Search results for: fundamental equations
3326 The Observable Method for the Regularization of Shock-Interface Interactions
Authors: Teng Li, Kamran Mohseni
Abstract:
This paper presents an inviscid regularization technique that is capable of regularizing the shocks and sharp interfaces simultaneously in the shock-interface interaction simulations. The direct numerical simulation of flows involving shocks has been investigated for many years and a lot of numerical methods were developed to capture the shocks. However, most of these methods rely on the numerical dissipation to regularize the shocks. Moreover, in high Reynolds number flows, the nonlinear terms in hyperbolic Partial Differential Equations (PDE) dominates, constantly generating small scale features. This makes direct numerical simulation of shocks even harder. The same difficulty happens in two-phase flow with sharp interfaces where the nonlinear terms in the governing equations keep sharpening the interfaces to discontinuities. The main idea of the proposed technique is to average out the small scales that is below the resolution (observable scale) of the computational grid by filtering the convective velocity in the nonlinear terms in the governing PDE. This technique is named “observable method” and it results in a set of hyperbolic equations called observable equations, namely, observable Navier-Stokes or Euler equations. The observable method has been applied to the flow simulations involving shocks, turbulence, and two-phase flows, and the results are promising. In the current paper, the observable method is examined on the performance of regularizing shocks and interfaces at the same time in shock-interface interaction problems. Bubble-shock interactions and Richtmyer-Meshkov instability are particularly chosen to be studied. Observable Euler equations will be numerically solved with pseudo-spectral discretization in space and third order Total Variation Diminishing (TVD) Runge Kutta method in time. Results are presented and compared with existing publications. The interface acceleration and deformation and shock reflection are particularly examined.Keywords: compressible flow simulation, inviscid regularization, Richtmyer-Meshkov instability, shock-bubble interactions.
Procedia PDF Downloads 3493325 Comparison and Improvement of the Existing Cone Penetration Test Results: Shear Wave Velocity Correlations for Hungarian Soils
Authors: Ákos Wolf, Richard P. Ray
Abstract:
Due to the introduction of Eurocode 8, the structural design for seismic and dynamic effects has become more significant in Hungary. This has emphasized the need for more effort to describe the behavior of structures under these conditions. Soil conditions have a significant effect on the response of structures by modifying the stiffness and damping of the soil-structural system and by modifying the seismic action as it reaches the ground surface. Shear modulus (G) and shear wave velocity (vs), which are often measured in the field, are the fundamental dynamic soil properties for foundation vibration problems, liquefaction potential and earthquake site response analysis. There are several laboratory and in-situ measurement techniques to evaluate dynamic soil properties, but unfortunately, they are often too expensive for general design practice. However, a significant number of correlations have been proposed to determine shear wave velocity or shear modulus from Cone Penetration Tests (CPT), which are used more and more in geotechnical design practice in Hungary. This allows the designer to analyze and compare CPT and seismic test result in order to select the best correlation equations for Hungarian soils and to improve the recommendations for the Hungarian geologic conditions. Based on a literature review, as well as research experience in Hungary, the influence of various parameters on the accuracy of results will be shown. This study can serve as a basis for selecting and modifying correlation equations for Hungarian soils. Test data are taken from seven locations in Hungary with similar geologic conditions. The shear wave velocity values were measured by seismic CPT. Several factors are analyzed including soil type, behavior index, measurement depth, geologic age etc. for their effect on the accuracy of predictions. The final results show an improved prediction method for Hungarian soilsKeywords: CPT correlation, dynamic soil properties, seismic CPT, shear wave velocity
Procedia PDF Downloads 2463324 Flow and Heat Transfer over a Shrinking Sheet: A Stability Analysis
Authors: Anuar Ishak
Abstract:
The characteristics of fluid flow and heat transfer over a permeable shrinking sheet is studied. The governing partial differential equations are transformed into a set of ordinary differential equations, which are then solved numerically using MATLAB routine boundary value problem solver bvp4c. Numerical results show that dual solutions are possible for a certain range of the suction parameter. A stability analysis is performed to determine which solution is linearly stable and physically realizable.Keywords: dual solutions, heat transfer, shrinking sheet, stability analysis
Procedia PDF Downloads 4213323 Prediction of Thermodynamic Properties of N-Heptane in the Critical Region
Authors: Sabrina Ladjama, Aicha Rizi, Azzedine Abbaci
Abstract:
In this work, we use the crossover model to formulate a comprehensive fundamental equation of state for the thermodynamic properties for several n-alkanes in the critical region that extends to the classical region. This equation of state is constructed on the basis of comparison of selected measurements of pressure-density-temperature data, isochoric and isobaric heat capacity. The model can be applied in a wide range of temperatures and densities around the critical point for n-heptane. It is found that the developed model represents most of the reliable experimental data accurately.Keywords: crossover model, critical region, fundamental equation, n-heptane
Procedia PDF Downloads 4753322 Numerical Solutions of Boundary Layer Flow over an Exponentially Stretching/Shrinking Sheet with Generalized Slip Velocity
Authors: Roslinda Nazar, Ezad Hafidz Hafidzuddin, Norihan M. Arifin, Ioan Pop
Abstract:
In this paper, the problem of steady laminar boundary layer flow and heat transfer over a permeable exponentially stretching/shrinking sheet with generalized slip velocity is considered. The similarity transformations are used to transform the governing nonlinear partial differential equations to a system of nonlinear ordinary differential equations. The transformed equations are then solved numerically using the bvp4c function in MATLAB. Dual solutions are found for a certain range of the suction and stretching/shrinking parameters. The effects of the suction parameter, stretching/shrinking parameter, velocity slip parameter, critical shear rate, and Prandtl number on the skin friction and heat transfer coefficients as well as the velocity and temperature profiles are presented and discussed.Keywords: boundary layer, exponentially stretching/shrinking sheet, generalized slip, heat transfer, numerical solutions
Procedia PDF Downloads 4323321 Investigation of Soil Slopes Stability
Authors: Nima Farshidfar, Navid Daryasafar
Abstract:
In this paper, the seismic stability of reinforced soil slopes is studied using pseudo-dynamic analysis. Equilibrium equations that are applicable to the every kind of failure surface are written using Horizontal Slices Method. In written equations, the balance of the vertical and horizontal forces and moment equilibrium is fully satisfied. Failure surface is assumed to be log-spiral, and non-linear equilibrium equations obtained for the system are solved using Newton-Raphson Method. Earthquake effects are applied as horizontal and vertical pseudo-static coefficients to the problem. To solve this problem, a code was developed in MATLAB, and the critical failure surface is calculated using genetic algorithm. At the end, comparing the results obtained in this paper, effects of various parameters and the effect of using pseudo - dynamic analysis in seismic forces modeling is presented.Keywords: soil slopes, pseudo-dynamic, genetic algorithm, optimization, limit equilibrium method, log-spiral failure surface
Procedia PDF Downloads 3393320 Numerical Modeling of Storm Swells in Harbor by Boussinesq Equations Model
Authors: Mustapha Kamel Mihoubi, Hocine Dahmani
Abstract:
The purpose of work is to study the phenomenon of agitation of storm waves at basin caused by different directions of waves relative to the current provision thrown numerical model based on the equation in shallow water using Boussinesq model MIKE 21 BW. According to the diminishing effect of penetration of a wave optimal solution will be available to be reproduced in reduced model. Another alternative arrangement throws will be proposed to reduce the agitation and the effects of the swell reflection caused by the penetration of waves in the harbor.Keywords: agitation, Boussinesq equations, combination, harbor
Procedia PDF Downloads 3893319 Parameter Estimation via Metamodeling
Authors: Sergio Haram Sarmiento, Arcady Ponosov
Abstract:
Based on appropriate multivariate statistical methodology, we suggest a generic framework for efficient parameter estimation for ordinary differential equations and the corresponding nonlinear models. In this framework classical linear regression strategies is refined into a nonlinear regression by a locally linear modelling technique (known as metamodelling). The approach identifies those latent variables of the given model that accumulate most information about it among all approximations of the same dimension. The method is applied to several benchmark problems, in particular, to the so-called ”power-law systems”, being non-linear differential equations typically used in Biochemical System Theory.Keywords: principal component analysis, generalized law of mass action, parameter estimation, metamodels
Procedia PDF Downloads 5173318 Visualization of Energy Waves via Airy Functions in Time-Domain
Authors: E. Sener, O. Isik, E. Eroglu, U. Sahin
Abstract:
The main idea is to solve the system of Maxwell’s equations in accordance with the causality principle to get the energy quantities via Airy functions in a hollow rectangular waveguide. We used the evolutionary approach to electromagnetics that is an analytical time-domain method. The boundary-value problem for the system of Maxwell’s equations is reformulated in transverse and longitudinal coordinates. A self-adjoint operator is obtained and the complete set of Eigen vectors of the operator initiates an orthonormal basis of the solution space. Hence, the sought electromagnetic field can be presented in terms of this basis. Within the presentation, the scalar coefficients are governed by Klein-Gordon equation. Ultimately, in this study, time-domain waveguide problem is solved analytically in accordance with the causality principle. Moreover, the graphical results are visualized for the case when the energy and surplus of the energy for the time-domain waveguide modes are represented via airy functions.Keywords: airy functions, Klein-Gordon Equation, Maxwell’s equations, Surplus of energy, wave boundary operators
