Search results for: dual graph
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1265

Search results for: dual graph

1055 An Approach to Maximize the Influence Spread in the Social Networks

Authors: Gaye Ibrahima, Mendy Gervais, Seck Diaraf, Ouya Samuel

Abstract:

In this paper, we consider the influence maximization in social networks. Here we give importance to initial diffuser called the seeds. The goal is to find efficiently a subset of k elements in the social network that will begin and maximize the information diffusion process. A new approach which treats the social network before to determine the seeds, is proposed. This treatment eliminates the information feedback toward a considered element as seed by extracting an acyclic spanning social network. At first, we propose two algorithm versions called SCG − algoritm (v1 and v2) (Spanning Connected Graphalgorithm). This algorithm takes as input data a connected social network directed or no. And finally, a generalization of the SCG − algoritm is proposed. It is called SG − algoritm (Spanning Graph-algorithm) and takes as input data any graph. These two algorithms are effective and have each one a polynomial complexity. To show the pertinence of our approach, two seeds set are determined and those given by our approach give a better results. The performances of this approach are very perceptible through the simulation carried out by the R software and the igraph package.

Keywords: acyclic spanning graph, centrality measures, information feedback, influence maximization, social network

Procedia PDF Downloads 249
1054 Deep Graph Embeddings for the Analysis of Short Heartbeat Interval Time Series

Authors: Tamas Madl

Abstract:

Sudden cardiac death (SCD) constitutes a large proportion of cardiovascular mortalities, provides little advance warning, and the risk is difficult to recognize based on ubiquitous, low cost medical equipment such as the standard, 12-lead, ten second ECG. Autonomic abnormalities have been shown to be strongly predictive of SCD risk; yet current methods are not trivially applicable to the brevity and low temporal and electrical resolution of standard ECGs. Here, we build horizontal visibility graph representations of very short inter-beat interval time series, and perform unsuper- vised representation learning in order to convert these variable size objects into fixed-length vectors preserving similarity rela- tions. We show that such representations facilitate classification into healthy vs. at-risk patients on two different datasets, the Mul- tiparameter Intelligent Monitoring in Intensive Care II and the PhysioNet Sudden Cardiac Death Holter Database. Our results suggest that graph representation learning of heartbeat interval time series facilitates robust classification even in sequences as short as ten seconds.

Keywords: sudden cardiac death, heart rate variability, ECG analysis, time series classification

Procedia PDF Downloads 234
1053 Validation and Interpretation about Precedence Diagram for Start to Finish Relationship by Graph Theory

Authors: Naoki Ohshima, Ken Kaminishi

Abstract:

Four types of dependencies, which are 'Finish-to-start', 'Finish-to-finish', 'Start-to-start' and 'Start-to-finish (S-F)' as logical relationship are modeled based on the definition by 'the predecessor activity is defined as an activity to come before a dependent activity in a schedule' in PMBOK. However, it is found a self-contradiction in the precedence diagram for S-F relationship by PMBOK. In this paper, author would like to validate logical relationship of S-F by Graph Theory and propose a new interpretation of the precedence diagram for S-F relationship.

Keywords: project time management, sequence activity, start-to-finish relationship, precedence diagram, PMBOK

Procedia PDF Downloads 270
1052 Spectral Clustering from the Discrepancy View and Generalized Quasirandomness

Authors: Marianna Bolla

Abstract:

The aim of this paper is to compare spectral, discrepancy, and degree properties of expanding graph sequences. As we can prove equivalences and implications between them and the definition of the generalized (multiclass) quasirandomness of Lovasz–Sos (2008), they can be regarded as generalized quasirandom properties akin to the equivalent quasirandom properties of the seminal Chung-Graham-Wilson paper (1989) in the one-class scenario. Since these properties are valid for deterministic graph sequences, irrespective of stochastic models, the partial implications also justify for low-dimensional embedding of large-scale graphs and for discrepancy minimizing spectral clustering.

Keywords: generalized random graphs, multiway discrepancy, normalized modularity spectra, spectral clustering

Procedia PDF Downloads 197
1051 Effect of Retained Austenite Stability in Corrosion Mechanism of Dual Phase High Carbon Steel

Authors: W. Handoko, F. Pahlevani, V. Sahajwalla

Abstract:

Dual-phase high carbon steels (DHCS) are commonly known for their improved strength, hardness, and abrasive resistance properties due to co-presence of retained austenite and martensite at the same time. Retained austenite is a meta-stable phase at room temperature, and stability of this phase governs the response of DHCS at different conditions. This research paper studies the effect of RA stability on corrosion behaviour of high carbon steels after they have been immersed into 1.0 M NaCl solution for various times. For this purpose, two different steels with different RA stabilities have been investigated. The surface morphology of the samples before and after corrosion attack was observed by secondary electron microscopy (SEM) and atomic force microscopy (AFM), along with the weight loss and Vickers hardness analysis. Microstructural investigations proved the preferential attack to retained austenite phase during corrosion. Hence, increase in the stability of retained austenite in dual-phase steels led to decreasing the weight loss rate.

