Search results for: lake sediments
406 Ecological impacts of Cage Farming: A Case Study of Lake Victoria, Kenya
Authors: Mercy Chepkirui, Reuben Omondi, Paul Orina, Albert Getabu, Lewis Sitoki, Jonathan Munguti
Abstract:
Globally, the decline in capture fisheries as a result of the growing population and increasing awareness of the nutritional benefits of white meat has led to the development of aquaculture. This is anticipated to meet the increasing call for more food for the human population, which is likely to increase further by 2050. Statistics showed that more than 50% of the global future fish diet will come from aquaculture. Aquaculture began commercializing some decades ago; this is accredited to technological advancement from traditional to modern cultural systems, including cage farming. Cage farming technology has been rapidly growing since its inception in Lake Victoria, Kenya. Currently, over 6,000 cages have been set up in Kenyan waters, and this offers an excellent opportunity for recognition of Kenya’s government tactic to eliminate food insecurity and malnutrition, create employment and promote a Blue Economy. However, being an open farming enterprise is likely to emit large bulk of waste hence altering the ecosystem integrity of the lake. This is through increased chlorophyll-a pigments, alteration of the plankton community, macroinvertebrates, fish genetic pollution, transmission of fish diseases and pathogens. Cage farming further increases the nutrient loads leading to the production of harmful algal blooms, thus negatively affecting aquatic and human life. Despite the ecological transformation, cage farming provides a platform for the achievement of the Sustainable Development Goals of 2030, especially the achievement of food security and nutrition. Therefore, there is a need for Integrated Multitrophic Aquaculture as part of Blue Transformation for ecosystem monitoring.Keywords: aquaculture, ecosystem, blue economy, food security
Procedia PDF Downloads 79405 Discharge Estimation in a Two Flow Braided Channel Based on Energy Concept
Authors: Amiya Kumar Pati, Spandan Sahu, Kishanjit Kumar Khatua
Abstract:
River is our main source of water which is a form of open channel flow and the flow in the open channel provides with many complex phenomena of sciences that needs to be tackled such as the critical flow conditions, boundary shear stress, and depth-averaged velocity. The development of society, more or less solely depends upon the flow of rivers. The rivers are major sources of many sediments and specific ingredients which are much essential for human beings. A river flow consisting of small and shallow channels sometimes divide and recombine numerous times because of the slow water flow or the built up sediments. The pattern formed during this process resembles the strands of a braid. Braided streams form where the sediment load is so heavy that some of the sediments are deposited as shifting islands. Braided rivers often exist near the mountainous regions and typically carry coarse-grained and heterogeneous sediments down a fairly steep gradient. In this paper, the apparent shear stress formulae were suitably modified, and the Energy Concept Method (ECM) was applied for the prediction of discharges at the junction of a two-flow braided compound channel. The Energy Concept Method has not been applied for estimating the discharges in the braided channels. The energy loss in the channels is analyzed based on mechanical analysis. The cross-section of channel is divided into two sub-areas, namely the main-channel below the bank-full level and region above the bank-full level for estimating the total discharge. The experimental data are compared with a wide range of theoretical data available in the published literature to verify this model. The accuracy of this approach is also compared with Divided Channel Method (DCM). From error analysis of this method, it is observed that the relative error is less for the data-sets having smooth floodplains when compared to rough floodplains. Comparisons with other models indicate that the present method has reasonable accuracy for engineering purposes.Keywords: critical flow, energy concept, open channel flow, sediment, two-flow braided compound channel
Procedia PDF Downloads 126404 Evolution of Fluvial-Deltaic System Recorded in Accumulation of Organic Material: From the Example of the Kura River in the South Caspian Basin
Authors: Dadash Huseynov, Elmira Aliyeva, Robert Hoogendoorn, Salomon Kroonenberg
Abstract:
The study of organic material in bottom sediments together with lithologic and biostratigraphic data improves our understanding of the evolution of fluvial and deltaic systems. The modern Kura River delta is located in the Southwest Caspian Sea and is fluvial-dominated. The river distributes its sediment load through three channels oriented North-East, South-East, and South-West. The offshore modern delta consists of thinly bedded or laminated silty clays and dark grey clays. Locally sand and shell-rich horizons occur. Onshore delta is composed of channel-levee sands and floodplain silts and clays. Overall sedimentation rates in the delta determined by the 210Pb method range between 1.5-3.0 cm/yr. We investigated the distribution of organic material in the deltaic sediments in 300 samples selected from 3m deep piston cores. The studies of transparent sections demonstrate that deltaic sediments are enriched in terrestrial debris. It is non-transparent and has an irregular, isometric, or elongated shape, angular edges, black or dark-brown colour, and a clearly expressed fabric. Partially it is dissolved at the edges and is replaced by iron sulphides. Fragments of marine algae have more smooth edges, brown colour. They are transparent; the fabric is rarely preserved. The evidences of dissolution and gelification are well observed. Iron sulphides are common. The recorded third type of organic material has a round, drop-like, or oval shape and belongs to planktonic organisms. Their initial organic material is strongly transformed or replaced by dark organic compounds, probably, neoplasms. The particles are red-brown and transparent. The iron sulphides are not observed. The amount of Corg in the uppermost portion of sediments accumulated in the offshore Kura River delta varies from 0.2 to 1.22%, with median values of 0.6-0.8%. In poorly sorted sediments Corg content changes from 0.24 to 0.97% (average 0.69%), silty-sandy clay - 0.45 to 1.22% (average 0.77%), sandy-silty clay - 0.5 to 0.97% (average 0.67%), silty clay - 0.52 to 0.95% (average 0.70%). The data demonstrate that in sediments deposited during Caspian Sea high stand in 1929, the minimum of Corg content is localised near the mouth of the main south-eastern distributary channel and coincides with the minimum of the clay fraction. At the same time, the maximum of organic matter content locates near the mouth of the eastern channel, which was inactive at that time. In sediments accumulated during the last Caspian Sea low stand in 1977, the area of Corg minimum is attached to the north-eastern distributary’s mouth. It indicates the high activity of this distributary during the Caspian Sea fall. The area of Corg minimum is also recorded around the mouth of the main channel and eastern part of the delta. Maximums of Corg and clay fraction shift towards the basin. During the Caspian high stand in 1995, the minimum of Corg content is again observed in the mouth of the main south-eastern channel. The distribution of organic matter in the modern sediments of the Kura river delta displays the strong time dependence and reflects progradational-retrogradational cycles of evolution of this fluvial-deltaic system.Keywords: high and low stands, Kura River delta, South Caspian Sea, organic matter
Procedia PDF Downloads 126403 Power Generation through Water Vapour: An Approach of Using Sea/River/Lake Water as Renewable Energy Source
Authors: Riad
Abstract:
As present world needs more and more energy in a low cost way, it needs to find out the optimal way of power generation. In the sense of low cost, renewable energy is one of the greatest sources of power generation. Water vapour of sea/river/lake can be used for power generation by using the greenhouse effect in a large flat type water chamber floating on the water surface. The water chamber will always be kept half filled. When water evaporates by sunlight, the high pressured gaseous water will be stored in the chamber. By passing through a pipe and by using aerodynamics it can be used for power generation. The water level of the chamber is controlled by some means. As a large amount of water evaporates, an estimation can be highlighted, approximately 3 to 4 thousand gallons of water evaporates from per acre of surface (this amount will be more by greenhouse effect). This large amount of gaseous water can be utilized for power generation by passing through a pipe. This method can be a source of power generation.Keywords: renewable energy, greenhouse effect, water chamber, water vapour