Procedia PDF Downloads 3713317 Numerical Modeling of the Depth-Averaged Flow over a Hill
Authors: Anna Avramenko, Heikki Haario
Abstract:
This paper reports the development and application of a 2D depth-averaged model. The main goal of this contribution is to apply the depth averaged equations to a wind park model in which the treatment of the geometry, introduced on the mathematical model by the mass and momentum source terms. The depth-averaged model will be used in future to find the optimal position of wind turbines in the wind park. K-E and 2D LES turbulence models were consider in this article. 2D CFD simulations for one hill was done to check the depth-averaged model in practise.Keywords: depth-averaged equations, numerical modeling, CFD, wind park model
Procedia PDF Downloads 6033316 Numerical Solution of Space Fractional Order Linear/Nonlinear Reaction-Advection Diffusion Equation Using Jacobi Polynomial
Authors: Shubham Jaiswal
Abstract:
During modelling of many physical problems and engineering processes, fractional calculus plays an important role. Those are greatly described by fractional differential equations (FDEs). So a reliable and efficient technique to solve such types of FDEs is needed. In this article, a numerical solution of a class of fractional differential equations namely space fractional order reaction-advection dispersion equations subject to initial and boundary conditions is derived. In the proposed approach shifted Jacobi polynomials are used to approximate the solutions together with shifted Jacobi operational matrix of fractional order and spectral collocation method. The main advantage of this approach is that it converts such problems in the systems of algebraic equations which are easier to be solved. The proposed approach is effective to solve the linear as well as non-linear FDEs. To show the reliability, validity and high accuracy of proposed approach, the numerical results of some illustrative examples are reported, which are compared with the existing analytical results already reported in the literature. The error analysis for each case exhibited through graphs and tables confirms the exponential convergence rate of the proposed method.Keywords: space fractional order linear/nonlinear reaction-advection diffusion equation, shifted Jacobi polynomials, operational matrix, collocation method, Caputo derivative
Procedia PDF Downloads 4453315 Study of Ultrasonic Waves in Unidirectional Fiber-Reinforced Composite Plates for the Aerospace Applications
Authors: DucTho Le, Duy Kien Dao, Quoc Tinh Bui, Haidang Phan
Abstract:
The article is concerned with the motion of ultrasonic guided waves in a unidirectional fiber-reinforced composite plate under acoustic sources. Such unidirectional composite material has orthotropic elastic properties as it is very stiff along the fibers and rather compliant across the fibers. The dispersion equations of free Lamb waves propagating in an orthotropic layer are derived that results in the dispersion curves. The connection of these equations to the Rayleigh-Lamb frequency relations of isotropic plates is discussed. By the use of reciprocity in elastodynamics, closed-form solutions of elastic wave motions subjected to time-harmonic loads in the layer are computed in a simple manner. We also consider the problem of Lamb waves generated by a set of time-harmonic sources. The obtained computations can be very useful for developing ultrasound-based methods for nondestructive evaluation of composite structures.Keywords: lamb waves, fiber-reinforced composite plates, dispersion equations, nondestructive evaluation, reciprocity theorems
Procedia PDF Downloads 1493314 Investigate and Solving Analytic of Nonlinear Differential at Vibrations (Earthquake)and Beam-Column, by New Approach “AGM”
Authors: Mohammadreza Akbari, Pooya Soleimani Besheli, Reza Khalili, Sara Akbari
Abstract:
In this study, we investigate building structures nonlinear behavior also solving analytic of nonlinear differential at vibrations. As we know most of engineering systems behavior in practical are non- linear process (especial at structural) and analytical solving (no numerical) these problems are complex, difficult and sometimes impossible (of course at form of analytical solving). In this symposium, we are going to exposure one method in engineering, that can solve sets of nonlinear differential equations with high accuracy and simple solution and so this issue will emerge after comparing the achieved solutions by Numerical Method (Runge-Kutte 4th) and exact solutions. Finally, we can proof AGM method could be created huge evolution for researcher and student (engineering and basic science) in whole over the world, because of AGM coding system, so by using this software, we can analytical solve all complicated linear and nonlinear differential equations, with help of that there is no difficulty for solving nonlinear differential equations.Keywords: new method AGM, vibrations, beam-column, angular frequency, energy dissipated, critical load
Procedia PDF Downloads 3913313 Fully Coupled Porous Media Model