Keywords: high carbon steel, austenite stability, atomic force microscopy, corrosion

Procedia PDF Downloads 210
1050 Design, Molecular Modeling, Synthesize, and Biological Evaluation of Some Dual Inhibitors of Soluble Epoxide Hydrolase (sEH) and Cyclooxygenase 2 (COX-2)

Authors: Elham Rezaee, Sayyed Abbas Tabatabai

Abstract:

Dual inhibition of COX-2 and sEH enzymes represents one of the distinct pharmaceutical approaches for the treatment of inflammation, pain, cancers, and other diseases. The discovery of these inhibitors for treatment is a great deal of attention because of some advantages such as increased efficacy, a promising safety profile, ease of formulation, and better target engagement. In this research, based on the structure-activity relationship of COX-2 and sEH inhibitors, some amide derivatives with oxadiazole and dihydropyrimidinone rings against sEH and COX-2 enzymes were developed. The designed compounds showed high affinity to the active site of both enzymes in docking studies and were synthesized in good yield and characterized by IR, Mass, 1HNMR, and 13CNMR. All of the novel compounds exhibited considerable in-vitro sEH and COX-2 inhibitory activities in comparison with 12-(3-Adamantan-1-yl-ureido)- dodecanoic acid and celecoxib (a potent urea-based sEH inhibitor and selective nonsteroidal anti-inflammatory drug, respectively). Ethyl 6-methyl-4-(4-(4-(methylsulfonyl)benzamido)phenyl)-2-oxo-1,2,3,4-tetrahydropyrimidine-5-carboxylate was found to be the most selective COX-2 inhibitor (COX-2/COX-1 ratio: 683) with IC50 value of 2.1 nM targeting sEH enzyme.

Keywords: COX-2, dual inhibitors, sEH, synthesis

Procedia PDF Downloads 52
1049 Proposing an Architecture for Drug Response Prediction by Integrating Multiomics Data and Utilizing Graph Transformers

Authors: Nishank Raisinghani

Abstract:

Efficiently predicting drug response remains a challenge in the realm of drug discovery. To address this issue, we propose four model architectures that combine graphical representation with varying positions of multiheaded self-attention mechanisms. By leveraging two types of multi-omics data, transcriptomics and genomics, we create a comprehensive representation of target cells and enable drug response prediction in precision medicine. A majority of our architectures utilize multiple transformer models, one with a graph attention mechanism and the other with a multiheaded self-attention mechanism, to generate latent representations of both drug and omics data, respectively. Our model architectures apply an attention mechanism to both drug and multiomics data, with the goal of procuring more comprehensive latent representations. The latent representations are then concatenated and input into a fully connected network to predict the IC-50 score, a measure of cell drug response. We experiment with all four of these architectures and extract results from all of them. Our study greatly contributes to the future of drug discovery and precision medicine by looking to optimize the time and accuracy of drug response prediction.

Keywords: drug discovery, transformers, graph neural networks, multiomics

Procedia PDF Downloads 154
1048 Coupling of Reticular and Fuzzy Set Modelling in the Analysis of the Action Chains from Socio-Ecosystem, Case of the Renewable Natural Resources Management in Madagascar

Authors: Thierry Ganomanana, Dominique Hervé, Solo Randriamahaleo

Abstract:

Management of Malagasy renewable natural re-sources allows, in the case of forest, the mobilization of several actors with norms and/or territory. The interaction in this socio-ecosystem is represented by a graph of two different relationships in which most of action chains, from individual activities under the continuous of forest dynamic and discrete interventions by institutional, are also studied. The fuzzy set theory is adapted to graduate the elements of the set Illegal Activities in the space of sanction’s institution by his severity and in the space of degradation of forest by his extent.