Procedia PDF Downloads 355402 Site Formation Processes at a New Kingdom Settlement at Sai Island, Sudan
Authors: Sean Taylor, Sayantani Neogi, Julia Budka
Abstract:
The important Egyptian New Kingdom settlement at Sai Island Sudan presents a complex stratigraphic archaeological record. This study takes the theoretic stance that it, not just the archaeological material being retrieved from the deposits but the sediments themselves that reflect human agency. These anthropogenic sediments reflect the use life of the buildings and spaces between and the post-depositional processes which operate to complicate the archaeological record. The application of soil micromorphology is a technique that takes intact block samples of sediment and analyses them in thin section under a petrological microscope. A detailed understanding of site formation processes and a contextualized knowledge of the material culture can be understood through careful and systematic observation of the changing facies. The major findings of the study are that soil and sedimentary information can provide valuable insights to the use of space during the New Kingdom and elucidate the complexities of site formation processes.Keywords: anthropogenic sediment, New Kingdom, site formation processes, soil micromorphology
Procedia PDF Downloads 436401 An Integrated Framework for Wind-Wave Study in Lakes
Authors: Moien Mojabi, Aurelien Hospital, Daniel Potts, Chris Young, Albert Leung
Abstract:
The wave analysis is an integral part of the hydrotechnical assessment carried out during the permitting and design phases for coastal structures, such as marinas. This analysis aims in quantifying: i) the Suitability of the coastal structure design against Small Craft Harbour wave tranquility safety criterion; ii) Potential environmental impacts of the structure (e.g., effect on wave, flow, and sediment transport); iii) Mooring and dock design and iv) Requirements set by regulatory agency’s (e.g., WSA section 11 application). While a complex three-dimensional hydrodynamic modelling approach can be applied on large-scale projects, the need for an efficient and reliable wave analysis method suitable for smaller scale marina projects was identified. As a result, Tetra Tech has developed and applied an integrated analysis framework (hereafter TT approach), which takes the advantage of the state-of-the-art numerical models while preserving the level of simplicity that fits smaller scale projects. The present paper aims to describe the TT approach and highlight the key advantages of using this integrated framework in lake marina projects. The core of this methodology is made by integrating wind, water level, bathymetry, and structure geometry data. To respond to the needs of specific projects, several add-on modules have been added to the core of the TT approach. The main advantages of this method over the simplified analytical approaches are i) Accounting for the proper physics of the lake through the modelling of the entire lake (capturing real lake geometry) instead of a simplified fetch approach; ii) Providing a more realistic representation of the waves by modelling random waves instead of monochromatic waves; iii) Modelling wave-structure interaction (e.g. wave transmission/reflection application for floating structures and piles amongst others); iv) Accounting for wave interaction with the lakebed (e.g. bottom friction, refraction, and breaking); v) Providing the inputs for flow and sediment transport assessment at the project site; vi) Taking in consideration historical and geographical variations of the wind field; and vii) Independence of the scale of the reservoir under study. Overall, in comparison with simplified analytical approaches, this integrated framework provides a more realistic and reliable estimation of wave parameters (and its spatial distribution) in lake marinas, leading to a realistic hydrotechnical assessment accessible to any project size, from the development of a new marina to marina expansion and pile replacement. Tetra Tech has successfully utilized this approach since many years in the Okanagan area.Keywords: wave modelling, wind-wave, extreme value analysis, marina
Procedia PDF Downloads 84400 High Altitude Glacier Surface Mapping in Dhauliganga Basin of Himalayan Environment Using Remote Sensing Technique
Authors: Aayushi Pandey, Manoj Kumar Pandey, Ashutosh Tiwari, Kireet Kumar
Abstract:
Glaciers play an important role in climate change and are sensitive phenomena of global climate change scenario. Glaciers in Himalayas are unique as they are predominantly valley type and are located in tropical, high altitude regions. These glaciers are often covered with debris which greatly affects ablation rate of glaciers and work as a sensitive indicator of glacier health. The aim of this study is to map high altitude Glacier surface with a focus on glacial lake and debris estimation using different techniques in Nagling glacier of dhauliganga basin in Himalayan region. Different Image Classification techniques i.e. thresholding on different band ratios and supervised classification using maximum likelihood classifier (MLC) have been used on high resolution sentinel 2A level 1c satellite imagery of 14 October 2017.Here Near Infrared (NIR)/Shortwave Infrared (SWIR) ratio image was used to extract the glaciated classes (Snow, Ice, Ice Mixed Debris) from other non-glaciated terrain classes. SWIR/BLUE Ratio Image was used to map valley rock and Debris while Green/NIR ratio image was found most suitable for mapping Glacial Lake. Accuracy assessment was performed using high resolution (3 meters) Planetscope Imagery using 60 stratified random points. The overall accuracy of MLC was 85 % while the accuracy of Band Ratios was 96.66 %. According to Band Ratio technique total areal extent of glaciated classes (Snow, Ice ,IMD) in Nagling glacier was 10.70 km2 nearly 38.07% of study area comprising of 30.87 % Snow covered area, 3.93% Ice and 3.27 % IMD covered area. Non-glaciated classes (vegetation, glacial lake, debris and valley rock) covered 61.93 % of the total area out of which valley rock is dominant with 33.83% coverage followed by debris covering 27.7 % of the area in nagling glacier. Glacial lake and Debris were accurately mapped using Band ratio technique Hence, Band Ratio approach appears to be useful for the mapping of debris covered glacier in Himalayan Region.Keywords: band ratio, Dhauliganga basin, glacier mapping, Himalayan region, maximum likelihood classifier (MLC), Sentinel-2 satellite image
Procedia PDF Downloads 228399 Advantages of Matrix Solid Phase Dispersive (MSPD) Extraction Associated to MIPS versus MAE Liquid Extraction for the Simultaneous Analysis of PAHs, PCBs and Some Hydroxylated PAHs in Sediments
Authors: F. Portet-Koltalo, Y. Tian, I. Berger, C. Boulanger-Lecomte, A. Benamar, N. Machour
Abstract:
Sediments are complex environments which can accumulate a great variety of persistent toxic contaminants such as polychlorobiphenyles (PCBs), polycyclic aromatic hydrocarbons (PAHs) and some of their more toxic degradation metabolites such as hydroxylated PAHs (OH-PAHs). Owing to their composition, fine clayey sediments can be more difficult to extract than soils using conventional solvent extraction processes. So this study aimed to compare the potential of MSPD (matrix solid phase dispersive extraction) to extract PCBs, PAHs and OH-PAHs, in comparison with microwave assisted extraction (MAE). Methodologies: MAE extraction with various solvent mixtures was used to extract PCBs, PAHs and OH-PAHs from sediments in two runs, followed by two GC-MS analyses. MSPD consisted in crushing the dried sediment with dispersive agents, introducing the mixture in cartridges and eluting the target compounds with an appropriate volume of selected solvents. So MSPD combined with cartridges containing MIPs (molecularly imprinted polymers) designed for OH-PAHs was used to extract the three families of target compounds in only one run, followed by parallel analyses in GC-MS for PAHs/PCBs and HPLC-FLD for OH-PAHs. Results: MAE extraction was optimized to extract from clayey sediments, in two runs, PAHs/PCBs in one hand and OH-PAHs in the other hand. Indeed, the best conditions of extractions (mixtures of extracting solvents, temperature) were different if we consider the polarity and the thermodegradability of the different families of target contaminants: PAHs/PCBs were better extracted using an acetone/toluene 50/50 mixture at 130°C whereas OH-PAHs were better extracted using an acetonitrile/toluene 90/10 mixture at 100°C. Moreover, the two consecutive GC-MS analyses contributed to double the total analysis time. A matrix solid phase dispersive (MSPD) extraction procedure was also optimized, with the first objective of increasing the extraction recovery yields of PAHs and