Authors: Nia Mair Fry, Matthew Profit, Chenfeng Li
Abstract:
This work focuses on the development and implementation of a fully implicit-implicit, coupled mechanical deformation and porous flow, finite element software tool. The fully implicit software accurately predicts classical fundamental analytical solutions such as the Terzaghi consolidation problem. Furthermore, it can capture other analytical solutions less well known in the literature, such as Gibson’s sedimentation rate problem and Coussy’s problems investigating wellbore stability for poroelastic rocks. The mechanical volume strains are transferred to the porous flow governing equation in an implicit framework. This will overcome some of the many current industrial issues, which use explicit solvers for the mechanical governing equations and only implicit solvers on the porous flow side. This can potentially lead to instability and non-convergence issues in the coupled system, plus giving results with an accountable degree of error. The specification of a fully monolithic implicit-implicit coupled porous media code sees the solution of both seepage-mechanical equations in one matrix system, under a unified time-stepping scheme, which makes the problem definition much easier. When using an explicit solver, additional input such as the damping coefficient and mass scaling factor is required, which are circumvented with a fully implicit solution. Further, improved accuracy is achieved as the solution is not dependent on predictor-corrector methods for the pore fluid pressure solution, but at the potential cost of reduced stability. In testing of this fully monolithic porous media code, there is the comparison of the fully implicit coupled scheme against an existing staggered explicit-implicit coupled scheme solution across a range of geotechnical problems. These cases include 1) Biot coefficient calculation, 2) consolidation theory with Terzaghi analytical solution, 3) sedimentation theory with Gibson analytical solution, and 4) Coussy well-bore poroelastic analytical solutions.Keywords: coupled, implicit, monolithic, porous media
Procedia PDF Downloads 1383312 Rethinking the Constitutionality of Statutes: Rights-Compliant Interpretation in India and the UK
Authors: Chintan Chandrachud
Abstract:
When primary legislation is challenged for breaching fundamental rights, many courts around the world adopt interpretive techniques to avoid finding such legislation incompatible or invalid. In the UK, these techniques find sanction in section 3 of the Human Rights Act 1998, which directs courts to interpret legislation in a manner which is compatible with European Convention rights, ‘so far as it is possible to do so’. In India, courts begin with the interpretive presumption that Parliament intended to comply with fundamental rights under the Constitution of 1949. In comparing rights-compliant interpretation of primary legislation under the Human Rights Act and the Indian Constitution, this paper makes two arguments. First, that in the absence of a section 3-type mandate, Indian courts have a smaller range of interpretive tools at their disposal in interpreting primary legislation in a way which complies with fundamental rights. For example, whereas British courts frequently read words into statutes, Indian courts consider this an inapposite interpretive technique. The second argument flows naturally from the first. Given that Indian courts have a smaller interpretive toolbox, one would imagine that ceteris paribus, Indian courts’ power to strike down legislation would be triggered earlier than the declaration of incompatibility is in the UK. However, this is not borne out in practice. Faced with primary legislation which appears to violate fundamental rights, Indian courts often reluctantly uphold the constitutionality of statutes (rather than striking them down), as opposed to British courts, which make declarations of incompatibility. The explanation for this seeming asymmetry hinges on the difference between the ‘strike down’ power and the declaration of incompatibility. Whereas the former results in the disapplication of a statute, the latter throws the ball back into Parliament’s court, if only formally.Keywords: constitutional law, judicial review, constitution of India, UK Human Rights Act
Procedia PDF Downloads 2883311 Against the Idea of Public Power as Free Will
Authors: Donato Vese
Abstract:
According to the common interpretation, in a legal system, public powers are established by law. Exceptions are admitted in an emergency or particular relationship with public power. However, we currently agree that law allows public administration a margin of decision, even in the case of non-discretionary acts. Hence, the administrative decision not exclusively established by law becomes the rule in the ordinary state of things, non-only in state of exception. This paper aims to analyze and discuss different ideas on discretionary power on the Rule of Law and Rechtsstaat. Observing the legal literature in Europe and Nord and South America, discretionary power can be described as follow: it could be considered a margin that law accords to the executive power for political decisions or a choice between different interpretations of vague legal previsions. In essence, this explanation admits for the executive a decision not established by law or anyhow not exclusively established by law. This means that the discretionary power of