Keywords: fuzzy set, graph, institution, renewable resource, system

Procedia PDF Downloads 90
1047 Screen Method of Distributed Cooperative Navigation Factors for Unmanned Aerial Vehicle Swarm

Authors: Can Zhang, Qun Li, Yonglin Lei, Zhi Zhu, Dong Guo

Abstract:

Aiming at the problem of factor screen in distributed collaborative navigation of dense UAV swarm, an efficient distributed collaborative navigation factor screen method is proposed. The method considered the balance between computing load and positioning accuracy. The proposed algorithm utilized the factor graph model to implement a distributed collaborative navigation algorithm. The GNSS information of the UAV itself and the ranging information between the UAVs are used as the positioning factors. In this distributed scheme, a local factor graph is established for each UAV. The positioning factors of nodes with good geometric position distribution and small variance are selected to participate in the navigation calculation. To demonstrate and verify the proposed methods, the simulation and experiments in different scenarios are performed in this research. Simulation results show that the proposed scheme achieves a good balance between the computing load and positioning accuracy in the distributed cooperative navigation calculation of UAV swarm. This proposed algorithm has important theoretical and practical value for both industry and academic areas.

Keywords: screen method, cooperative positioning system, UAV swarm, factor graph, cooperative navigation

Procedia PDF Downloads 81
1046 Evaluation of Dual Polarization Rainfall Estimation Algorithm Applicability in Korea: A Case Study on Biseulsan Radar

Authors: Chulsang Yoo, Gildo Kim

Abstract:

Dual polarization radar provides comprehensive information about rainfall by measuring multiple parameters. In Korea, for the rainfall estimation, JPOLE and CSU-HIDRO algorithms are generally used. This study evaluated the local applicability of JPOLE and CSU-HIDRO algorithms in Korea by using the observed rainfall data collected on August, 2014 by the Biseulsan dual polarization radar data and KMA AWS. A total of 11,372 pairs of radar-ground rain rate data were classified according to thresholds of synthetic algorithms into suitable and unsuitable data. Then, evaluation criteria were derived by comparing radar rain rate and ground rain rate, respectively, for entire, suitable, unsuitable data. The results are as follows: (1) The radar rain rate equation including KDP, was found better in the rainfall estimation than the other equations for both JPOLE and CSU-HIDRO algorithms. The thresholds were found to be adequately applied for both algorithms including specific differential phase. (2) The radar rain rate equation including horizontal reflectivity and differential reflectivity were found poor compared to the others. The result was not improved even when only the suitable data were applied. Acknowledgments: This work was supported by the Basic Science Research Program through the National Research Foundation of Korea, funded by the Ministry of Education (NRF-2013R1A1A2011012).

Keywords: CSU-HIDRO algorithm, dual polarization radar, JPOLE algorithm, radar rainfall estimation algorithm

Procedia PDF Downloads 215
1045 Allocation of Mobile Units in an Urban Emergency Service System

Authors: Dimitra Alexiou

Abstract:

In an urban area the allocation placement of an emergency service mobile units, such as ambulances, police patrol must be designed so as to achieve a prompt response to demand locations. In this paper, a partition of a given urban network into distinct sub-networks is performed such that; the vertices in each component are close and simultaneously the difference of the sums of the corresponding population in the sub-networks is almost uniform. The objective here is to position appropriately in each sub-network a mobile emergency unit in order to reduce the response time to the demands. A mathematical model in the framework of graph theory is developed. In order to clarify the corresponding method a relevant numerical example is presented on a small network.

Keywords: graph partition, emergency service, distances, location

Procedia PDF Downloads 499
1044 DTI Connectome Changes in the Acute Phase of Aneurysmal Subarachnoid Hemorrhage Improve Outcome Classification

Authors: Sarah E. Nelson, Casey Weiner, Alexander Sigmon, Jun Hua, Haris I. Sair, Jose I. Suarez, Robert D. Stevens

Abstract:

Graph-theoretical information from structural connectomes indicated significant connectivity changes and improved acute prognostication in a Random Forest (RF) model in aneurysmal subarachnoid hemorrhage (aSAH), which can lead to significant morbidity and mortality and has traditionally been fraught by poor methods to predict outcome. This study’s hypothesis was that structural connectivity changes occur in canonical brain networks of acute aSAH patients, and that these changes are associated with functional outcome at six months. In a prospective cohort of patients admitted to a single institution for management of acute aSAH, patients underwent diffusion tensor imaging (DTI) as part of a multimodal MRI scan. A weighted undirected structural connectome was created of each patient’s images using Constant Solid Angle (CSA) tractography, with 176 regions of interest (ROIs) defined by the Johns Hopkins Eve atlas. ROIs were sorted into four networks: Default Mode Network, Executive Control Network, Salience Network, and Whole Brain. The resulting nodes and edges were characterized using graph-theoretic features, including Node Strength (NS), Betweenness Centrality (BC), Network Degree (ND), and Connectedness (C). Clinical (including demographics and World Federation of Neurologic Surgeons scale) and graph features were used separately and in combination to train RF and Logistic Regression classifiers to predict two outcomes: dichotomized modified Rankin Score (mRS) at discharge and at six months after discharge (favorable outcome mRS 0-2, unfavorable outcome mRS 3-6). A total of 56 aSAH patients underwent DTI a median (IQR) of 7 (IQR=8.5) days after admission. The best performing model (RF) combining clinical and DTI graph features had a mean Area Under the Receiver Operator Characteristic Curve (AUROC) of 0.88 ± 0.00 and Area Under the Precision Recall Curve (AUPRC) of 0.95 ± 0.00 over 500 trials. The combined model performed better than the clinical model alone (AUROC 0.81 ± 0.01, AUPRC 0.91 ± 0.00). The highest-ranked graph features for prediction were NS, BC, and ND. These results indicate reorganization of the connectome early after aSAH. The performance of clinical prognostic models was increased significantly by the inclusion of DTI-derived graph connectivity metrics. This methodology could significantly improve prognostication of aSAH.