PCBs from fine-grained sediment. The crushing time (2-10 min), the nature of the dispersing agents added for purifying and increasing the extraction yields (Florisil, octadecylsilane, 3-chloropropyle, 4-benzylchloride), the nature and the volume of eluting solvents (methylene chloride, hexane, hexane/acetone…) were studied. It appeared that in the best conditions, MSPD was a better extraction method than MAE for PAHs and PCBs, with respectively, mean increases of 8.2% and 71%. This method was also faster, easier and less expensive. But the other advantage of MSPD was that it allowed to introduce easily, just after the first elution process of PAHs/PCBs, a step permitting the selective recovery of OH-PAHs. A cartridge containing MIPs designed for phenols was coupled to the cartridge containing the dispersed sediment, and various eluting solvents, different from those used for PAHs and PCBs, were tested to selectively concentrate and extract OH-PAHs. Thereafter OH-PAHs could be analyzed at the same time than PAHs and PCBs: the OH-PAH extract could be analyzed with HPLC-FLD, whereas the PAHs/PCBs extract was analyzed with GC-MS, adding only few minutes more to the total duration of the analytical process. Conclusion: MSPD associated to MIPs appeared to be an easy, fast and low expensive method, able to extract in one run a complex mixture of toxic apolar and more polar contaminants present in clayey fine-grained sediments, an environmental matrix which is generally difficult to analyze.Keywords: contaminated fine-grained sediments, matrix solid phase dispersive extraction, microwave assisted extraction, molecularly imprinted polymers, multi-pollutant analysis
Procedia PDF Downloads 353398 Phytoplankton Structure and Invasive Cyanobacterial Species of Polish Temperate Lakes: Their Associations with Environmental Parameters and Findings About Their Toxic Properties
Authors: Tumer Orhun Aykut, Robin Michael Crucitti-Thoo, Agnieszka Rudak, Iwona Jasser
Abstract:
Due to eutrophication connected to the growing human population, intensive agriculture, industrialization, and reinforcement of global warming, freshwater resources are changing negatively in every region of the World. This change also concerns the replacement of native species by invasive ones that can spread in many ways. Biological invasions are a developing problem to ecosystem continuity and their presence is mostly common in freshwater bodies. The occurrence and potential invasion of the species depends on associations between abiotic and biotic variables. Due to climate change, many species can extend their range from low to high latitudes and differ in their geographic ranges. In addition, the hydrological issues strongly influence the physicochemical parameters and biological processes, especially the growth rates of species and bloom formation of Cyanobacteria. Among tropical invasive species noted in temperate Europe, Raphidiopsis raciborskii, Chrysosporum bergii, and Sphaerospermopsis aphanizomenoides are considered a serious threat. R. raciborskii being the most important one as it is already known as a highly invasive species in almost all around the World, is a freshwater, planktonic, filamentous, potentially toxic, and nitrogen-fixing Cyanobacteria. This study aimed to investigate the presence of invasive cyanobacterial species in temperate lakes in Northeastern Poland, reveal the composition of phytoplankton communities, determine the effect of environmental variables, and identify the toxic properties of invasive Cyanobacteria and other phytoplankton groups. Our study was conducted in twenty-five lakes in August 2023. The lakes represent a geographical gradient from central Poland to the Northeast and have different depths, sizes, and trophic statuses. According to performed analyses, the presence of R. raciborskii was recorded in five lakes: Szczęśliwickie (Warsaw), Mikołajskie, Rekąty, Sztynorckie (Masurian Lakeland), and further East, in Pobondzie (Suwałki Lakeland). On the other hand, C. bergii was found in three lakes: Rekąty (Masurian Lakeland), Żabinki, and Pobondzie (Suwałki Lakeland), while S. aphanizomenoides only in Pobondzie (Suwałki Lakeland). Maximum phytoplankton diversity was found in Lake Rekąty, a small and shallow lake mentioned above. The highest phytoplankton biomass was detected in highly eutrophic Lake Suskie, followed by Lake Sztynorckie. In this last lake, which is also strongly eutrophic, the highest biomass of R. raciborskii was found. Cyanophyceae had the highest biovolume and was followed by Chlorophyceae in the entire study. Numerous environmental parameters, including nutrients, were studied, and their relationships with the invasive species and the whole phytoplankton community will be presented. In addition, toxic properties of environmental DNA results from each lake will also be shown. In conclusion, investigated invasive cyanobacterial species were found in a few Northeastern Polish temperate lakes, but the number of individuals was quite low, so the biomass was quite low. It has been observed that the structure of phytoplankton changed based on lakes and environmental parameters.Keywords: biological invasion, cyanobacteria, cyanotoxins, phytoplankton ecology, sanger sequencing
Procedia PDF Downloads 42397 A Conceptual Framework of Integrated Evaluation Methodology for Aquaculture Lakes
Authors: Robby Y. Tallar, Nikodemus L., Yuri S., Jian P. Suen
Abstract:
Research in the subject of ecological water resources management is full of trivial questions addressed and it seems, today to be one branch of science that can strongly contribute to the study of complexity (physical, biological, ecological, socio-economic, environmental, and other aspects). Existing literature available on different facets of these studies, much of it is technical and targeted for specific users. This study offered the combination all aspects in evaluation methodology for aquaculture lakes with its paradigm refer to hierarchical theory and to the effects of spatial specific arrangement of an object into a space or local area. Therefore, the process in developing a conceptual framework represents the more integrated and related applicable concept from the grounded theory. A design of integrated evaluation methodology for aquaculture lakes is presented. The method is based on the identification of a series of attributes which can be used to describe status of aquaculture lakes using certain indicators from aquaculture water quality index (AWQI), aesthetic aquaculture lake index (AALI) and rapid appraisal for fisheries index (RAPFISH). The preliminary preparation could be accomplished as follows: first, the characterization of study area was undertaken at different spatial scales. Second, an inventory data as a core resource such as city master plan, water quality reports from environmental agency, and related government regulations. Third, ground-checking survey should be completed to validate the on-site condition of study area. In order to design an integrated evaluation methodology for aquaculture lakes, finally we integrated and developed rating scores system which called Integrated Aquaculture Lake Index (IALI).The development of IALI are reflecting a compromise all aspects and it responds the needs of concise information about the current status of aquaculture lakes by the comprehensive approach. IALI was elaborated as a decision aid tool for stakeholders to evaluate the impact and contribution of anthropogenic activities on the aquaculture lake’s environment. The conclusion was while there is no denying the fact that the aquaculture lakes are under great threat from the pressure of the increasing human activities, one must realize that no evaluation methodology for aquaculture lakes can succeed by keeping the pristine condition. The IALI developed in this work can be used as an effective, low-cost evaluation methodology of aquaculture lakes for developing countries. Because IALI emphasizes the simplicity and understandability as it must communicate to decision makers and the experts. Moreover, stakeholders need to be helped to perceive their lakes so that sites can be accepted and valued by local people. For this site of lake development, accessibility and planning designation of the site is of decisive importance: the local people want to know whether the lake condition is safe or whether it can be used.Keywords: aesthetic value, AHP, aquaculture lakes, integrated lakes, RAPFISH
Procedia PDF Downloads 237396 Land Use Changes and Impact around Maladumba Lake and Forest Reserve, Nigeria
Authors: M. B. Abdullahi, S. M. Gumel
Abstract:
This study was carried out to analyze and describe biodiversity changes in representative communities around Maladumba Lake and Forest Reserve (MLFR), Bauchi, Nigeria. Primary and secondary data were collected through formal and informal interviews of key informants and survey of local communities and government records. There has been a change in biodiversity; some of the cropping systems have become nonexistent whereas others have developed. The main aspect of the changes has been the decline of species diversity due to degradation and over utilization. The changes have also been positive through the introduction and intensification of cropping system. Options have been open for people to manipulate the cropping systems in order to efficiently use the limited resources. Farmers have opted not only to intensify agricultural practices but also to deliberately restore some of the lost species. Reduction in the number of animals per household, adoption of new techniques of land management, changes in the type of crops cultivated and intensive use of the available resources are some of the indicators describing farmers’ efforts to cope with the changes. Sustainability of the farming system and biodiversity has been enhanced through peoples’ efforts that include planting trees and use of fertilizers.Keywords: cropping systems, historical trends, household, land management, sustainability
Procedia PDF Downloads 394395 Potential Ecological Risk Assessment of Selected Heavy Metals in Sediments of Tidal Flat Marsh, the Case Study: Shuangtai Estuary, China
Authors: Chang-Fa Liu, Yi-Ting Wang, Yuan Liu, Hai-Feng Wei, Lei Fang, Jin Li
Abstract:
Heavy metals in sediments can cause adverse ecological effects while it exceeds a given criteria. The present study investigated sediment environmental quality, pollutant enrichment, ecological risk, and source identification for copper, cadmium, lead, zinc, mercury, and arsenic in the sediments collected from tidal flat marsh of Shuangtai estuary, China. The arithmetic mean integrated pollution index, geometric mean integrated pollution index, fuzzy integrated pollution index, and principal component score were used to characterize sediment environmental quality; fuzzy similarity and geo-accumulation Index were used to evaluate pollutant enrichment; correlation matrix, principal component analysis, and cluster analysis were used to identify source of pollution; environmental risk index and potential ecological risk index were used to assess ecological risk. The environmental qualities of sediment are classified to very low degree of contamination or low contamination. The similar order to element background of soil in the Liaohe plain is region of Sanjiaozhou, Honghaitan, Sandaogou, Xiaohe by pollutant enrichment analysis. The source identification indicates that correlations are significantly among metals except between copper and cadmium. Cadmium, lead, zinc, mercury, and arsenic will be clustered in the same clustering as the first principal component. Copper will be clustered as second principal component. The environmental risk assessment level will be scaled to no risk in the studied area. The order of potential ecological risk is As > Cd > Hg > Cu > Pb > Zn.Keywords: ecological risk assessment, heavy metals, sediment, marsh, Shuangtai estuary
Procedia PDF Downloads 347394 Radioactivity Assessment of Sediments in Negombo Lagoon Sri Lanka
Authors: H. M. N. L. Handagiripathira
Abstract:
The distributions of naturally occurring and anthropogenic radioactive materials were determined in surface sediments taken at 27 different locations along the bank of Negombo Lagoon in Sri Lanka. Hydrographic parameters of lagoon water and the grain size analyses of the sediment samples were also carried out for this study. The conductivity of the adjacent water was varied from 13.6 mS/cm to 55.4 mS/cm near to the southern end and the northern end of the lagoon, respectively, and equally salinity levels varied from 7.2 psu to 32.1 psu. The average pH in the water was 7.6 and average water temperature was 28.7 °C. The grain size analysis emphasized the mass fractions of the samples as sand (60.9%), fine sand (30.6%) and fine silt+clay (1.3%) in the sampling locations. The surface sediment samples of wet weight, 1 kg each from upper 5-10 cm layer, were oven dried at 105 °C for 24 hours to get a constant weight, homogenized and sieved through a 2 mm sieve (IAEA technical series no. 295). The radioactivity concentrations were determined using gamma spectrometry technique. Ultra Low Background Broad Energy High Purity Ge Detector, BEGe (Model BE5030, Canberra) was used for radioactivity measurement with Canberra Industries' Laboratory Source-less Calibration Software (LabSOCS) mathematical efficiency calibration approach and Geometry composer software. The mean activity concentration was found to be 24 ± 4, 67 ± 9, 181 ± 10, 59 ± 8, 3.5 ± 0.4 and 0.47 ± 0.08 Bq/kg for 238U, 232Th, 40K, 210Pb, 235U and 137Cs respectively. The mean absorbed dose rate in air, radium equivalent activity, external hazard index, annual gonadal dose equivalent and annual effective dose equivalent were 60.8 nGy/h, 137.3 Bq/kg, 0.4, 425.3 mSv/year and 74.6 mSv/year, respectively. The results of this study will provide baseline information on the natural and artificial radioactive isotopes and environmental pollution associated with information on radiological risk.Keywords: gamma spectrometry, lagoon, radioactivity, sediments
Procedia PDF Downloads 139393 Microplastic Storages in Riverbed Sediments: Experimental on the Settling Process and Its Deposits
Authors: Alvarez Barrantes, Robert Dorrell, Christopher Hackney, Anne Baar, Roberto Fernandez, Daniel Parsons
Abstract:
Microplastic particles entering fluvial environments are deposited with natural sediments. Their settling properties can change by the absorption or adsorption of contaminants, organic matter, and organisms. These deposits include positively, neutrally, and negatively buoyant particles. This study aims to understand how plastic particles of different densities interact with natural sediments as they settle and how they are stored within the sediment deposit. The results of this study contribute to a better understanding of the deposition of microplastic particles and associated pollution in rivers. A set of 48 experiments was designed to investigate the settling process of microplastic particles in freshwater. The experimental work describes the vertical variation of cohesive and/or non-cohesive sediment versus microplastic densities in deposited sediment. The experiment consisted of adding microplastic particles, sediment, and water in a waterproof carton tube of a height of 24 cm and a diameter of 5 cm. The plastic selected is positively, neutrally, and negatively buoyant. The sediments consist of sand and clay with four different concentrations. The mixture of materials was shaken until is thoroughly mixed and left to settle for 24 hours. After the settlement, the tubes were frozen at -20 °C to be able to cut them and measure the thickness of the deposits and analyze the sediment and plastic distribution. The most representative experiments were repeated in a glass tube of the same size; to analyse the influences of current flows and depositional process. Finally, the glass tube experiments were used to study organic materials adsorption in plastic, settling the sample for four months. Defined microplastic layers were identified as the density of the plastic change. Preliminary results show that most of the positive buoyancy particles floated, neutral buoyancy particles form a layer above the sediment and negative buoyancy particles mixed with the sediment. The vertical grain size distribution of the deposits was analysed to determine deposition variation with and without plastic. It is expected that the positively buoyant particles are trapped in the sediment by the currents flows and sink due to organic material adsorption. Finally, the experiments will explain how microplastic particles, including positively buoyant ones, are stored in natural sediment deposits.Keywords: microplastic adsorption process, microplastic deposition in natural sediment, microplastic pollution in rivers, storages of positive buoyancy microplastic particles
Procedia PDF Downloads 194392 Biostabilisation of Sediments for the Protection of Marine Infrastructure from Scour
Authors: Rob Schindler
Abstract:
Industry-standard methods of mitigating erosion of seabed sediments rely on ‘hard engineering’ approaches which have numerous environmental shortcomings: (1) direct loss of habitat by smothering of benthic species, (2) disruption of sediment transport processes, damaging geomorphic and ecosystem functionality (3) generation of secondary erosion problems, (4) introduction of material that may propagate non-local species, and (5) provision of pathways for the spread of invasive species. Recent studies have also revealed the importance of biological cohesion, the result of naturally occurring extra-cellular polymeric substances (EPS), in stabilizing natural sediments. Mimicking the strong bonding kinetics through the deliberate addition of EPS to sediments – henceforth termed ‘biostabilisation’ - offers a means in which to mitigate against erosion induced by structures or episodic increases in hydrodynamic forcing (e.g. storms and floods) whilst avoiding, or reducing, hard engineering. Here we present unique experiments that systematically examine how biostabilisation reduces scour around a monopile in a current, a first step to realizing the potential of this new method of scouring reduction for a wide range of engineering purposes in aquatic substrates. Experiments were performed in Plymouth University’s recirculating sediment flume which includes a recessed scour pit. The model monopile was 0.048 m in diameter, D. Assuming a prototype monopile diameter of 2.0 m yields a geometric ratio of 41.67. When applied to a 10 m prototype water depth this yields a model depth, d, of 0.24 m. The sediment pit containing the monopile was filled with different biostabilised substrata prepared using a mixture of fine sand (D50 = 230 μm) and EPS (Xanthan gum). Nine sand-EPS mixtures were examined spanning EPS contents of 0.0% < b0 < 0.50%. Scour development was measured using a laser point gauge along a 530 mm centreline at 10 mm increments at regular periods over 5 h. Maximum scour depth and excavated area were determined at different time steps and plotted against time to yield equilibrium values. After 5 hours the current was stopped and a detailed scan of the final scour morphology was taken. Results show that increasing EPS content causes a progressive reduction in the equilibrium depth and lateral extent of scour, and hence excavated material. Very small amounts equating to natural communities (< 0.1% by mass) reduce scour rate, depth and extent of scour around monopiles. Furthermore, the strong linear relationships between EPS content, equilibrium scour depth, excavation area and timescales of scouring offer a simple index on which to modify existing scour prediction methods. We conclude that the biostabilisation of sediments with EPS may offer a simple, cost-effective and ecologically sensitive means of reducing scour in a range of contexts including OWFs, bridge piers, pipeline installation, and void filling in rock armour. Biostabilisation may also reduce economic costs through (1) Use of existing site sediments, or waste dredged sediments (2) Reduced fabrication of materials, (3) Lower transport costs, (4) Less dependence on specialist vessels and precise sub-sea assembly. Further, its potential environmental credentials may allow sensitive use of the seabed in marine protection zones across the globe.Keywords: biostabilisation, EPS, marine, scour
Procedia PDF Downloads 166391 Performance of the Cmip5 Models in Simulation of the Present and Future Precipitation over the Lake Victoria Basin
Authors: M. A. Wanzala, L. A. Ogallo, F. J. Opijah, J. N. Mutemi
Abstract:
The usefulness and limitations in climate information are due to uncertainty inherent in the climate system. For any given region to have sustainable development it is important to apply climate information into its socio-economic strategic plans. The overall objective of the study was to assess the performance of the Coupled Model Inter-comparison Project (CMIP5) over the Lake Victoria Basin. The datasets used included the observed point station data, gridded rainfall data from Climate Research Unit (CRU) and hindcast data from eight CMIP5. The methodology included trend analysis, spatial analysis, correlation analysis, Principal Component Analysis (PCA) regression analysis, and categorical statistical skill score. Analysis of the trends in the observed rainfall records indicated an increase in rainfall variability both in space and time for all the seasons. The spatial patterns of the individual models output from the models of MPI, MIROC, EC-EARTH and CNRM were closest to the observed rainfall patterns.Keywords: categorical statistics, coupled model inter-comparison project, principal component analysis, statistical downscaling
Procedia PDF Downloads 368390 Biological Soil Crust Effects on Dust Control Around the Urmia Lake
Authors: Abbas Ahmadi, Nasser Aliasgharzad, Ali Asghar Jafarzadeh
Abstract:
Nowadays, drying of the Urmia Lake as a largest saline lake in the world and emerging its saline bed from water has caused the risk of salty dune storms, which threats the health of human society and also plants and animal communities living in the region. Biological soil crusts (BSCs) as a dust stabilizer attracted the attention of Soil conservation experts in recent years. Although the presence of water by the impenetrable lake bed and endorheic basin can be an advantage to create BSCs, but the extraordinary of the lake bed salinity is a factor for prevention of its establishment in the region. Therefore, the present research work has been carried out to investigate the effects of inoculating the Cyanobacteria, algae and their combination to create BSCs for dust control. In this study, an algae attributed to Chlamydomonas sp and a cyanobacteria attributed to Anabaena sp isolated from the soils of Urmia Lake margin were used to create BSC in four soil samples which collected from 0-10 cm of the current margin (A), the previous bed (B), affected lands by lake (C) and Quomtappe sand dune (D). The main characteristics of the A, B and C soil samples are their highly salinity (their ECe are 108, 140 and 118 dS/m, respectively) and sodicity. Also, texture class of the soil A was loamy sand, and other two soils had clay textures. Soil D was Non-saline, but it was sodic with a sandy texture class. This study was conducted separately in each soil in a completely randomized design under four inoculation treatments of non-inoculated (T0), Algae (T1), cyanobacteria (T2) and equal mixture of algae and cyanobacteria (T3) with three replications. In the experiment, the soil was placed into wind tunnel trays, and a suspension containing microorganisms mixed with the trays surface soil. During the experiment, water was sprayed to the trays at the morning and evening of every day. After passing the incubation period (30 days), some characteristics of samples such as pH, EC, cold water extractable carbohydrate (CWEC), hot water extractable carbohydrate (HWEC), sulfuric acid extractable carbohydrate (SAEC), organic matter, crust thickness, penetration resistance, wind erosion threshold velocity and soil loss in the wind tunnel were measured, and Correlation between the measured characteristics was obtained through the SPSS software. Analysis of variance and so comparison between the means of treatments were analyzed with MSTATC software. In this research, Chlorophyll, an amount, was used as an indicator of the microorganism's population in the samples. Based on obtained results, the amount of Chlorophyll a in the T2 treatment of soil A and all treatments of soil D was significantly increased in comparison to the control and crust thickness showed increase in all treatments by microorganism’s inoculation. But effect of the treatments was significant in soils A and D. At all treatment’s inoculation of microorganisms in soil A caused to increase %46, %34 and %55 of the wind erosion threshold velocity in T1, T2 and T3 treatments in comparison to the control, respectively, and in soil D all treatments caused wind erosion threshold velocity became two times more than control. However, soil loss in the wind tunnel experiments was significant in T2 and T3 treatments of these soils and T1 treatment had no effect in reducing soil loss. Correlation between Chlorophyll a and salinity shows the important role of salinity in microbial growth prevention and formation of BSCs in the studied samples. In general, according to the obtained results, it can be concluded that salinity reduces the growth of microorganisms in saline soils of the region, and in soils with fine textures, salinity role in prevention of the microbial growth is clear. Also, using the mix of algae and cyanobacteria together caused the synergistic growth of them and consequently, better protection of the soil against wind erosion was provided.Keywords: wind erosion, algae, cyanobacteria, carbohydrate
Procedia PDF Downloads 63389 Modelling Suspended Solids Transport in Dammam (Saudi Arabia) Coastal Areas
Authors: Hussam Alrabaiah
Abstract:
Some new projects (new proposed harbor, recreational projects) are considered in the eastern coasts of Dammam city, Saudi Arabia. Dredging operations would significantly alter coast hydrological and sediment transport processes. It is important that the project areas must keep flushing the fresh sea water in and out with good water quality parameters, which are currently facing increased pressure from urbanization and navigation requirements in conjunction with industrial developments. A suspended solids or sediments are expected to affect the flora and fauna in that area. Governing advection-diffusion equations are considered to understand the consequences of such projects. A numerical modeling study is developed to study the effect of dredging and, in particular, the suspended sediments concentrations (mg/L) changed in the region. The results were obtained using finite element method using an in-house or commercial software. Results show some consistency with data observed in that region. Recommendations based on results could be formulated for decision makers to protect the environment in the long term.Keywords: finite element, method, suspended solids transport, advection-diffusion
