Search results for: drone imagery
235 Modeling of Water Erosion in the M'Goun Watershed Using OpenGIS Software
Authors: M. Khal, Ab. Algouti, A. Algouti
Abstract:
Water erosion is the major cause of the erosion that shapes the earth's surface. Modeling water erosion requires the use of software and GIS programs, commercial or closed source. The very high prices for commercial GIS licenses, motivates users and researchers to find open source software as relevant and applicable as the proprietary GIS. The objective of this study is the modeling of water erosion and the hydrogeological and morphophysical characterization of the Oued M'Goun watershed (southern flank of the Central High Atlas) developed by free programs of GIS. The very pertinent results are obtained by executing tasks and algorithms in a simple and easy way. Thus, the various geoscientific and geostatistical analyzes of a digital elevation model (SRTM 30 m resolution) and their combination with the treatments and interpretation of satellite imagery information allowed us to characterize the region studied and to map the area most vulnerable to water erosion.Keywords: central High-Atlas, hydrogeology, M’Goun watershed, OpenGis, water erosion
Procedia PDF Downloads 159234 Earthquake Risk Assessment Using Out-of-Sequence Thrust Movement
Authors: Rajkumar Ghosh
Abstract:
Earthquakes are natural disasters that pose a significant risk to human life and infrastructure. Effective earthquake mitigation measures require a thorough understanding of the dynamics of seismic occurrences, including thrust movement. Traditionally, estimating thrust movement has relied on typical techniques that may not capture the full complexity of these events. Therefore, investigating alternative approaches, such as incorporating out-of-sequence thrust movement data, could enhance earthquake mitigation strategies. This review aims to provide an overview of the applications of out-of-sequence thrust movement in earthquake mitigation. By examining existing research and studies, the objective is to understand how precise estimation of thrust movement can contribute to improving structural design, analyzing infrastructure risk, and developing early warning systems. The study demonstrates how to estimate out-of-sequence thrust movement using multiple data sources, including GPS measurements, satellite imagery, and seismic recordings. By analyzing and synthesizing these diverse datasets, researchers can gain a more comprehensive understanding of thrust movement dynamics during seismic occurrences. The review identifies potential advantages of incorporating out-of-sequence data in earthquake mitigation techniques. These include improving the efficiency of structural design, enhancing infrastructure risk analysis, and developing more accurate early warning systems. By considering out-of-sequence thrust movement estimates, researchers and policymakers can make informed decisions to mitigate the impact of earthquakes. This study contributes to the field of seismic monitoring and earthquake risk assessment by highlighting the benefits of incorporating out-of-sequence thrust movement data. By broadening the scope of analysis beyond traditional techniques, researchers can enhance their knowledge of earthquake dynamics and improve the effectiveness of mitigation measures. The study collects data from various sources, including GPS measurements, satellite imagery, and seismic recordings. These datasets are then analyzed using appropriate statistical and computational techniques to estimate out-of-sequence thrust movement. The review integrates findings from multiple studies to provide a comprehensive assessment of the topic. The study concludes that incorporating out-of-sequence thrust movement data can significantly enhance earthquake mitigation measures. By utilizing diverse data sources, researchers and policymakers can gain a more comprehensive understanding of seismic dynamics and make informed decisions. However, challenges exist, such as data quality difficulties, modelling uncertainties, and computational complications. To address these obstacles and improve the accuracy of estimates, further research and advancements in methodology are recommended. Overall, this review serves as a valuable resource for researchers, engineers, and policymakers involved in earthquake mitigation, as it encourages the development of innovative strategies based on a better understanding of thrust movement dynamics.Keywords: earthquake, out-of-sequence thrust, disaster, human life
Procedia PDF Downloads 77233 Near Bottom Concentrations of Krill in Two Arctic Fjords, Spitsbergen
Authors: Kajetan Deja, Katarzyna Draganska-Deja, Mateusz Ormanczyk, Michał Procajlo
Abstract:
Two glaciated fjords on Spitsbergen (Hornsund 77°N) and Kongsfjorden (79°N) were studied for the occurrence of macroplankton (mostly euphausids, hyperiids, chaetognaths) with the use of drop down the camera. The underwater imagery demonstrates that closer to the glacier front, where turbid and freshwater occurs, most of the macroplankters leave the upper water column and descends to the bottom (about 100m depth). Concentrations of macroplankton in the immediate vicinity of the sediment reach over 500 specimens per m² - what corresponds to the biomass of 10g C/m³. Such concentrations of macroplankton are of prime interest for fish, seals and other carnivores. Conditions in the near-bottom waters are in many respects better than in the upper water column- better oxygenated, cold, fully saline and transparent waters with rich food deposited on the seabed from the surface (sinking microplankton). We suggest that near bottom occurrence of macroplankton is related to the increase of glacier melt and freshwater discharge intensity.Keywords: arctic, ecosystem, fjords, Krill