Keywords: connectomics, diffusion tensor imaging, graph theory, machine learning, subarachnoid hemorrhage

Procedia PDF Downloads 189
1043 Top-K Shortest Distance as a Similarity Measure

Authors: Andrey Lebedev, Ilya Dmitrenok, JooYoung Lee, Leonard Johard

Abstract:

Top-k shortest path routing problem is an extension of finding the shortest path in a given network. Shortest path is one of the most essential measures as it reveals the relations between two nodes in a network. However, in many real world networks, whose diameters are small, top-k shortest path is more interesting as it contains more information about the network topology. Many variations to compute top-k shortest paths have been studied. In this paper, we apply an efficient top-k shortest distance routing algorithm to the link prediction problem and test its efficacy. We compare the results with other base line and state-of-the-art methods as well as with the shortest path. Then, we also propose a top-k distance based graph matching algorithm.

Keywords: graph matching, link prediction, shortest path, similarity

Procedia PDF Downloads 358
1042 A Characterization of Skew Cyclic Code with Complementary Dual

Authors: Eusebio Jr. Lina, Ederlina Nocon

Abstract:

Cyclic codes are a fundamental subclass of linear codes that enjoy a very interesting algebraic structure. The class of skew cyclic codes (or θ-cyclic codes) is a generalization of the notion of cyclic codes. This a very large class of linear codes which can be used to systematically search for codes with good properties. A linear code with complementary dual (LCD code) is a linear code C satisfying C ∩ C^⊥ = {0}. This subclass of linear codes provides an optimum linear coding solution for a two-user binary adder channel and plays an important role in countermeasures to passive and active side-channel analyses on embedded cryptosystems. This paper aims to identify LCD codes from the class of skew cyclic codes. Let F_q be a finite field of order q, and θ be an automorphism of F_q. Some conditions for a skew cyclic code to be LCD were given. To this end, the properties of a noncommutative skew polynomial ring F_q[x, θ] of automorphism type were revisited, and the algebraic structure of skew cyclic code using its skew polynomial representation was examined. Using the result that skew cyclic codes are left ideals of the ring F_q[x, θ]/〈x^n-1〉, a characterization of a skew cyclic LCD code of length n was derived. A necessary condition for a skew cyclic code to be LCD was also given.

Keywords: LCD cyclic codes, skew cyclic LCD codes, skew cyclic complementary dual codes, theta-cyclic codes with complementary duals

Procedia PDF Downloads 345
1041 Effect of Fuel Type on Design Parameters and Atomization Process for Pressure Swirl Atomizer and Dual Orifice Atomizer for High Bypass Turbofan Engine

Authors: Mohamed K. Khalil, Mohamed S. Ragab

Abstract:

Atomizers are used in many engineering applications including diesel engines, petrol engines and spray combustion in furnaces as well as gas turbine engines. These atomizers are used to increase the specific surface area of the fuel, which achieve a high rate of fuel mixing and evaporation. In all combustion systems reduction in mean drop size is a challenge which has many advantages since it leads to rapid and easier ignition, higher volumetric heat release rate, wider burning range and lower exhaust concentrations of the pollutant emissions. Pressure atomizers have a different configuration for design such as swirl atomizer (simplex), dual orifice, spill return, plain orifice, duplex and fan spray. Simplex pressure atomizers are the most common type of all. Among all types of atomizers, pressure swirl types resemble a special category since they differ in quality of atomization, the reliability of operation, simplicity of construction and low expenditure of energy. But, the disadvantages of these atomizers are that they require very high injection pressure and have low discharge coefficient owing to the fact that the air core covers the majority of the atomizer orifice. To overcome these problems, dual orifice atomizer was designed. This paper proposes a detailed mathematical model design procedure for both pressure swirl atomizer (Simplex) and dual orifice atomizer, examines the effects of varying fuel type and makes a clear comparison between the two types. Using five types of fuel (JP-5, JA1, JP-4, Diesel and Bio-Diesel) as a case study, reveal the effect of changing fuel type and its properties on atomizers design and spray characteristics. Which effect on combustion process parameters; Sauter Mean Diameter (SMD), spray cone angle and sheet thickness with varying the discharge coefficient from 0.27 to 0.35 during takeoff for high bypass turbofan engines. The spray atomizer performance of the pressure swirl fuel injector was compared to the dual orifice fuel injector at the same differential pressure and discharge coefficient using Excel. The results are analyzed and handled to form the final reliability results for fuel injectors in high bypass turbofan engines. The results show that the Sauter Mean Diameter (SMD) in dual orifice atomizer is larger than Sauter Mean Diameter (SMD) in pressure swirl atomizer, the film thickness (h) in dual orifice atomizer is less than the film thickness (h) in pressure swirl atomizer. The Spray Cone Angle (α) in pressure swirl atomizer is larger than Spray Cone Angle (α) in dual orifice atomizer.