Procedia PDF Downloads 284388 The Impacts Of Hydraulic Conditions On The Fate, Transport And Accumulation Of Microplastics Pollution In The Aquatic Ecosystems
Authors: Majid Rasta, Xiaotao Shi, Mian Adnan Kakakhel, Yanqin Bai, Lao Liu, Jia Manke
Abstract:
Microplastics (MPs; particles <5 mm) pollution is considered as a globally pervasive threat to aquatic ecosystems, and many studies reported this pollution in rivers, wetlands, lakes, coastal waters and oceans. In the aquatic environments, settling and transport of MPs in water column and sediments are determined by different factors such as hydrologic characteristics, watershed pattern, rainfall events, hydraulic conditions, vegetation, hydrodynamics behavior of MPs, and physical features of particles (shape, size and density). In the meantime, hydraulic conditions (such as turbulence, high/low water speed flows or water stagnation) play a key role in the fate of MPs in aquatic ecosystems. Therefore, this study presents a briefly review on the effects of different hydraulic conditions on the fate, transport and accumulation of MPs in aquatic ecosystems. Generally, MPs are distributed horizontally and vertically in aquatic environments. The vertical distribution of MPs in the water column changes with different flow velocities. In the riverine, turbulent flow causing from the rapid water velocity and shallow depth may create a homogeneous mixture of MPs throughout the water column. While low velocity followed by low-turbulent waters can lead to the low level vertical mixing of MP particles in the water column. Consequently, the high numbers of MPs are expected to be found in the sediments of deep and wide channels as well as estuaries. In contrast, observing the lowest accumulation of MP particles in the sediments of straights of the rivers, places with the highest flow velocity is understandable. In the marine environment, hydrodynamic factors (e.g., turbulence, current velocity and residual circulation) can affect the sedimentation and transportation of MPs and thus change the distribution of MPs in the marine and coastal sediments. For instance, marine bays are known as the accumulation area of MPs due to poor hydrodynamic conditions. On the other hand, in the nearshore zone, the flow conditions are highly complex and dynamic. Experimental studies illustrated that maximum horizontal flow velocity in the sandy beach can predict the accumulation of MPs so that particles with high sinking velocities deposit in the lower water depths. As a whole, it can be concluded that the transport and accumulation of MPs in aquatic ecosystems are highly affected by hydraulic conditions. This study provided information about the impacts of hydraulic on MPs pollution. Further research on hydraulics and its relationship to the accumulation of MPs in aquatic ecosystems is needed to increase insights into this pollution.Keywords: microplastics pollution, hydraulic, transport, accumulation
Procedia PDF Downloads 70387 Improving the Performance of DBE Structure in Pressure Flushing Using Submerged Vanes
Authors: Sepideh Beiramipour, Hadi Haghjouei, Kourosh Qaderi, Majid Rahimpour, Mohammad M. Ahmadi, Sameh A. Kantoush
Abstract:
Reservoir sedimentation is one of the main challenges by which the reservoir behind the dam is filled with sediments transferred through the river flow. Pressure flushing method is an effective way to drain the deposited sediments of the reservoirs through the bottom outlet. So far, several structural methods have been proposed to increase the efficiency of pressure flushing. The aim of this study is to increase the performance of Dendritic Bottomless Extended (DBE) structure on the efficiency of pressurized sediment flushing using submerged vanes. For this purpose, the physical model of the dam reservoir with dimensions of 7.5 m in length, 3.5 m in width, and 1.8 m in height in the hydraulic and water structures research laboratory of Shahid Bahonar University of Kerman was used. In order to investigate the influence of submerged vanes on the performance of DBE structure in pressure flushing, the best arrangement and geometric parameters of the vanes were selected and combined with the DBE structure. The results showed that the submerged vanes significantly increased the performance of the DBE structure so that the volume of the sediment flushing cone with the combination of two structures increased by 3.7 times compared to the DBE structure test.Keywords: dendritic bottomless extended structure, flushing efficiency, sedimentation, sediment flushing
Procedia PDF Downloads 223386 Suspended Sediment Concentration and Water Quality Monitoring Along Aswan High Dam Reservoir Using Remote Sensing
Authors: M. Aboalazayem, Essam A. Gouda, Ahmed M. Moussa, Amr E. Flifl
Abstract:
Field data collecting is considered one of the most difficult work due to the difficulty of accessing large zones such as large lakes. Also, it is well known that the cost of obtaining field data is very expensive. Remotely monitoring of lake water quality (WQ) provides an economically feasible approach comparing to field data collection. Researchers have shown that lake WQ can be properly monitored via Remote sensing (RS) analyses. Using satellite images as a method of WQ detection provides a realistic technique to measure quality parameters across huge areas. Landsat (LS) data provides full free access to often occurring and repeating satellite photos. This enables researchers to undertake large-scale temporal comparisons of parameters related to lake WQ. Satellite measurements have been extensively utilized to develop algorithms for predicting critical water quality parameters (WQPs). The goal of this paper is to use RS to derive WQ indicators in Aswan High Dam Reservoir (AHDR), which is considered Egypt's primary and strategic reservoir of freshwater. This study focuses on using Landsat8 (L-8) band surface reflectance (SR) observations to predict water-quality characteristics which are limited to Turbidity (TUR), total suspended solids (TSS), and chlorophyll-a (Chl-a). ArcGIS pro is used to retrieve L-8 SR data for the study region. Multiple linear regression analysis was used to derive new correlations between observed optical water-quality indicators in April and L-8 SR which were atmospherically corrected by values of various bands, band ratios, and or combinations. Field measurements taken in the month of May were used to validate WQP obtained from SR data of L-8 Operational Land Imager (OLI) satellite. The findings demonstrate a strong correlation between indicators of WQ and L-8 .For TUR, the best validation correlation with OLI SR bands blue, green, and red, were derived with high values of Coefficient of correlation (R2) and Root Mean Square Error (RMSE) equal 0.96 and 3.1 NTU, respectively. For TSS, Two equations were strongly correlated and verified with band ratios and combinations. A logarithm of the ratio of blue and green SR was determined to be the best performing model with values of R2 and RMSE equal to 0.9861 and 1.84 mg/l, respectively. For Chl-a, eight methods were presented for calculating its value within the study area. A mix of blue, red, shortwave infrared 1(SWR1) and panchromatic SR yielded the greatest validation results with values of R2 and RMSE equal 0.98 and 1.4 mg/l, respectively.Keywords: remote sensing, landsat 8, nasser lake, water quality
Procedia PDF Downloads 93385 Microbial and Meiofaunal Dynamics in the Intertidal Sediments of the Northern Red Sea
Authors: Hamed A. El-Serehy, Khaled A. Al-Rasheid, Fahad A Al-Misned
Abstract:
The meiofaunal population fluctuation, microbial dynamic and the composition of the sedimentary organic matter were investigated seasonally in the Egyptian shores along the northern part of Red Sea. Total meiofaunal population densities were extremely low with an annual average of 109 ±26 ind./10 cm2 and largely dominated by nematodes (on annual average from 52% to 94% of total meiofaunal density). The benthic microbial population densities ranged from 0.26±0.02 x 108 to 102.67±18.62 x 108/g dry sediment. Total sedimentary organic matter concentrations varied between 5.8 and 11.6 mg/g and the organic carbon, which was measured as summation of the carbohydrates, proteins and lipids, accounted for only a small fraction of being 32 % of the total organic matter. Chlorophyll a attained very low values and fluctuated between 2 and 11 µg/g. The very low chlorophyll a concentration in the Egyptian coasts along the Red Sea can suggest that the sedimentary organic matter along the Egyptian coasts is dominated by organic detrital and heterotrophic bacteria on one hand, and do not promote carbon transfer towards the higher trophic level on the other hand. However, the present study indicates that the existing of well diversified meiofaunal group, with a total of ten meiofaunal taxa, can serve as food for higher trophic levels in the Red Sea marine ecosystem.Keywords: bacteria, meiofauna, intertidal sediments, Red Sea
