a holistic approach to dealing with unknown urban disasters. As a result, the interest in resilience has increased in most of the scientific fields, and the urban planning literature has been enriched with the studies of the social, economic, infrastructural, and physical abilities of the cities. In this regard, different conceptual frameworks and patterns have been developed focusing on dimensions of resilience and different kinds of disasters. As the most frequent and likely natural disaster in Iran is flooding, the present study aims to develop a cause-effect model of urban resilience against flood in Karaj City. In this theoretical study, desk research and documentary studies were used to find the elements and dimensions of urban resilience. In this regard, 6 dimensions and 32 elements were found for urban resilience and a questionnaire was made by considering the requirements of TOPSIS techniques (pairwise comparison). The sample of the research consisted of 10 participants who were faculty members, academicians, board members of research centers, managers of the Ministry of Road and Urban Development, board members of New Towns Development Company, experts, and practitioners of consulting companies who had scientific and research backgrounds. The gathered data in this survey were analyzed using TOPSIS and Shannon Entropy techniques. The results show that Infrastructure/Physical, Social, Organizational/ Institutional, Structural/Physical, Economic, and Environmental dimensions are the most effective factors in urban resilience against floods in Karaj, respectively. Finally, a comprehensive model and a systematic framework of factors that affect the urban resilience of Karaj against floods was developed. This cause – effect model shows how different factors are related and influence each other, based on their connected structure and preferences.Keywords: urban resilience, TOPSIS, Shannon entropy, cause-effect model of resilience, flood
Procedia PDF Downloads 58366 Hybrid Weighted Multiple Attribute Decision Making Handover Method for Heterogeneous Networks
Authors: Mohanad Alhabo, Li Zhang, Naveed Nawaz
Abstract:
Small cell deployment in 5G networks is a promising technology to enhance capacity and coverage. However, unplanned deployment may cause high interference levels and high number of unnecessary handovers, which in turn will result in an increase in the signalling overhead. To guarantee service continuity, minimize unnecessary handovers, and reduce signalling overhead in heterogeneous networks, it is essential to properly model the handover decision problem. In this paper, we model the handover decision according to Multiple Attribute Decision Making (MADM) method, specifically Technique for Order Preference by Similarity to an Ideal Solution (TOPSIS). In this paper, we propose a hybrid TOPSIS method to control the handover in heterogeneous network. The proposed method adopts a hybrid weighting, which is a combination of entropy and standard deviation. A hybrid weighting control parameter is introduced to balance the impact of the standard deviation and entropy weighting on the network selection process and the overall performance. Our proposed method shows better performance, in terms of the number of frequent handovers and the mean user throughput, compared to the existing methods.Keywords: handover, HetNets, interference, MADM, small cells, TOPSIS, weight
Procedia PDF Downloads 149365 Asymmetrical Informative Estimation for Macroeconomic Model: Special Case in the Tourism Sector of Thailand
Authors: Chukiat Chaiboonsri, Satawat Wannapan
Abstract:
This paper used an asymmetric informative concept to apply in the macroeconomic model estimation of the tourism sector in Thailand. The variables used to statistically analyze are Thailand international and domestic tourism revenues, the expenditures of foreign and domestic tourists, service investments by private sectors, service investments by the government of Thailand, Thailand service imports and exports, and net service income transfers. All of data is a time-series index which was observed between 2002 and 2015. Empirically, the tourism multiplier and accelerator were estimated by two statistical approaches. The first was the result of the Generalized Method of Moments model (GMM) based on the assumption which the tourism market in Thailand had perfect information (Symmetrical data). The second was the result of the Maximum Entropy Bootstrapping approach (MEboot) based on the process that attempted to deal with imperfect information and reduced uncertainty in data observations (Asymmetrical data). In addition, the tourism leakages were investigated by a simple model based on the injections and leakages concept. The empirical findings represented the parameters computed from the MEboot approach which is different from the GMM method. However, both of the MEboot estimation and GMM model suggests that Thailand’s tourism sectors are in a period capable of stimulating the economy.Keywords: TThailand tourism, Maximum Entropy Bootstrapping approach, macroeconomic model, asymmetric information