Keywords: gas turbine engines, atomization process, Sauter mean diameter, JP-5

Procedia PDF Downloads 165
1040 Classification of Equations of Motion

Authors: Amritpal Singh Nafria, Rohit Sharma, Md. Shami Ansari

Abstract:

Up to now only five different equations of motion can be derived from velocity time graph without needing to know the normal and frictional forces acting at the point of contact. In this paper we obtained all possible requisite conditions to be considering an equation as an equation of motion. After that we classified equations of motion by considering two equations as fundamental kinematical equations of motion and other three as additional kinematical equations of motion. After deriving these five equations of motion, we examine the easiest way of solving a wide variety of useful numerical problems. At the end of the paper, we discussed the importance and educational benefits of classification of equations of motion.

Keywords: velocity-time graph, fundamental equations, additional equations, requisite conditions, importance and educational benefits

Procedia PDF Downloads 787
1039 Hybrid Thresholding Lifting Dual Tree Complex Wavelet Transform with Wiener Filter for Quality Assurance of Medical Image

Authors: Hilal Naimi, Amelbahahouda Adamou-Mitiche, Lahcene Mitiche

Abstract:

The main problem in the area of medical imaging has been image denoising. The most defying for image denoising is to secure data carrying structures like surfaces and edges in order to achieve good visual quality. Different algorithms with different denoising performances have been proposed in previous decades. More recently, models focused on deep learning have shown a great promise to outperform all traditional approaches. However, these techniques are limited to the necessity of large sample size training and high computational costs. This research proposes a denoising approach basing on LDTCWT (Lifting Dual Tree Complex Wavelet Transform) using Hybrid Thresholding with Wiener filter to enhance the quality image. This research describes the LDTCWT as a type of lifting wavelets remodeling that produce complex coefficients by employing a dual tree of lifting wavelets filters to get its real part and imaginary part. Permits the remodel to produce approximate shift invariance, directionally selective filters and reduces the computation time (properties lacking within the classical wavelets transform). To develop this approach, a hybrid thresholding function is modeled by integrating the Wiener filter into the thresholding function.

Keywords: lifting wavelet transform, image denoising, dual tree complex wavelet transform, wavelet shrinkage, wiener filter

Procedia PDF Downloads 163
1038 An Efficient Hardware/Software Workflow for Multi-Cores Simulink Applications

Authors: Asma Rebaya, Kaouther Gasmi, Imen Amari, Salem Hasnaoui

Abstract:

Over these last years, applications such as telecommunications, signal processing, digital communication with advanced features (Multi-antenna, equalization..) witness a rapid evaluation accompanied with an increase of user exigencies in terms of latency, the power of computation… To satisfy these requirements, the use of hardware/software systems is a common solution; where hardware is composed of multi-cores and software is represented by models of computation, synchronous data flow (SDF) graph for instance. Otherwise, the most of the embedded system designers utilize Simulink for modeling. The issue is how to simplify the c code generation, for a multi-cores platform, of an application modeled by Simulink. To overcome this problem, we propose a workflow allowing an automatic transformation from the Simulink model to the SDF graph and providing an efficient schedule permitting to optimize the number of cores and to minimize latency. This workflow goes from a Simulink application and a hardware architecture described by IP.XACT language. Based on the synchronous and hierarchical behavior of both models, the Simulink block diagram is automatically transformed into an SDF graph. Once this process is successfully achieved, the scheduler calculates the optimal cores’ number needful by minimizing the maximum density of the whole application. Then, a core is chosen to execute a specific graph task in a specific order and, subsequently, a compatible C code is generated. In order to perform this proposal, we extend Preesm, a rapid prototyping tool, to take the Simulink model as entry input and to support the optimal schedule. Afterward, we compared our results to this tool results, using a simple illustrative application. The comparison shows that our results strictly dominate the Preesm results in terms of number of cores and latency. In fact, if Preesm needs m processors and latency L, our workflow need processors and latency L'< L.