public administration integrates the law. However, integrating law does not mean to decide according to the law, but it means to integrate law with a decision involving public power. Consequently, discretionary power is essentially free will. In this perspective, also the Rule of Law and the Rechtsstaat are notions explained differently. Recently, we can observe how the European notion of Rechtsstaat is founded on the formal validity of the law; therefore, for this notion, public authority’s decisions not regulated by law represent a problem. Thus, different systems of law integration have been proposed in legal literature, such as values, democracy, reasonableness, and so on. This paper aims to verify how, looking at those integration clauses from a logical viewpoint, integration based on the recourse to the legal system itself does not resolve the problem. The aforementioned integration clauses are legal rules that require hard work to explain the correct meaning of the law; in particular, they introduce dangerous criteria in favor of the political majority. A different notion of public power can be proposed. This notion includes two main features: (a) sovereignty belongs to persons and not the state, and (b) fundamental rights are not grounded but recognized by Constitutions. Hence, public power is a system based on fundamental rights. According to this approach, it can also be defined as the notion of public interest as concrete maximization of fundamental rights enjoyments. Like this, integration of the law, vague or subject to several interpretations, must be done by referring to the system of fundamental individual rights. We can think, for instance, to fundamental rights that are right in an objective view but not legal because not established by law.Keywords: administrative discretion, free will, fundamental rights, public power, sovereignty
Procedia PDF Downloads 1083310 Symbolic Computation on Variable-Coefficient Non-Linear Dispersive Wave Equations
Authors: Edris Rawashdeh, I. Abu-Falahah, H. M. Jaradat
Abstract:
The variable-coefficient non-linear dispersive wave equation is investigated with the aid of symbolic computation. By virtue of a newly developed simplified bilinear method, multi-soliton solutions for such an equation have been derived. Effects of the inhomogeneities of media and nonuniformities of boundaries, depicted by the variable coefficients, on the soliton behavior are discussed with the aid of the characteristic curve method and graphical analysis.Keywords: dispersive wave equations, multiple soliton solution, Hirota Bilinear Method, symbolic computation
Procedia PDF Downloads 4563309 Study and Solving Partial Differential Equation of Danel Equation in the Vibration Shells
Authors: Hesamoddin Abdollahpour, Roghayeh Abdollahpour, Elham Rahgozar
Abstract:
This paper we deal with an analysis of the free vibrations of the governing partial differential equation that it is Danel equation in the shells. The problem considered represents the governing equation of the nonlinear, large amplitude free vibrations of the hinged shell. A new implementation of the new method is presented to obtain natural frequency and corresponding displacement on the shell. Our purpose is to enhance the ability to solve the mentioned complicated partial differential equation (PDE) with a simple and innovative approach. The results reveal that this new method to solve Danel equation is very effective and simple, and can be applied to other nonlinear partial differential equations. It is necessary to mention that there are some valuable advantages in this way of solving nonlinear differential equations and also most of the sets of partial differential equations can be answered in this manner which in the other methods they have not had acceptable solutions up to now. We can solve equation(s), and consequently, there is no need to utilize similarity solutions which make the solution procedure a time-consuming task.Keywords: large amplitude, free vibrations, analytical solution, Danell Equation, diagram of phase plane
Procedia PDF Downloads 3213308 Non-Local Behavior of a Mixed-Mode Crack in a Functionally Graded Piezoelectric Medium
Authors: Nidhal Jamia, Sami El-Borgi
Abstract:
In this paper, the problem of a mixed-Mode crack embedded in an infinite medium made of a functionally graded piezoelectric material (FGPM) with crack surfaces subjected to electro-mechanical loadings is investigated. Eringen’s non-local theory of elasticity is adopted to formulate the governing electro-elastic equations. The properties of the piezoelectric material are assumed to vary exponentially along a perpendicular plane to the crack. Using Fourier transform, three integral equations are obtained in which the unknown variables are the jumps of mechanical displacements and electric potentials across the crack surfaces. To solve the integral equations, the unknowns are directly expanded as a series of Jacobi polynomials, and the resulting equations solved using the Schmidt method. In contrast to the classical solutions based on the local theory, it is found that no mechanical stress and electric displacement singularities are present at the crack tips when nonlocal theory is employed to investigate the problem. A direct benefit is the ability to use the calculated maximum stress as a fracture criterion. The primary objective of this study is to investigate the effects of crack length, material gradient parameter describing FGPMs, and lattice parameter on the mechanical stress and electric displacement field near crack tips.Keywords: functionally graded piezoelectric material (FGPM), mixed-mode crack, non-local theory, Schmidt method