Procedia PDF Downloads 294364 Accelerated Molecular Simulation: A Convolution Approach
Authors: Jannes Quer, Amir Niknejad, Marcus Weber
Abstract:
Computational Drug Design is often based on Molecular Dynamics simulations of molecular systems. Molecular Dynamics can be used to simulate, e.g., the binding and unbinding event of a small drug-like molecule with regard to the active site of an enzyme or a receptor. However, the time-scale of the overall binding event is many orders of magnitude longer than the time-scale of simulation. Thus, there is a need to speed-up molecular simulations. In order to speed up simulations, the molecular dynamics trajectories have to be ”steared” out of local minimizers of the potential energy surface – the so-called metastabilities – of the molecular system. Increasing the kinetic energy (temperature) is one possibility to accelerate simulated processes. However, with temperature the entropy of the molecular system increases, too. But this kind ”stearing” is not directed enough to stear the molecule out of the minimum toward the saddle point. In this article, we give a new mathematical idea, how a potential energy surface can be changed in such a way, that entropy is kept under control while the trajectories are still steared out of the metastabilities. In order to compute the unsteared transition behaviour based on a steared simulation, we propose to use extrapolation methods. In the end we mathematically show, that our method accelerates the simulations along the direction, in which the curvature of the potential energy surface changes the most, i.e., from local minimizers towards saddle points.Keywords: extrapolation, Eyring-Kramers, metastability, multilevel sampling
Procedia PDF Downloads 328363 Network Conditioning and Transfer Learning for Peripheral Nerve Segmentation in Ultrasound Images
Authors: Harold Mauricio Díaz-Vargas, Cristian Alfonso Jimenez-Castaño, David Augusto Cárdenas-Peña, Guillermo Alberto Ortiz-Gómez, Alvaro Angel Orozco-Gutierrez
Abstract:
Precise identification of the nerves is a crucial task performed by anesthesiologists for an effective Peripheral Nerve Blocking (PNB). Now, anesthesiologists use ultrasound imaging equipment to guide the PNB and detect nervous structures. However, visual identification of the nerves from ultrasound images is difficult, even for trained specialists, due to artifacts and low contrast. The recent advances in deep learning make neural networks a potential tool for accurate nerve segmentation systems, so addressing the above issues from raw data. The most widely spread U-Net network yields pixel-by-pixel segmentation by encoding the input image and decoding the attained feature vector into a semantic image. This work proposes a conditioning approach and encoder pre-training to enhance the nerve segmentation of traditional U-Nets. Conditioning is achieved by the one-hot encoding of the kind of target nerve a the network input, while the pre-training considers five well-known deep networks for image classification. The proposed approach is tested in a collection of 619 US images, where the best C-UNet architecture yields an 81% Dice coefficient, outperforming the 74% of the best traditional U-Net. Results prove that pre-trained models with the conditional approach outperform their equivalent baseline by supporting learning new features and enriching the discriminant capability of the tested networks.Keywords: nerve segmentation, U-Net, deep learning, ultrasound imaging, peripheral nerve blocking
Procedia PDF Downloads 106362 Energy Conservation in Heat Exchangers
Authors: Nadia Allouache
Abstract:
Energy conservation is one of the major concerns in the modern high tech era due to the limited amount of energy resources and the increasing cost of energy. Predicting an efficient use of energy in thermal systems like heat exchangers can only be achieved if the second law of thermodynamics is accounted for. The performance of heat exchangers can be substantially improved by many passive heat transfer augmentation techniques. These letters permit to improve heat transfer rate and to increase exchange surface, but on the other side, they also increase the friction factor associated with the flow. This raises the question of how to employ these passive techniques in order to minimize the useful energy. The objective of this present study is to use a porous substrate attached to the walls as a passive enhancement technique in heat exchangers and to find the compromise between the hydrodynamic and thermal performances under turbulent flow conditions, by using a second law approach. A modified k- ε model is used to simulating the turbulent flow in the porous medium and the turbulent shear flow is accounted for in the entropy generation equation. A numerical modeling, based on the finite volume method is employed for discretizing the governing equations. Effects of several parameters are investigated such as the porous substrate properties and the flow conditions. Results show that under certain conditions of the porous layer thickness, its permeability, and its effective thermal conductivity the minimum rate of entropy production is obtained.Keywords: second law approach, annular heat exchanger, turbulent flow, porous medium, modified model, numerical analysis