Keywords: hardware/software system, latency, modeling, multi-cores platform, scheduler, SDF graph, Simulink model, workflow

Procedia PDF Downloads 269
1037 Domination Parameters of Middle Graphs: Connected and Outer-Connected Perspectives

Authors: Behnaz Pahlousay, Farshad Kazemnejad, Elisa Palezzato, Michele Torielli

Abstract:

In this paper, we study the notions of connected domination number and of outer-connected domination number for middle graphs. Indeed, we obtain tight bounds for these numbers in terms of the order of the middle graph M(G). We also compute the outer-connected domination number of some families of graphs such as star graphs, cycle graphs, wheel graphs, complete graphs, complete bipartite graphs and some operation on graphs, explicitly. Moreover, some Nordhaus-Gaddum-like relations are presented for the outer-connected domination number of middle graphs.

Keywords: connected domination number, outer-connected dom- ination number, domination number, middle graph, nordhaus- gaddum-like relation.

Procedia PDF Downloads 41
1036 Synchrotron Radiation and Inverse Compton Scattering in Astrophysical Plasma

Authors: S. S. Sathiesh

Abstract:

The aim of this project is to study the radiation mechanism synchrotron and Inverse Compton scattering. Theoretically, we discussed spectral energy distribution for both. Programming is done for plotting the graph of Power-law spectrum for synchrotron Radiation using fortran90. The importance of power law spectrum was discussed and studied to infer its physical parameters from the model fitting. We also discussed how to infer the physical parameters from the theoretically drawn graph, we have seen how one can infer B (magnetic field of the source), γ min, γ max, spectral indices (p1, p2) while fitting the curve to the observed data.

Keywords: blazars/quasars, beaming, synchrotron radiation, Synchrotron Self Compton, inverse Compton scattering, mrk421

Procedia PDF Downloads 413
1035 Implant Operation Guiding Device for Dental Surgeons

Authors: Daniel Hyun

Abstract:

Dental implants are one of the top 3 reasons to sue a dentist for malpractice. It involves dental implant complications, usually because of the angle of the implant from the surgery. At present, surgeons usually use a 3D-printed navigator that is customized for the patient’s teeth. However, those can’t be reused for other patients as they require time. Therefore, I made a guiding device to assist the surgeon in implant operations. The surgeon can input the objective of the operation, and the device constantly checks if the surgery is heading towards the objective within the set range, telling the surgeon by manipulating the LED. We tested the prototypes’ consistency and accuracy by checking the graph, average standard deviation, and the average change of the calculated angles. The accuracy of performance was also acquired by running the device and checking the outputs. My first prototype used accelerometer and gyroscope sensors from the Arduino MPU6050 sensor, getting a changeable graph, achieving 0.0295 of standard deviations, 0.25 of average change, and 66.6% accuracy of performance. The second prototype used only the gyroscope, and it got a constant graph, achieved 0.0062 of standard deviation, 0.075 of average change, and 100% accuracy of performance, indicating that the accelerometer sensor aggravated the functionality of the device. Using the gyroscope sensor allowed it to measure the orientations of separate axes without affecting each other and also increased the stability and accuracy of the measurements.

Keywords: implant, guide, accelerometer, gyroscope, handpiece

Procedia PDF Downloads 43
1034 Importance of Solubility and Bubble Pressure Models to Predict Pressure of Nitrified Oil Based Drilling Fluid in Dual Gradient Drilling

Authors: Sajjad Negahban, Ruihe Wang, Baojiang Sun

Abstract:

Gas-lift dual gradient drilling is a solution for deepwater drilling challenges. As well, Continuous development of drilling technology leads to increase employment of mineral oil based drilling fluids and synthetic-based drilling fluids, which have adequate characteristics such as: high rate of penetration, lubricity, shale inhibition and low toxicity. The paper discusses utilization of nitrified mineral oil base drilling for deepwater drilling and for more accurate prediction of pressure in DGD at marine riser, solubility and bubble pressure were considered in steady state hydraulic model. The Standing bubble pressure and solubility correlations, and two models which were acquired from experimental determination were applied in hydraulic model. The effect of the black oil correlations, and new solubility and bubble pressure models was evaluated on the PVT parameters such as oil formation volume factor, density, viscosity, volumetric flow rate. Eventually, the consequent simulated pressure profile due to these models was presented.