Procedia PDF Downloads 265232 Imagology: The Study of Multicultural Imagery Reflected in the Heart of Elif Shafak’s 'The Bastard of Istanbul'
Authors: Mohammad Reza Haji Babai, Sepideh Ahmadkhan Beigi
Abstract:
Internationalization and modernization of the globe have played their roles in the process of cultural interaction between globalized societies and, consequently, found their way to the world of literature under the name of ‘imagology’. Imagology has made it possible for the reader to understand the author’s thoughts and judgments of others. The present research focuses on the intercultural images portrayed in the novel of a popular Turkish-French writer, Elif Shafak, about the lifestyle, traditions, habits, and social norms of Turkish, Americans, and Armenians. The novel seeks to articulate a more intricate multicultural memory of Turkishness by grieving over the Armenian massacre. This study finds that, as a mixture of multiple lifestyles and discourses, The Bastard of Istanbul reflects not only images of oriental culture but also occidental cultures. This means that the author has attempted to maintain selfhood through historical and cultural recollection, which resulted in constructing the self and another identity.Keywords: imagology, Elif Shafak, The Bastard of Istanbul, self-image, other-image
Procedia PDF Downloads 141231 The Effect of Artificial Intelligence on the Production of Agricultural Lands and Labor
Authors: Ibrahim Makram Ibrahim Salib
Abstract:
Agriculture plays an essential role in providing food for the world's population. It also offers numerous benefits to countries, including non-food products, transportation, and environmental balance. Precision agriculture, which employs advanced tools to monitor variability and manage inputs, can help achieve these benefits. The increasing demand for food security puts pressure on decision-makers to ensure sufficient food production worldwide. To support sustainable agriculture, unmanned aerial vehicles (UAVs) can be utilized to manage farms and increase yields. This paper aims to provide an understanding of UAV usage and its applications in agriculture. The objective is to review the various applications of UAVs in agriculture. Based on a comprehensive review of existing research, it was found that different sensors provide varying analyses for agriculture applications. Therefore, the purpose of the project must be determined before using UAV technology for better data quality and analysis. In conclusion, identifying a suitable sensor and UAV is crucial to gather accurate data and precise analysis when using UAVs in agriculture.Keywords: agriculture land, agriculture land loss, Kabul city, urban land expansion, urbanization agriculture yield growth, agriculture yield prediction, explorative data analysis, predictive models, regression models drone, precision agriculture, farmer income
Procedia PDF Downloads 74230 Oil Pollution Analysis of the Ecuadorian Rainforest Using Remote Sensing Methods
Authors: Juan Heredia, Naci Dilekli
Abstract:
The Ecuadorian Rainforest has been polluted for almost 60 years with little to no regard to oversight, law, or regulations. The consequences have been vast environmental damage such as pollution and deforestation, as well as sickness and the death of many people and animals. The aim of this paper is to quantify and localize the polluted zones, which something that has not been conducted and is the first step for remediation. To approach this problem, multi-spectral Remote Sensing imagery was utilized using a novel algorithm developed for this study, based on four normalized indices available in the literature. The algorithm classifies the pixels in polluted or healthy ones. The results of this study include a new algorithm for pixel classification and quantification of the polluted area in the selected image. Those results were finally validated by ground control points found in the literature. The main conclusion of this work is that using hyperspectral images, it is possible to identify polluted vegetation. The future work is environmental remediation, in-situ tests, and more extensive results that would inform new policymaking.Keywords: remote sensing, oil pollution quatification, amazon forest, hyperspectral remote sensing
Procedia PDF Downloads 163229 Sub-Pixel Level Classification Using Remote Sensing For Arecanut Crop
Authors: S. Athiralakshmi, B.E. Bhojaraja, U. Pruthviraj
Abstract:
In agriculture, remote sensing is applied for monitoring of plant development, evaluating of physiological processes and growth conditions. Especially valuable are the spatio-temporal aspects of the remotely sensed data in detecting crop state differences and stress situations. In this study, hyperion imagery is used for classifying arecanut crops based on their age so that these maps can be used in yield estimation of crops, irrigation purposes, applying fertilizers etc. Traditional hard classifiers assigns the mixed pixels to the dominant classes. The proposed method uses a sub pixel level classifier called linear spectral unmixing available in ENVI software. It provides the relative abundance of surface materials and the context within a pixel that may be a potential solution to effectively identifying the land-cover distribution. Validation is done referring to field spectra collected using spectroradiometer and the ground control points obtained from GPS.Keywords: FLAASH, Hyperspectral remote sensing, Linear Spectral Unmixing, Spectral Angle Mapper Classifier.