Procedia PDF Downloads 3083307 Dynamic Shock Bank Liquidity Analysis
Authors: C. Recommandé, J. C. Blind, A. Clavel, R. Gourichon, V. Le Gal
Abstract:
Simulations are developed in this paper with usual DSGE model equations. The model is based on simplified version of Smets-Wouters equations in use at European Central Bank which implies 10 macro-economic variables: consumption, investment, wages, inflation, capital stock, interest rates, production, capital accumulation, labour and credit rate, and allows take into consideration the banking system. Throughout the simulations, this model will be used to evaluate the impact of rate shocks recounting the actions of the European Central Bank during 2008.Keywords: CC-LM, Central Bank, DSGE, liquidity shock, non-standard intervention
Procedia PDF Downloads 4583306 Simulation of Flow Patterns in Vertical Slot Fishway with Cylindrical Obstacles
Authors: Mohsen Solimani Babarsad, Payam Taheri
Abstract:
Numerical results of vertical slot fishways with and without cylinders study are presented. The simulated results and the measured data in the fishways are compared to validate the application of the model. This investigation is made using FLUENT V.6.3, a Computational Fluid Dynamics solver. Advantages of using these types of numerical tools are the possibility of avoiding the St.-Venant equations’ limitations, and turbulence can be modeled by means of different models such as the k-ε model. In general, the present study has demonstrated that the CFD model could be useful for analysis and design of vertical slot fishways with cylinders.Keywords: slot Fish-way, CFD, k-ε model, St.-Venant equations’
Procedia PDF Downloads 3633305 Experimental and Numerical Study of Thermal Effects in Variable Density Turbulent Jets
Authors: DRIS Mohammed El-Amine, BOUNIF Abdelhamid
Abstract:
This paper considers an experimental and numerical investigation of variable density in axisymmetric turbulent free jets. Special attention is paid to the study of the scalar dissipation rate. In this case, dynamic field equations are coupled to scalar field equations by the density which can vary by the thermal effect (jet heating). The numerical investigation is based on the first and second order turbulence models. For the discretization of the equations system characterizing the flow, the finite volume method described by Patankar (1980) was used. The experimental study was conducted in order to evaluate dynamical characteristics of a heated axisymmetric air flow using the Laser Doppler Anemometer (LDA) which is a very accurate optical measurement method. Experimental and numerical results are compared and discussed. This comparison do not show large difference and the results obtained are in general satisfactory.Keywords: Scalar dissipation rate, thermal effects, turbulent axisymmetric jets, second order modelling, Velocimetry Laser Doppler.
Procedia PDF Downloads 4503304 Protection System Mis-operations: Fundamental Concepts and Learning from Indian Power Sector
Authors: Pankaj Kumar Jha, Mahendra Singh Hada, Brijendra Singh
Abstract:
Protection system is an essential feature of the electrical system which helps in detection and removal of faults. Protection system consists of many subsystems like relays, circuit breakers, instrument transformers, auxiliary DC system, auxiliary relays etc. Although the fundamental protective and relay operating concepts are similar throughout the world, there are very significant differences in their implementation. These differences arise through different traditions, operating philosophies, experiences and national standards. Protection system mis-operation due to problem in one or more of its subsystem or inadequate knowledge of numerical relay settings and configuration are very common throughout the world. Protection system mis-operation leads to unstable and unreliable grid operation. In this paper we will discuss about the fundamental concepts of protective relaying and the reasons for protection system mis-operation due to one or more of its subsystems. Many real-world case studies of protection system mis-operation from Indian power sector are discussed in detail in this paper.Keywords: auxiliary trip relays, bus zone, check zone, CT saturation, dead zone protection, DC ground faults, DMT, DR, end fault protection, instrument transformer, SOTF, STUB
Procedia PDF Downloads 763303 Sequential Covering Algorithm for Nondifferentiable Global Optimization Problem and Applications
Authors: Mohamed Rahal, Djaouida Guetta
Abstract:
In this paper, the one-dimensional unconstrained global optimization problem of continuous functions satifying a Hölder condition is considered. We extend the algorithm of sequential covering SCA for Lipschitz functions to a large class of Hölder functions. The convergence of the method is studied and the algorithm can be applied to systems of nonlinear equations. Finally, some numerical examples are presented and illustrate the efficiency of the present approach.Keywords: global optimization, Hölder functions, sequential covering method, systems of nonlinear equations
Procedia PDF Downloads 3703302 Euler-Bernoulli’s Approach for Buckling Analysis of Thick Rectangular Plates Using Alternative I Refined Theory