Procedia PDF Downloads 424384 Risk Assessment of Trace Element Pollution in Gymea Bay, NSW, Australia
Authors: Yasir M. Alyazichi, Brian G. Jones, Errol McLean, Hamd N. Altalyan, Ali K. M. Al-Nasrawi
Abstract:
The main purpose of this study is to assess the sediment quality and potential ecological risk in marine sediments in Gymea Bay located in south Sydney, Australia. A total of 32 surface sediment samples were collected from the bay. Current track trajectories and velocities have also been measured in the bay. The resultant trace elements were compared with the adverse biological effect values Effect Range Low (ERL) and Effect Range Median (ERM) classifications. The results indicate that the average values of chromium, arsenic, copper, zinc, and lead in surface sediments all reveal low pollution levels and are below ERL and ERM values. The highest concentrations of trace elements were found close to discharge points and in the inner bay, and were linked with high percentages of clay minerals, pyrite and organic matter, which can play a significant role in trapping and accumulating these elements. The lowest concentrations of trace elements were found to be on the shoreline of the bay, which contained high percentages of sand fractions. It is postulated that the fine particles and trace elements are disturbed by currents and tides, then transported and deposited in deeper areas. The current track velocities recorded in Gymea Bay had the capability to transport fine particles and trace element pollution within the bay. As a result, hydrodynamic measurements were able to provide useful information and to help explain the distribution of sedimentary particles and geochemical properties. This may lead to knowledge transfer to other bay systems, including those in remote areas. These activities can be conducted at a low cost, and are therefore also transferrable to developing countries. The advent of portable instruments to measure trace elements in the field has also contributed to the development of these lower cost and easily applied methodologies available for use in remote locations and low-cost economies.Keywords: current track velocities, gymea bay, surface sediments, trace elements
Procedia PDF Downloads 245383 Seismic Activity in the Lake Kivu Basin: Implication for Seismic Risk Management
Authors: Didier Birimwiragi Namogo
Abstract:
The Kivu Lake Basin is located in the Western Branch of the East African Rift. In this basin is located a multitude of active faults, on which earthquakes occur regularly. The most recent earthquakes date from 2008, 2015, 2016, 2017 and 2019. The cities of Bukabu and Goma in DR Congo and Giseyi in Rwanda are the most impacted by this intense seismic activity in the region. The magnitude of the strongest earthquakes in the region is 6.1. The 2008 earthquake was particularly destructive, killing several people in DR Congo and Rwanda. This work aims to complete the distribution of seismicity in the region, deduce areas of weakness and establish a hazard map that can assist in seismic risk management. Using the local seismic network of the Goma Volcano Observatory, the earthquakes were relocated, and their focus mechanism was studied. The results show that most of these earthquakes occur on active faults described by Villeneuve in 1938. The alignment of the earthquakes shows a pace that follows directly the directions of the faults described by this author. The study of the focus mechanism of these earthquakes, also shows that these are in particular normal faults whose stresses show an extensive activity. Such study can be used for the establishment of seismic risk management tools.Keywords: earthquakes, hazard map, faults, focus mechanism
Procedia PDF Downloads 138382 Application of Satellite Remote Sensing in Support of Water Exploration in the Arab Region
Authors: Eman Ghoneim
Abstract:
The Arabian deserts include some of the driest areas on Earth. Yet, its landforms reserved a record of past wet climates. During humid phases, the desert was green and contained permanent rivers, inland deltas and lakes. Some of their water would have seeped and replenished the groundwater aquifers. When the wet periods came to an end, several thousand years ago, the entire region transformed into an extended band of desert and its original fluvial surface was totally covered by windblown sand. In this work, radar and thermal infrared images were used to reveal numerous hidden surface/subsurface features. Radar long wavelength has the unique ability to penetrate surface dry sands and uncover buried subsurface terrain. Thermal infrared also proven to be capable of spotting cooler moist areas particularly in hot dry surfaces. Integrating Radarsat images and GIS revealed several previously unknown paleoriver and lake basins in the region. One of these systems, known as the Kufrah, is the largest yet identified river basin in the Eastern Sahara. This river basin, which straddles the border between Egypt and Libya, flowed north parallel to the adjacent Nile River with an extensive drainage area of 235,500 km2 and massive valley width of 30 km in some parts. This river was most probably served as a spillway for an overflow from Megalake Chad to the Mediterranean Sea and, thus, may have acted as a natural water corridor used by human ancestors to migrate northward across the Sahara. The Gilf-Kebir is another large paleoriver system located just east of Kufrah and emanates from the Gilf Plateau in Egypt. Both river systems terminate with vast inland deltas at the southern margin of the Great Sand Sea. The trends of their distributary channels indicate that both rivers drained to a topographic depression that was periodically occupied by a massive lake. During dry climates, the lake dried up and roofed by sand deposits, which is today forming the Great Sand Sea. The enormity of the lake basin provides explanation as to why continuous extraction of groundwater in this area is possible. A similar lake basin, delimited by former shorelines, was detected by radar space data just across the border of Sudan. This lake, called the Northern Darfur Megalake, has a massive size of 30,750 km2. These former lakes and rivers could potentially hold vast reservoirs of groundwater, oil and natural gas at depth. Similar to radar data, thermal infrared images were proven to be useful in detecting potential locations of subsurface water accumulation in desert regions. Analysis of both Aster and daily MODIS thermal channels reveal several subsurface cool moist patches in the sandy desert of the Arabian Peninsula. Analysis indicated that such evaporative cooling anomalies were resulted from the subsurface transmission of the Monsoonal rainfall from the mountains to the adjacent plain. Drilling a number of wells in several locations proved the presence of productive water aquifers confirming the validity of the used data and the adopted approaches for water exploration in dry regions.Keywords: radarsat, SRTM, MODIS, thermal infrared, near-surface water, ancient rivers, desert, Sahara, Arabian peninsula
Procedia PDF Downloads 247381 Soil Micromorphological Analysis from the Hinterland of the Pharaonic Town, Sai Island, Sudan
Authors: Sayantani Neogi, Sean Taylor, Julia Budka
Abstract:
This paper presents the results of the investigations of soil/sediment sequences associated with the New Kingdom town at Sai Island, Sudan. During the course of this study, geoarchaeological surveys have been undertaken in the vicinity of this Pharaonic town within the island and the soil block samples for soil micromorphological analysis were accordingly collected. The intention was to better understand the archaeological site in its environmental context and the nature of the land surface prior to the establishment of the settlement. Soil micromorphology, a very powerful geoarchaeological methodology, is concerned with the description, measurement and interpretation of soil components and pedological features at a microscopic scale. Since soil profiles themselves are archives of their own history, soil micromorphology investigates the environmental and cultural signatures preserved within buried soils and sediments. A study of the thin sections from these soils/sediments has been able to provide robust data for providing interesting insights into the various nuances of this site, for example, the nature of the topography and existent environmental condition during the time of Pharaonic site establishment. These geoarchaeological evaluations have indicated that there is a varied hidden landscape context for this pharaonic settlement, which indicates a symbiotic relationship with the Nilotic environmental system.Keywords: geoarchaeology, New Kingdom, Nilotic environment, soil micromorphology