Procedia PDF Downloads 288361 Direct Measurements of the Electrocaloric Effect in Solid Ferroelectric Materials via Thermoreflectance
Authors: Layla Farhat, Mathieu Bardoux, Stéphane Longuemart, Ziad Herro, Abdelhak Hadj Sahraoui
Abstract:
Electrocaloric (EC) effect refers to the isothermal entropy or adiabatic temperature changes of a dielectric material induced by an external electric field. This phenomenon has been largely ignored for application because only modest EC effects (2.6Keywords: electrocaloric effect, thermoreflectance, ferroelectricity, cooling system
Procedia PDF Downloads 182360 Investigation of the EEG Signal Parameters during Epileptic Seizure Phases in Consequence to the Application of External Healing Therapy on Subjects
Authors: Karan Sharma, Ajay Kumar
Abstract:
Epileptic seizure is a type of disease due to which electrical charge in the brain flows abruptly resulting in abnormal activity by the subject. One percent of total world population gets epileptic seizure attacks.Due to abrupt flow of charge, EEG (Electroencephalogram) waveforms change. On the display appear a lot of spikes and sharp waves in the EEG signals. Detection of epileptic seizure by using conventional methods is time-consuming. Many methods have been evolved that detect it automatically. The initial part of this paper provides the review of techniques used to detect epileptic seizure automatically. The automatic detection is based on the feature extraction and classification patterns. For better accuracy decomposition of the signal is required before feature extraction. A number of parameters are calculated by the researchers using different techniques e.g. approximate entropy, sample entropy, Fuzzy approximate entropy, intrinsic mode function, cross-correlation etc. to discriminate between a normal signal & an epileptic seizure signal.The main objective of this review paper is to present the variations in the EEG signals at both stages (i) Interictal (recording between the epileptic seizure attacks). (ii) Ictal (recording during the epileptic seizure), using most appropriate methods of analysis to provide better healthcare diagnosis. This research paper then investigates the effects of a noninvasive healing therapy on the subjects by studying the EEG signals using latest signal processing techniques. The study has been conducted with Reiki as a healing technique, beneficial for restoring balance in cases of body mind alterations associated with an epileptic seizure. Reiki is practiced around the world and is recommended for different health services as a treatment approach. Reiki is an energy medicine, specifically a biofield therapy developed in Japan in the early 20th century. It is a system involving the laying on of hands, to stimulate the body’s natural energetic system. Earlier studies have shown an apparent connection between Reiki and the autonomous nervous system. The Reiki sessions are applied by an experienced therapist. EEG signals are measured at baseline, during session and post intervention to bring about effective epileptic seizure control or its elimination altogether.Keywords: EEG signal, Reiki, time consuming, epileptic seizure
Procedia PDF Downloads 406359 Key Parameters Analysis of the Stirring Systems in the Optmization Procedures
Abstract:
The inclusion of stirring systems in the calculation and optimization procedures has been undergone a significant lack of attention, what it can reflect in the results because such systems provide an additional energy to the process, besides promote a better distribution of mass and energy. This is meaningful for the reactive systems, particularly for the Continuous Stirred Tank Reactor (CSTR), for which the key variables and parameters, as well as the operating conditions of stirring systems, can play a pivotal role and it has been showed in the literature that neglect these factors can lead to sub-optimal results. It is also well known that the sole use of the First Law of Thermodynamics as an optimization tool cannot yield satisfactory results, since the joint use of the First and Second Laws condensed into a procedure so-called entropy generation minimization (EGM) has shown itself able to drive the system towards better results. Therefore, the main objective of this paper is to determine the effects of key parameters of the stirring system in the optimization procedures by means of EGM applied to the reactive systems. Such considerations have been possible by dimensional analysis according to Rayleigh and Buckingham's method, which takes into account the physical and geometric parameters and the variables of the reactive system. For the simulation purpose based on the production of propylene glycol, the results have shown a significant increase in the conversion rate from 36% (not-optimized system) to 95% (optimized system) with a consequent reduction of by-products. In addition, it has been possible to establish the influence of the work of the stirrer in the optimization procedure, in which can be described as a function of the fluid viscosity and consequently of the temperature. The conclusions to be drawn also indicate that the use of the entropic analysis as optimization tool has been proved to be simple, easy to apply and requiring low computational effort.Keywords: stirring systems, entropy, reactive system, optimization