Authors: Owus Mathias Ibearugbulem
Abstract:
The study presents Euler-Bernoulli’s approach for buckling analysis of thick rectangular plates using alternative I refined theory. No earlier study, to the best knowledge of the author, based on the literature available to this research, applied Euler-Bernoulli’s approach in the alternative I refined theory for buckling analysis of thick rectangular plates. In this study, basic kinematics and constitutive relations for thick rectangular plates are employed in the differential equations of equilibrium of stresses in a deformable elemental body to obtain alternative I governing differential equations of thick rectangular plates and the corresponding compatibility equations. Solving these equations resulted in a general deflection function of a thick rectangular plate. Using this function and satisfying the boundary conditions of three plates, their peculiar deflection functions are obtained. Going further, the study determined the non-dimensional critical buckling loads of the six plates. Values of the non-dimensional critical buckling load from the present study are compared with those from a three-dimensional buckling analysis of a thick plate. The highest percentage difference recorded for the plates: all edges simply supported (ssss), all edges clamped (cccc) and adjacent edges clamped with the other edges simply supported (ccss) are 3.31%, 5.57% and 3.38% respectively.Keywords: Euler-Bernoulli, buckling, alternative I, kinematics, constitutive relation, governing differential equation, compatibility equation, thick plate
Procedia PDF Downloads 313301 A Family of Second Derivative Methods for Numerical Integration of Stiff Initial Value Problems in Ordinary Differential Equations
Authors: Luke Ukpebor, C. E. Abhulimen
Abstract:
Stiff initial value problems in ordinary differential equations are problems for which a typical solution is rapidly decaying exponentially, and their numerical investigations are very tedious. Conventional numerical integration solvers cannot cope effectively with stiff problems as they lack adequate stability characteristics. In this article, we developed a new family of four-step second derivative exponentially fitted method of order six for the numerical integration of stiff initial value problem of general first order differential equations. In deriving our method, we employed the idea of breaking down the general multi-derivative multistep method into predator and corrector schemes which possess free parameters that allow for automatic fitting into exponential functions. The stability analysis of the method was discussed and the method was implemented with numerical examples. The result shows that the method is A-stable and competes favorably with existing methods in terms of efficiency and accuracy.Keywords: A-stable, exponentially fitted, four step, predator-corrector, second derivative, stiff initial value problems
Procedia PDF Downloads 2583300 Patients’ Rights: An Enquiry into the Activities of Local Psychiatric Centers Managed by Muslims in South-West Nigeria
Authors: Shaykh-Luqman Jimoh
Abstract:
In Nigeria, aside the eight Government hospitals designated Psychiatric hospitals, there are also many local psychiatric centers managed by muslims and non-muslim individuals. These centers have been heavily criticized for human right abuses. This study is an inquiry into the truth or otherwise of the criticism. The study focuses on the activities of local centers managed by muslim individuals in South-West Nigeria with a view to determining the extent they uphold or violate their patients’ fundamental human rights as guaranteed by Islam. Information about the activities of the centers were collected through oral interviews. Both descriptive and analytical methods were used in the study. The study revealed that while there are some activities of the local centers managed by muslims in the study area that could be regarded as outright violation of patients’ fundamental human rights, some others, in view of the rationale behind them, may not necessarily constitute outright violation of the patients’ fundamental human rights as hitherto painted except where excesses are committed. The study therefore, using Islamic paradigm, suggests general measures that could be taken to improve on the activities of the centers.Keywords: local psychiatric centers, muslim exorcists, patients’ rights, South-West Nigeria
Procedia PDF Downloads 5023299 Integrated Mathematical Modeling and Advance Visualization of Magnetic Nanoparticle for Drug Delivery, Drug Release and Effects to Cancer Cell Treatment
Authors: Norma Binti Alias, Che Rahim Che The, Norfarizan Mohd Said, Sakinah Abdul Hanan, Akhtar Ali
Abstract:
This paper discusses on the transportation of magnetic drug targeting through blood within vessels, tissues and cells. There are three integrated mathematical models to be discussed and analyze the concentration of drug and blood flow through magnetic nanoparticles. The cell therapy brought advancement in the field of nanotechnology to fight against the tumors. The systematic therapeutic effect of Single Cells can reduce the growth of cancer tissue. The process of this nanoscale phenomena system is able to measure and to model, by identifying some parameters and applying fundamental principles of mathematical modeling and simulation. The mathematical modeling of single cell growth depends on three types of cell densities such as proliferative, quiescent and necrotic cells. The aim of this paper is to enhance the simulation of three types of models. The first model represents the transport of drugs by coupled partial differential equations (PDEs) with 3D parabolic type in a cylindrical coordinate system. This model is integrated by Non-Newtonian flow equations, leading to blood liquid flow as the medium for transportation system and the magnetic force on the magnetic nanoparticles. The interaction between the magnetic force on drug with magnetic properties produces induced currents and the applied magnetic field yields forces with tend to move slowly the movement of blood and bring the drug to the cancer cells. The devices of nanoscale allow the drug to discharge the blood vessels and even spread out through the tissue and access to the cancer cells. The second model is the transport of drug nanoparticles from the vascular system to a single cell. The treatment of the vascular system encounters some parameter identification such as magnetic nanoparticle targeted delivery, blood flow, momentum transport, density and viscosity for drug and blood medium, intensity of magnetic fields and the radius of the capillary. Based on two discretization techniques, finite difference method (FDM) and finite element method (FEM), the set of integrated models are transformed into a series of grid points to get a large system of equations. The third model is a single cell density model involving the three sets of first order PDEs equations for proliferating, quiescent and necrotic cells change over time and space in Cartesian coordinate which regulates under different rates of nutrients consumptions. The model presents the proliferative and quiescent cell growth depends on some parameter changes and the necrotic cells emerged as the tumor core. Some numerical schemes for solving the system of equations are compared and analyzed. Simulation and computation of the discretized model are supported by Matlab and C programming languages on a single processing unit. Some numerical results and analysis of the algorithms are presented in terms of informative presentation of tables, multiple graph and multidimensional visualization. As a conclusion, the integrated of three types mathematical modeling and the comparison of numerical performance indicates that the superior tool and analysis for solving the complete set of magnetic drug delivery system which give significant effects on the growth of the targeted cancer cell.Keywords: mathematical modeling, visualization, PDE models, magnetic nanoparticle drug delivery model, drug release model, single cell effects, avascular tumor growth, numerical analysis
Procedia PDF Downloads 4283298 Elastic Deformation of Multistory RC Frames under Lateral Loads
Authors: Hamdy Elgohary, Majid Assas
Abstract:
Estimation of lateral displacement and interstory drifts represent a major step in multistory frames design. In the preliminary design stage, it is essential to perform a fast check for the expected values of lateral deformations. This step will help to ensure the compliance of the expected values with the design code requirements. Also, in some cases during or after the detailed design stage, it may be required to carry fast check of lateral deformations by design reviewer. In the present paper, a parametric study is carried out on the factors affecting in the lateral displacements of multistory frame buildings. Based on the results of the parametric study, simplified empirical equations are recommended for the direct determination of the lateral deflection of multistory frames. The results obtained using the recommended equations have been compared with the results obtained by finite element analysis. The comparison shows that the proposed equations lead to good approximation for the estimation of lateral deflection of multistory RC frame buildings.Keywords: lateral deflection, interstory drift, approximate analysis, multistory frames
Procedia PDF Downloads 2713297 Numerical Regularization of Ill-Posed Problems via Hybrid Feedback Controls
Authors: Eugene Stepanov, Arkadi Ponossov
Abstract:
Many mathematical models used in biological and other applications are ill-posed. The reason for that is the nature of differential equations, where the nonlinearities are assumed to be step functions, which is done to simplify the analysis. Prominent examples are switched systems arising from gene regulatory networks and neural field equations. This simplification leads, however, to theoretical and numerical complications. In the presentation, it is proposed to apply the theory of hybrid feedback controls to regularize the problem. Roughly speaking, one attaches a finite state control (‘automaton’), which follows the trajectories of the original system and governs its dynamics at the points of ill-posedness. The construction of the automaton is based on the classification of the attractors of the specially designed adjoint dynamical system. This ‘hybridization’ is shown to regularize the original switched system and gives rise to efficient hybrid numerical schemes. Several examples are provided in the presentation, which supports the suggested analysis. The method can be of interest in other applied fields, where differential equations contain step-like nonlinearities.Keywords: hybrid feedback control, ill-posed problems, singular perturbation analysis, step-like nonlinearities
Procedia PDF Downloads 245