Procedia PDF Downloads 264380 Colour Segmentation of Satellite Imagery to Estimate Total Suspended Solid at Rawa Pening Lake, Central Java, Indonesia
Authors: Yulia Chalri, E. T. P. Lussiana, Sarifuddin Madenda, Bambang Trisakti, Yuhilza Hanum
Abstract:
Water is a natural resource needed by humans and other living creatures. The territorial water of Indonesia is 81% of the country area, consisting of inland waters and the sea. The research object is inland waters in the form of lakes and reservoirs, since 90% of inland waters are in them, therefore the water quality should be monitored. One of water quality parameters is Total Suspended Solid (TSS). Most of the earlier research did direct measurement by taking the water sample to get TSS values. This method takes a long time and needs special tools, resulting in significant cost. Remote sensing technology has solved a lot of problems, such as the mapping of watershed and sedimentation, monitoring disaster area, mapping coastline change, and weather analysis. The aim of this research is to estimate TSS of Rawa Pening lake in Central Java by using the Lansat 8 image. The result shows that the proposed method successfully estimates the Rawa Pening’s TSS. In situ TSS shows normal water quality range, and so does estimation result of segmentation method.Keywords: total suspended solid (TSS), remote sensing, image segmentation, RGB value
Procedia PDF Downloads 412379 Eco-Biological Study of Artemia salina (Branchiopoda, Anostraca) in Sahline Salt Lake, Tunisia
Authors: Khalil Trigui, Rafik Ben Said, Fourat Akrout, Neji Aloui
Abstract:
In this study, we examined in the first part the eco-biology of Artemia (A.salina) collected from Sahline Salt Lake (governorate of Monastir: Tunisia) during an annual cycle. The correlations between environmental factors and some biological parameters of Artemia were determined. The results obtained showed that the environmental factors affected the biology of Artemia. The highest abundance was recorded in May (550 ± 2,16 ind/l) and all life history stages existed with different seasonal proportions. The Artemia population is bisexual with ovoviviparous reproduction at the beginning and oviparous at the end of the life cycle. We also recorded the dominance of males at the start and the females at the end of the cycle. During all the study period, the size of mature females is bigger than that of males. The fertility obtained resulted in a significant production of cysts compared to the nauplii. A negative correlation with highly significant effect was deduced between environmental factors (temperature and salinity) and the production of nauplii (ovoviviparity) in contrast with dissolved oxygen. In the second part of our work is consecrated to the mastery of breeding Artemia. For this, we tested the effect of five external factors (temperature, salinity, dissolved oxygen, light intensity and food) on the survival of this crustacean. Thereby, the survival rates of Artemia were affected by the different values of studied factors. The recorded results showed that Artemia salina has an optimum temperature ranged from 25 to 27°C with a survival rate ranging from 84 to 88%. The optimal salinity to breed Artemia salina was 37 psu (62 ± 0,23%). Nevertheless, this crustacean was able to survive and withstand the salinity of 0 psu (freshwater). The optimum concentration of dissolved oxygen was 7mg/l with a survival rate of 87,11 ± 0,04%. An optimum light intensity of 10 lux revealed a survival rate equal to 85,33 ± 0,01%. The results also showed that the preferred micro-algae by Artemia is Dunaliella salina with a maximum survival rate of the order of 80 ± 0,15%. There is a significant effect for all experienced parameters on the survival of Artemia reared except the nature of food.Keywords: Artemia salina, biology, breeding, ecology, Sahline salt lake
Procedia PDF Downloads 359378 Bacterial Diversity and Antibiotic Resistance in Coastal Sediments of Izmir Bay, Aegean Sea
Authors: Ilknur Tuncer, Nihayet Bizsel
Abstract:
The scarcity of research in bacterial diversity and antimicrobial resistance in coastal environments as in Turkish coasts leads to difficulties in developing efficient monitoring and management programs. In the present study, biogeochemical analysis of sediments and antimicrobial susceptibility analysis of bacteria in Izmir Bay, eastern Aegean Sea under high anthropogenic pressure were aimed in summer period when anthropogenic input was maximum and at intertidal zone where the first terrigenious contact occurred for aquatic environment. Geochemical content of the intertidal zone of Izmir Bay was firstly illustrated such that total and organic carbon, nitrogen and phosphorus contents were high and the grain size distribution varied as sand and gravel. Bacterial diversity and antibiotic resistance were also firstly given for Izmir Bay. Antimicrobially assayed isolates underlined the multiple resistance in the inner, middle and outer bays with overall 19% high MAR (multiple antibiotic resistance) index. Phylogenetic analysis of 16S rRNA gene sequences indicated that 67 % of isolates belonged to the genus Bacillus and the rest included the families Alteromonadaceae, Bacillaceae, Exiguobacteriaceae, Halomonadaceae, Planococcaceae, and Staphylococcaceae.Keywords: bacterial phylogeny, multiple antibiotic resistance, 16S rRNA genes, Izmir Bay, Aegean Sea
Procedia PDF Downloads 473377 A Review of Gas Hydrate Rock Physics Models
Authors: Hemin Yuan, Yun Wang, Xiangchun Wang
Abstract:
Gas hydrate is drawing attention due to the fact that it has an enormous amount all over the world, which is almost twice the conventional hydrocarbon reserves, making it a potential alternative source of energy. It is widely distributed in permafrost and continental ocean shelves, and many countries have launched national programs for investigating the gas hydrate. Gas hydrate is mainly explored through seismic methods, which include bottom simulating reflectors (BSR), amplitude blanking, and polarity reverse. These seismic methods are effective at finding the gas hydrate formations but usually contain large uncertainties when applying to invert the micro-scale petrophysical properties of the formations due to lack of constraints. Rock physics modeling links the micro-scale structures of the rocks to the macro-scale elastic properties and can work as effective constraints for the seismic methods. A number of rock physics models have been proposed for gas hydrate modeling, which addresses different mechanisms and applications. However, these models are generally not well classified, and it is confusing to determine the appropriate model for a specific study. Moreover, since the modeling usually involves multiple models and steps, it is difficult to determine the source of uncertainties. To solve these problems, we summarize the developed models/methods and make four classifications of the models according to the hydrate micro-scale morphology in sediments, the purpose of reservoir characterization, the stage of gas hydrate generation, and the lithology type of hosting sediments. Some sub-categories may overlap each other, but they have different priorities. Besides, we also analyze the priorities of different models, bring up the shortcomings, and explain the appropriate application scenarios. Moreover, by comparing the models, we summarize a general workflow of the modeling procedure, which includes rock matrix forming, dry rock frame generating, pore fluids mixing, and final fluid substitution in the rock frame. These procedures have been widely used in various gas hydrate modeling and have been confirmed to be effective. We also analyze the potential sources of uncertainties in each modeling step, which enables us to clearly recognize the potential uncertainties in the modeling. In the end, we explicate the general problems of the current models, including the influences of pressure and temperature, pore geometry, hydrate morphology, and rock structure change during gas hydrate dissociation and re-generation. We also point out that attenuation is also severely affected by gas hydrate in sediments and may work as an indicator to map gas hydrate concentration. Our work classifies rock physics models of gas hydrate into different categories, generalizes the modeling workflow, analyzes the modeling uncertainties and potential problems, which can facilitate the rock physics characterization of gas hydrate bearding sediments and provide hints for future studies.Keywords: gas hydrate, rock physics model, modeling classification, hydrate morphology
Procedia PDF Downloads 158