Keywords: solubility, bubble pressure, gas-lift dual gradient drilling, steady state hydraulic model

Procedia PDF Downloads 275
1033 Stock Market Prediction Using Convolutional Neural Network That Learns from a Graph

Authors: Mo-Se Lee, Cheol-Hwi Ahn, Kee-Young Kwahk, Hyunchul Ahn

Abstract:

Over the past decade, deep learning has been in spotlight among various machine learning algorithms. In particular, CNN (Convolutional Neural Network), which is known as effective solution for recognizing and classifying images, has been popularly applied to classification and prediction problems in various fields. In this study, we try to apply CNN to stock market prediction, one of the most challenging tasks in the machine learning research. In specific, we propose to apply CNN as the binary classifier that predicts stock market direction (up or down) by using a graph as its input. That is, our proposal is to build a machine learning algorithm that mimics a person who looks at the graph and predicts whether the trend will go up or down. Our proposed model consists of four steps. In the first step, it divides the dataset into 5 days, 10 days, 15 days, and 20 days. And then, it creates graphs for each interval in step 2. In the next step, CNN classifiers are trained using the graphs generated in the previous step. In step 4, it optimizes the hyper parameters of the trained model by using the validation dataset. To validate our model, we will apply it to the prediction of KOSPI200 for 1,986 days in eight years (from 2009 to 2016). The experimental dataset will include 14 technical indicators such as CCI, Momentum, ROC and daily closing price of KOSPI200 of Korean stock market.

Keywords: convolutional neural network, deep learning, Korean stock market, stock market prediction

Procedia PDF Downloads 425
1032 Dual Band Shared Aperture Antenna for 5G Communications

Authors: Zunnurain Ahmad

Abstract:

This work presents design of a dual band antenna for the 5G communications in the millimeter wave band. As opposed to conventional patch antennas which are limited to single narrow band operation a shared aperture concept is utilized for this antenna. The patch aperture is coupled through two rectangular slots etched on a thin printed circuit board (100μm). The patch is elevated in air thus avoiding excitation of surface waves and minimizing dielectric losses at millimeter wave frequencies. With this approach the radiator can cover lower band of 28 GHz and upper band of 37/ 39 GHz dedicated for the fifth generation communications. The simulated radiation efficiency of the antenna stays above 90%.

Keywords: antenna, millimeter wave, 5G, 3D

Procedia PDF Downloads 61
1031 Parenting Stress and Maternal Psychological Statues in Mothers of Dual Diagnosis Children

Authors: Deena Moustafa

Abstract:

The purpose of this paper is to describe the sources of parenting stress in mothers of Dual Diagnosis children (n =60) and examine the relationship between parenting stress and maternal psychological status (depression and well-being), also examine if there is any difference between the previous variables in different disabilities associated with Autism. A descriptive correlational design was used. Data were collected via online questionnaires. The study finds that there was no significant relationship between Autism Parenting Stress Index (APSI) scores and types of disability which associated with Autism, although Mothers with deaf autistic reported more parenting stress, Similar findings were found regarding Depressive Symptoms, as there was no significant relationship between (CESD-R) scores and types of disability which associated with Autism, also study finds that there was a significant correlation of the (APSI) with the (CESD-R) Mothers with higher overall parenting stress reported more depressive symptoms. Likewise, there was also a significant correlation between the (APSI) and the (RPWB) Mothers reporting more parenting stress also reported lower levels of well-being.

Keywords: parenting stress, maternal psychological statues, mothers of dual diagnosis, autism

Procedia PDF Downloads 455
1030 Stereoselective Glycosylation and Functionalization of Unbiased Site of Sweet System via Dual-Catalytic Transition Metal Systems/Wittig Reaction

Authors: Mukul R. Gupta, Rajkumar Gandhi, Rajitha Sachan, Naveen K. Khare

Abstract:

The field of glycoscience has burgeoned in the last several decades, leading to the identification of many glycosides which could serve critical roles in a wide range of biological processes. This has prompted a resurgence in synthetic interest, with a particular focus on new approaches to construct the selective glycosidic bond. Despite the numerous elegant strategies and methods developed for the formation of glycosidic bonds, stereoselective construction of glycosides remains challenging. Here, we have recently developed the novel Hexafluoroisopropanol (HFIP) catalyzed stereoselective glycosylation methods by using KDN imidate glycosyl donor and a variety of alcohols in excellent yield. This method is broadly applicable to a wide range of substrates and with excellent selectivity of glycoside. Also, herein we are reporting the functionalization of the unbiased side of newly formed glycosides by dual-catalytic transition metal systems (Ru- or Fe-). We are using the innovative Reverse & Catalyst strategy, i.e., a reversible activation reaction by one catalyst with a functionalization reaction by another catalyst, together with enabling functionalization of substrates at their inherently unreactive sites. As well, we are targeting the diSia derivative synthesis by Wittig reaction. This synthetic method is applicable in mild conditions, functional group tolerance of the dual-catalytic systems and also highlights the potential of the multicatalytic approach to address challenging transformations to avoid multistep procedures in carbohydrate synthesis.