Procedia PDF Downloads 519228 A Combination of Anisotropic Diffusion and Sobel Operator to Enhance the Performance of the Morphological Component Analysis for Automatic Crack Detection
Authors: Ankur Dixit, Hiroaki Wagatsuma
Abstract:
The crack detection on a concrete bridge is an important and constant task in civil engineering. Chronically, humans are checking the bridge for inspection of cracks to maintain the quality and reliability of bridge. But this process is very long and costly. To overcome such limitations, we have used a drone with a digital camera, which took some images of bridge deck and these images are processed by morphological component analysis (MCA). MCA technique is a very strong application of sparse coding and it explores the possibility of separation of images. In this paper, MCA has been used to decompose the image into coarse and fine components with the effectiveness of two dictionaries namely anisotropic diffusion and wavelet transform. An anisotropic diffusion is an adaptive smoothing process used to adjust diffusion coefficient by finding gray level and gradient as features. These cracks in image are enhanced by subtracting the diffused coarse image into the original image and the results are treated by Sobel edge detector and binary filtering to exhibit the cracks in a fine way. Our results demonstrated that proposed MCA framework using anisotropic diffusion followed by Sobel operator and binary filtering may contribute to an automation of crack detection even in open field sever conditions such as bridge decks.Keywords: anisotropic diffusion, coarse component, fine component, MCA, Sobel edge detector and wavelet transform
Procedia PDF Downloads 173227 Optimal Hybrid Linear and Nonlinear Control for a Quadcopter Drone
Authors: Xinhuang Wu, Yousef Sardahi
Abstract:
A hybrid and optimal multi-loop control structure combining linear and nonlinear control algorithms are introduced in this paper to regulate the position of a quadcopter unmanned aerial vehicle (UAV) driven by four brushless DC motors. To this end, a nonlinear mathematical model of the UAV is derived and then linearized around one of its operating points. Using the nonlinear version of the model, a sliding mode control is used to derive the control laws of the motor thrust forces required to drive the UAV to a certain position. The linear model is used to design two controllers, XG-controller and YG-controller, responsible for calculating the required roll and pitch to maneuver the vehicle to the desired X and Y position. Three attitude controllers are designed to calculate the desired angular rates of rotors, assuming that the Euler angles are minimal. After that, a many-objective optimization problem involving 20 design parameters and ten objective functions is formulated and solved by HypE (Hypervolume estimation algorithm), one of the widely used many-objective optimization algorithms approaches. Both stability and performance constraints are imposed on the optimization problem. The optimization results in terms of Pareto sets and fronts are obtained and show that some of the design objectives are competing. That is, when one objective goes down, the other goes up. Also, Numerical simulations conducted on the nonlinear UAV model show that the proposed optimization method is quite effective.Keywords: optimal control, many-objective optimization, sliding mode control, linear control, cascade controllers, UAV, drones
Procedia PDF Downloads 73226 The Real Ambassador: How Hip Hop Culture Connects and Educates across Borders
Authors: Frederick Gooding
Abstract:
This paper explores how many Hip Hop artists have intentionally and strategically invoked sustainability principles of people, planet and profits as a means to create community, compensate for and cope with structural inequalities in society. These themes not only create community within one's country, but the powerful display and demonstration of these narratives create community on a global plane. Listeners of Hip Hop are therefore able to learn about the political events occurring in another country free of censure, and establish solidarity worldwide. Hip Hop therefore can be an ingenious tool to create self-worth, recycle positive imagery, and serve as a defense mechanism from institutional and structural forces that conspire to make an upward economic and social trajectory difficult, if not impossible for many people of color, all across the world. Although the birthplace of Hip Hop, the United States of America, is still predominately White, it has undoubtedly grown more diverse at a breath-taking pace in recent decades. Yet, whether American mainstream media will fully reflect America’s newfound diversity remains to be seen. As it stands, American mainstream media is seen and enjoyed by diverse audiences not just in America, but all over the world. Thus, it is imperative that further inquiry is conducted about one of the fastest growing genres within one of the world’s largest and most influential media industries generating upwards of $10 billion annually. More importantly, hip hop, its music and associated culture collectively represent a shared social experience of significant value. They are important