Procedia PDF Downloads 245358 Investigation of Detectability of Orbital Objects/Debris in Geostationary Earth Orbit by Microwave Kinetic Inductance Detectors
Authors: Saeed Vahedikamal, Ian Hepburn
Abstract:
Microwave Kinetic Inductance Detectors (MKIDs) are considered as one of the most promising photon detectors of the future in many Astronomical applications such as exoplanet detections. The MKID advantages stem from their single photon sensitivity (ranging from UV to optical and near infrared), photon energy resolution and high temporal capability (~microseconds). There has been substantial progress in the development of these detectors and MKIDs with Megapixel arrays is now possible. The unique capability of recording an incident photon and its energy (or wavelength) while also registering its time of arrival to within a microsecond enables an array of MKIDs to produce a four-dimensional data block of x, y, z and t comprising x, y spatial, z axis per pixel spectral and t axis per pixel which is temporal. This offers the possibility that the spectrum and brightness variation for any detected piece of space debris as a function of time might offer a unique identifier or fingerprint. Such a fingerprint signal from any object identified in multiple detections by different observers has the potential to determine the orbital features of the object and be used for their tracking. Modelling performed so far shows that with a 20 cm telescope located at an Astronomical observatory (e.g. La Palma, Canary Islands) we could detect sub cm objects at GEO. By considering a Lambertian sphere with a 10 % reflectivity (albedo of the Moon) we anticipate the following for a GEO object: 10 cm object imaged in a 1 second image capture; 1.2 cm object for a 70 second image integration or 0.65 cm object for a 4 minute image integration. We present details of our modelling and the potential instrument for a dedicated GEO surveillance system.Keywords: space debris, orbital debris, detection system, observation, microwave kinetic inductance detectors, MKID
Procedia PDF Downloads 96357 Catalytic Thermodynamics of Nanocluster Adsorbates from Informational Statistical Mechanics
Authors: Forrest Kaatz, Adhemar Bultheel
Abstract:
We use an informational statistical mechanics approach to study the catalytic thermodynamics of platinum and palladium cuboctahedral nanoclusters. Nanoclusters and their adatoms are viewed as chemical graphs with a nearest neighbor adjacency matrix. We use the Morse potential to determine bond energies between cluster atoms in a coordination type calculation. We use adsorbate energies calculated from density functional theory (DFT) to study the adatom effects on the thermodynamic quantities, which are derived from a Hamiltonian. Oxygen radical and molecular adsorbates are studied on platinum clusters and hydrogen on palladium clusters. We calculate the entropy, free energy, and total energy as the coverage of adsorbates increases from bridge and hollow sites on the surface. Thermodynamic behavior versus adatom coverage is related to the structural distribution of adatoms on the nanocluster surfaces. The thermodynamic functions are characterized using a simple adsorption model, with linear trends as the coverage of adatoms increases. The data exhibits size effects for the measured thermodynamic properties with cluster diameters between 2 and 5 nm. Entropy and enthalpy calculations of Pt-O2 compare well with previous theoretical data for Pt(111)-O2, and our Pd-H results show similar trends as experimental measurements for Pd-H2 nanoclusters. Our methods are general and may be applied to wide variety of nanocluster adsorbate systems.Keywords: catalytic thermodynamics, palladium nanocluster absorbates, platinum nanocluster absorbates, statistical mechanics
Procedia PDF Downloads 166356 Developing an Out-of-Distribution Generalization Model Selection Framework through Impurity and Randomness Measurements and a Bias Index
Authors: Todd Zhou, Mikhail Yurochkin
Abstract:
Out-of-distribution (OOD) detection is receiving increasing amounts of attention in the machine learning research community, boosted by recent technologies, such as autonomous driving and image processing. This newly-burgeoning field has called for the need for more effective and efficient methods for out-of-distribution generalization methods. Without accessing the label information, deploying machine learning models to out-of-distribution domains becomes extremely challenging since it is impossible to evaluate model performance on unseen domains. To tackle this out-of-distribution detection difficulty, we designed a model selection pipeline algorithm and developed a model selection framework with different impurity and randomness measurements to evaluate and choose the best-performing models for out-of-distribution data. By exploring different randomness scores based on predicted probabilities, we adopted the out-of-distribution entropy and developed a custom-designed score, ”CombinedScore,” as the evaluation criterion. This proposed score was created by adding labeled source information into the judging space of the uncertainty entropy score using harmonic mean. Furthermore, the prediction bias was explored through the equality of opportunity violation measurement. We also improved machine learning model performance through model calibration. The effectiveness of the framework with the proposed evaluation criteria was validated on the Folktables American Community Survey (ACS) datasets.Keywords: model selection, domain generalization, model fairness, randomness measurements, bias index
Procedia PDF Downloads 124355 Resilience Assessment of Mountain Cities from the Perspective of Disaster Prevention: Taking Chongqing as an Example
Abstract:
President Xi Jinping has clearly stated the need to more effectively advance the process of urbanization centered on people, striving to shape cities into spaces that are healthier, safer, and more livable. However, during the development and construction of mountainous cities, numerous uncertain disruptive factors have emerged one after another, posing severe challenges to the city's overall development. Therefore, building resilient cities and creating high-quality urban ecosystems and safety systems have become the core and crux of achieving sustainable urban development. This paper takes the central urban area of Chongqing as the research object and establishes an urban resilience assessment indicator system from four dimensions: society, economy, ecology, and infrastructure. It employs the entropy weight method and TOPSIS model to assess the urban resilience level of the central urban area of Chongqing from 2019 to 2022. The results indicate that ① the resilience level of the central urban area of Chongqing is unevenly distributed, showing a spatial pattern of "high in the middle and low around"; it also demonstrates differentiation across different dimensions; ② due to the impact of the COVID-19 pandemic, the overall resilience level of the central urban area of Chongqing has declined significantly, with low recovery capacity and slow improvement in urban resilience. Finally, based on the four selected dimensions, this paper proposes optimization strategies for urban resilience in mountainous cities, providing a basis for Chongqing to build a safe and livable new city.Keywords: mountainous urban areas, central urban area of Chongqing, entropy weight method, TOPSIS model, ArcGIS
Procedia PDF Downloads 4354 High Fidelity Interactive Video Segmentation Using Tensor Decomposition, Boundary Loss, Convolutional Tessellations, and Context-Aware Skip Connections
Authors: Anthony D. Rhodes, Manan Goel
Abstract:
We provide a high fidelity deep learning algorithm (HyperSeg) for interactive video segmentation tasks using a dense convolutional network with context-aware skip connections and compressed, 'hypercolumn' image features combined with a convolutional tessellation procedure. In order to maintain high output fidelity, our model crucially processes and renders all image features in high resolution, without utilizing downsampling or pooling procedures. We maintain this consistent, high grade fidelity efficiently in our model chiefly through two means: (1) we use a statistically-principled, tensor decomposition procedure to modulate the number of hypercolumn features and (2) we render these features in their native resolution using a convolutional tessellation technique. For improved pixel-level segmentation results, we introduce a boundary loss function; for improved temporal coherence in video data, we include temporal image information in our model. Through experiments, we demonstrate the improved accuracy of our model against baseline models for interactive segmentation tasks using high resolution video data. We also introduce a benchmark video segmentation dataset, the VFX Segmentation Dataset, which contains over 27,046 high resolution video frames, including green screen and various composited scenes with corresponding, hand-crafted, pixel-level segmentations. Our work presents a improves state of the art segmentation fidelity with high resolution data and can be used across a broad range of application domains, including VFX pipelines and medical imaging disciplines.Keywords: computer vision, object segmentation, interactive segmentation, model compression
Procedia PDF Downloads 120353 Groundwater Potential Mapping using Frequency Ratio and Shannon’s Entropy Models in Lesser Himalaya Zone, Nepal
Authors: Yagya Murti Aryal, Bipin Adhikari, Pradeep Gyawali
Abstract:
The Lesser Himalaya zone of Nepal consists of thrusting and folding belts, which play an important role in the sustainable management of groundwater in the Himalayan regions. The study area is located in the Dolakha and Ramechhap Districts of Bagmati Province, Nepal. Geologically, these districts are situated in the Lesser Himalayas and partly encompass the Higher Himalayan rock sequence, which includes low-grade to high-grade metamorphic rocks. Following the Gorkha Earthquake in 2015, numerous springs dried up, and many others are currently experiencing depletion due to the distortion of the natural groundwater flow. The primary objective of this study is to identify potential groundwater areas and determine suitable sites for artificial groundwater recharge. Two distinct statistical approaches were used to develop models: The Frequency Ratio (FR) and Shannon Entropy (SE) methods. The study utilized both primary and secondary datasets and incorporated significant role and controlling factors derived from field works and literature reviews. Field data collection involved spring inventory, soil analysis, lithology assessment, and hydro-geomorphology study. Additionally, slope, aspect, drainage density, and lineament density were extracted from a Digital Elevation Model (DEM) using GIS and transformed into thematic layers. For training and validation, 114 springs were divided into a 70/30 ratio, with an equal number of non-spring pixels. After assigning weights to each class based on the two proposed models, a groundwater potential map was generated using GIS, classifying the area into five levels: very low, low, moderate, high, and very high. The model's outcome reveals that over 41% of the area falls into the low and very low potential categories, while only 30% of the area demonstrates a high probability of groundwater potential. To evaluate model performance, accuracy was assessed using the Area under the Curve (AUC). The success rate AUC values for the FR and SE methods were determined to be 78.73% and 77.09%, respectively. Additionally, the prediction rate AUC values for the FR and SE methods were calculated as 76.31% and 74.08%. The results indicate that the FR model exhibits greater prediction capability compared to the SE model in this case study.Keywords: groundwater potential mapping, frequency ratio, Shannon’s Entropy, Lesser Himalaya Zone, sustainable groundwater management
Procedia PDF Downloads 81352 Land Use Change Detection Using Satellite Images for Najran City, Kingdom of Saudi Arabia (KSA)
Authors: Ismail Elkhrachy
Abstract:
Determination of land use changing is an important component of regional planning for applications ranging from urban fringe change detection to monitoring change detection of land use. This data are very useful for natural resources management.On the other hand, the technologies and methods of change detection also have evolved dramatically during past 20 years. So it has been well recognized that the change detection had become the best methods for researching dynamic change of land use by multi-temporal remotely-sensed data. The objective of this paper is to assess, evaluate and monitor land use change surrounding the area of Najran city, Kingdom of Saudi Arabia (KSA) using Landsat images (June 23, 2009) and ETM+ image(June. 21, 2014). The post-classification change detection technique was applied. At last,two-time subset images of Najran city are compared on a pixel-by-pixel basis using the post-classification comparison method and the from-to change matrix is produced, the land use change information obtained.Three classes were obtained, urban, bare land and agricultural land from unsupervised classification method by using Erdas Imagine and ArcGIS software. Accuracy assessment of classification has been performed before calculating change detection for study area. The obtained accuracy is between 61% to 87% percent for all the classes. Change detection analysis shows that rapid growth in urban area has been increased by 73.2%, the agricultural area has been decreased by 10.5 % and barren area reduced by 7% between 2009 and 2014. The quantitative study indicated that the area of urban class has unchanged by 58.2 km〗^2, gained 70.3 〖km〗^2 and lost 16 〖km〗^2. For bare land class 586.4〖km〗^2 has unchanged, 53.2〖km〗^2 has gained and 101.5〖km〗^2 has lost. While agriculture area class, 20.2〖km〗^2 has unchanged, 31.2〖km〗^2 has gained and 37.2〖km〗^2 has lost.Keywords: land use, remote sensing, change detection, satellite images, image classification
Procedia PDF Downloads 521351 Extended Intuitionistic Fuzzy VIKOR Method in Group Decision Making: The Case of Vendor Selection Decision
Authors: Nastaran Hajiheydari, Mohammad Soltani Delgosha
Abstract:
Vendor (supplier) selection is a group decision-making (GDM) process, in which, based on some predetermined criteria, the experts’ preferences are provided in order to rank and choose the most desirable suppliers. In the real business environment, our attitudes or our choices would be made in an uncertain and indecisive situation could not be expressed in a crisp framework. Intuitionistic fuzzy sets (IFSs) could handle such situations in the best way. VIKOR method was developed to solve multi-criteria decision-making (MCDM) problems. This method, which is used to determine the compromised feasible solution with respect to the conflicting criteria, introduces a multi-criteria ranking index based on the particular measure of 'closeness' to the 'ideal solution'. Until now, there has been a little investigation of VIKOR with IFS, therefore we extended the intuitionistic fuzzy (IF) VIKOR to solve vendor selection problem under IF GDM environment. The present study intends to develop an IF VIKOR method in a GDM situation. Therefore, a model is presented to calculate the criterion weights based on entropy measure. Then, the interval-valued intuitionistic fuzzy weighted geometric (IFWG) operator utilized to obtain the total decision matrix. In the next stage, an approach based on the positive idle intuitionistic fuzzy number (PIIFN) and negative idle intuitionistic fuzzy number (NIIFN) was developed. Finally, the application of the proposed method to solve a vendor selection problem illustrated.Keywords: group decision making, intuitionistic fuzzy set, intuitionistic fuzzy entropy measure, vendor selection, VIKOR
Procedia PDF Downloads 155350 A Segmentation Method for Grayscale Images Based on the Firefly Algorithm and the Gaussian Mixture Model
Authors: Donatella Giuliani
Abstract:
In this research, we propose an unsupervised grayscale image segmentation method based on a combination of the Firefly Algorithm and the Gaussian Mixture Model. Firstly, the Firefly Algorithm has been applied in a histogram-based research of cluster means. The Firefly Algorithm is a stochastic global optimization technique, centered on the flashing characteristics of fireflies. In this context it has been performed to determine the number of clusters and the related cluster means in a histogram-based segmentation approach. Successively these means are used in the initialization step for the parameter estimation of a Gaussian Mixture Model. The parametric probability density function of a Gaussian Mixture Model is represented as a weighted sum of Gaussian component densities, whose parameters are evaluated applying the iterative Expectation-Maximization technique. The coefficients of the linear super-position of Gaussians can be thought as prior probabilities of each component. Applying the Bayes rule, the posterior probabilities of the grayscale intensities have been evaluated, therefore their maxima are used to assign each pixel to the clusters, according to their gray-level values. The proposed approach appears fairly solid and reliable when applied even to complex grayscale images. The validation has been performed by using different standard measures, more precisely: the Root Mean Square Error (RMSE), the Structural Content (SC), the Normalized Correlation Coefficient (NK) and the Davies-Bouldin (DB) index. The achieved results have strongly confirmed the robustness of this gray scale segmentation method based on a metaheuristic algorithm. Another noteworthy advantage of this methodology is due to the use of maxima of responsibilities for the pixel assignment that implies a consistent reduction of the computational costs.Keywords: clustering images, firefly algorithm, Gaussian mixture model, meta heuristic algorithm, image segmentation
Procedia PDF Downloads 217349 Efficient Video Compression Technique Using Convolutional Neural Networks and Generative Adversarial Network
Authors: P. Karthick, K. Mahesh
Abstract:
Video has become an increasingly significant component of our digital everyday contact. With the advancement of greater contents and shows of the resolution, its significant volume poses serious obstacles to the objective of receiving, distributing, compressing, and revealing video content of high quality. In this paper, we propose the primary beginning to complete a deep video compression model that jointly upgrades all video compression components. The video compression method involves splitting the video into frames, comparing the images using convolutional neural networks (CNN) to remove duplicates, repeating the single image instead of the duplicate images by recognizing and detecting minute changes using generative adversarial network (GAN) and recorded with long short-term memory (LSTM). Instead of the complete image, the small changes generated using GAN are substituted, which helps in frame level compression. Pixel wise comparison is performed using K-nearest neighbours (KNN) over the frame, clustered with K-means, and singular value decomposition (SVD) is applied for each and every frame in the video for all three color channels [Red, Green, Blue] to decrease the dimension of the utility matrix [R, G, B] by extracting its latent factors. Video frames are packed with parameters with the aid of a codec and converted to video format, and the results are compared with the original video. Repeated experiments on several videos with different sizes, duration, frames per second (FPS), and quality results demonstrate a significant resampling rate. On average, the result produced had approximately a 10% deviation in quality and more than 50% in size when compared with the original video.Keywords: video compression, K-means clustering, convolutional neural network, generative adversarial network, singular value decomposition, pixel visualization, stochastic gradient descent, frame per second extraction, RGB channel extraction, self-detection and deciding system