Keywords: KDN, stereoselective glycosylation, dual-catalytic functionalization, Wittig reaction

Procedia PDF Downloads 193
1029 Managing Cognitive Load in Accounting: An Analysis of Three Instructional Designs in Financial Accounting

Authors: Seedwell Sithole

Abstract:

One of the persistent problems in accounting education is how to effectively support students’ learning. A promising technique to this issue is to investigate the extent that learning is determined by the design of instructional material. This study examines the academic performance of students using three instructional designs in financial accounting. Student’s performance scores and reported mental effort ratings were used to determine the instructional effectiveness. The findings of this study show that accounting students prefer graph and text designs that are integrated. The results suggest that spatially separated graph and text presentations in accounting should be reorganized to align with the requirements of human cognitive architecture.

Keywords: accounting, cognitive load, education, instructional preferences, students

Procedia PDF Downloads 151
1028 CTHTC: A Convolution-Backed Transformer Architecture for Temporal Knowledge Graph Embedding with Periodicity Recognition

Authors: Xinyuan Chen, Mohd Nizam Husen, Zhongmei Zhou, Gongde Guo, Wei Gao

Abstract:

Temporal Knowledge Graph Completion (TKGC) has attracted increasing attention for its enormous value; however, existing models lack capabilities to capture both local interactions and global dependencies simultaneously with evolutionary dynamics, while the latest achievements in convolutions and Transformers haven't been employed in this area. What’s more, periodic patterns in TKGs haven’t been fully explored either. To this end, a multi-stage hybrid architecture with convolution-backed Transformers is introduced in TKGC tasks for the first time combining the Hawkes process to model evolving event sequences in a continuous-time domain. In addition, the seasonal-trend decomposition is adopted to identify periodic patterns. Experiments on six public datasets are conducted to verify model effectiveness against state-of-the-art (SOTA) methods. An extensive ablation study is carried out accordingly to evaluate architecture variants as well as the contributions of independent components in addition, paving the way for further potential exploitation. Besides complexity analysis, input sensitivity and safety challenges are also thoroughly discussed for comprehensiveness with novel methods.

Keywords: temporal knowledge graph completion, convolution, transformer, Hawkes process, periodicity

Procedia PDF Downloads 78
1027 Improvement of Direct Torque and Flux Control of Dual Stator Induction Motor Drive Using Intelligent Techniques

Authors: Kouzi Katia

Abstract:

This paper proposes a Direct Torque Control (DTC) algorithm of dual Stator Induction Motor (DSIM) drive using two approach intelligent techniques: Artificial Neural Network (ANN) approach replaces the switching table selector block of conventional DTC and Mamdani Fuzzy Logic controller (FLC) is used for stator resistance estimation. The fuzzy estimation method is based on an online stator resistance correction through the variations of stator current estimation error and its variation. The fuzzy logic controller gives the future stator resistance increment at the output. The main advantage of suggested algorithm control is to reduce the hardware complexity of conventional selectors, to avoid the drive instability that may occur in certain situation and ensure the tracking of the actual of the stator resistance. The effectiveness of the technique and the improvement of the whole system performance are proved by results.

Keywords: artificial neural network, direct torque control, dual stator induction motor, fuzzy logic estimator, switching table

Procedia PDF Downloads 345
1026 A Model-Reference Sliding Mode for Dual-Stage Actuator Servo Control in HDD

Authors: S. Sonkham, U. Pinsopon, W. Chatlatanagulchai

Abstract:

This paper presents a method of sliding mode control (SMC) designing and developing for the servo system in a dual-stage actuator (DSA) hard disk drive. Mathematical modelling of hard disk drive actuators is obtained, extracted from measuring frequency response of the voice-coil motor (VCM) and PZT micro-actuator separately. Matlab software tools are used for mathematical model estimation and also for controller design and simulation. A model-reference approach for tracking requirement is selected as a proposed technique. The simulation results show that performance of a model-reference SMC controller design in DSA servo control can be satisfied in the tracking error, as well as keeping the positioning of the head within the boundary of +/-5% of track width under the presence of internal and external disturbance. The overall results of model-reference SMC design in DSA are met per requirement specifications and significant reduction in %off track is found when compared to the single-state actuator (SSA).

Keywords: hard disk drive, dual-stage actuator, track following, hdd servo control, sliding mode control, model-reference, tracking control

Procedia PDF Downloads 366