Procedia PDF Downloads 187348 Comprehensive Analysis of Electrohysterography Signal Features in Term and Preterm Labor
Authors: Zhihui Liu, Dongmei Hao, Qian Qiu, Yang An, Lin Yang, Song Zhang, Yimin Yang, Xuwen Li, Dingchang Zheng
Abstract:
Premature birth, defined as birth before 37 completed weeks of gestation is a leading cause of neonatal morbidity and mortality and has long-term adverse consequences for health. It has recently been reported that the worldwide preterm birth rate is around 10%. The existing measurement techniques for diagnosing preterm delivery include tocodynamometer, ultrasound and fetal fibronectin. However, they are subjective, or suffer from high measurement variability and inaccurate diagnosis and prediction of preterm labor. Electrohysterography (EHG) method based on recording of uterine electrical activity by electrodes attached to maternal abdomen, is a promising method to assess uterine activity and diagnose preterm labor. The purpose of this study is to analyze the difference of EHG signal features between term labor and preterm labor. Free access database was used with 300 signals acquired in two groups of pregnant women who delivered at term (262 cases) and preterm (38 cases). Among them, EHG signals from 38 term labor and 38 preterm labor were preprocessed with band-pass Butterworth filters of 0.08–4Hz. Then, EHG signal features were extracted, which comprised classical time domain description including root mean square and zero-crossing number, spectral parameters including peak frequency, mean frequency and median frequency, wavelet packet coefficients, autoregression (AR) model coefficients, and nonlinear measures including maximal Lyapunov exponent, sample entropy and correlation dimension. Their statistical significance for recognition of two groups of recordings was provided. The results showed that mean frequency of preterm labor was significantly smaller than term labor (p < 0.05). 5 coefficients of AR model showed significant difference between term labor and preterm labor. The maximal Lyapunov exponent of early preterm (time of recording < the 26th week of gestation) was significantly smaller than early term. The sample entropy of late preterm (time of recording > the 26th week of gestation) was significantly smaller than late term. There was no significant difference for other features between the term labor and preterm labor groups. Any future work regarding classification should therefore focus on using multiple techniques, with the mean frequency, AR coefficients, maximal Lyapunov exponent and the sample entropy being among the prime candidates. Even if these methods are not yet useful for clinical practice, they do bring the most promising indicators for the preterm labor.Keywords: electrohysterogram, feature, preterm labor, term labor
Procedia PDF Downloads 571347 The Meaningful Pixel and Texture: Exploring Digital Vision and Art Practice Based on Chinese Cosmotechnics
Authors: Xingdu Wang, Charlie Gere, Emma Rose, Yuxuan Zhao
Abstract:
The study introduces a fresh perspective on the digital realm through an examination of the Chinese concept of Xiang, elucidating how it can build an understanding of pixels and textures on screens as digital trigrams. This concept attempts to offer an outlook on the intersection of digital technology and the natural world, thereby contributing to discussions about the harmonious relationship between humans and technology. The study looks for the ancient Chinese theory of Xiang as a key to establishing the theories and practices to respond to the problem of Contemporary Chinese technics. Xiang is a Chinese method of understanding the essentials of things through appearances, which differs from the method of science in the Westen. Xiang, the basement of Chinese visual art, is rooted in ancient Chinese philosophy and connected to the eight trigrams. The discussion of Xiang connects art, philosophy, and technology. This paper connects the meaning of Xiang with the 'truth appearing' philosophically through the analysis of the concepts of phenomenon and noumenon and the unique Chinese way of observing. Hereafter, the historical interconnection between ancient painting and writing in China emphasizes their relationship between technical craftsmanship and artistic expression. In digital, the paper blurs the traditional boundaries between images and text on digital screens in theory. Lastly, this study identified an ensemble concept relating to pixels and textures in computer vision, drawing inspiration from AI image recognition in Chinese paintings. In art practice, by presenting a fluid visual experience in the form of pixels, which mimics the flow of lines in traditional calligraphy and painting, it is hoped that the viewer will be brought back to the process of the truth appearing as defined by the 'Xiang’.Keywords: Chinese cosmotechnics, computer vision, contemporary Neo-Confucianism, texture and pixel, Xiang
Procedia PDF Downloads 64