tools used both to inform and influence economic, social and political identity. Conversely, principles of American exceptionalism often prioritize American political issues over those of others, thereby rendering a myopic political view within the mainstream. This paper will therefore engage in an international contextualization of the global phenomena entitled Hip Hop by exploring the creative genius and marketing appeal of Hip Hop within the global context of information technology, political expression and social change in addition to taking a critical look at historically racialized imagery within mainstream media. Many artists the world over have been able to freely express themselves and connect with broader communities outside of their own borders, all through the sound practice of the craft of Hip Hop. An empirical understanding of political, social and economic forces within the United States will serve as a bridge for identifying and analyzing transnational themes of commonality for typically marginalized or disaffected communities facing similar struggles for survival and respect. The sharing of commonalities of marginalized cultures not only serves as a source of education outside of typically myopic, mainstream sources, but it also creates transnational bonds globally to the extent that practicing artists resonate with many of the original themes of (now mostly underground) Hip Hop as with many of the African American artists responsible for creating and fostering Hip Hop's powerful outlet of expression. Hip Hop's power of connectivity and culture-sharing transnationally across borders provides a key source of education to be taken seriously by academics.Keywords: culture, education, global, hip hop, mainstream music, transnational
Procedia PDF Downloads 101225 Convolutional Neural Network Based on Random Kernels for Analyzing Visual Imagery
Authors: Ja-Keoung Koo, Kensuke Nakamura, Hyohun Kim, Dongwha Shin, Yeonseok Kim, Ji-Su Ahn, Byung-Woo Hong
Abstract:
The machine learning techniques based on a convolutional neural network (CNN) have been actively developed and successfully applied to a variety of image analysis tasks including reconstruction, noise reduction, resolution enhancement, segmentation, motion estimation, object recognition. The classical visual information processing that ranges from low level tasks to high level ones has been widely developed in the deep learning framework. It is generally considered as a challenging problem to derive visual interpretation from high dimensional imagery data. A CNN is a class of feed-forward artificial neural network that usually consists of deep layers the connections of which are established by a series of non-linear operations. The CNN architecture is known to be shift invariant due to its shared weights and translation invariance characteristics. However, it is often computationally intractable to optimize the network in particular with a large number of convolution layers due to a large number of unknowns to be optimized with respect to the training set that is generally required to be large enough to effectively generalize the model under consideration. It is also necessary to limit the size of convolution kernels due to the computational expense despite of the recent development of effective parallel processing machinery, which leads to the use of the constantly small size of the convolution kernels throughout the deep CNN architecture. However, it is often desired to consider different scales in the analysis of visual features at different layers in the network. Thus, we propose a CNN model where different sizes of the convolution kernels are applied at each layer based on the random projection. We apply random filters with varying sizes and associate the filter responses with scalar weights that correspond to the standard deviation of the random filters. We are allowed to use large number of random filters with the cost of one scalar unknown for each filter. The computational cost in the back-propagation procedure does not increase with the larger size of the filters even though the additional computational cost is required in the computation of convolution in the feed-forward procedure. The use of random kernels with varying sizes allows to effectively analyze image features at multiple scales leading to a better generalization. The robustness and effectiveness of the proposed CNN based on random kernels are demonstrated by numerical experiments where the quantitative comparison of the well-known CNN architectures and our models that simply replace the convolution kernels with the random filters is performed. The experimental results indicate that our model achieves better performance with less number of unknown weights. The proposed algorithm has a high potential in the application of a variety of visual tasks based on the CNN framework. Acknowledgement—This work was supported by the MISP (Ministry of Science and ICT), Korea, under the National Program for Excellence in SW (20170001000011001) supervised by IITP, and NRF-2014R1A2A1A11051941, NRF2017R1A2B4006023.Keywords: deep learning, convolutional neural network, random kernel, random projection, dimensionality reduction, object recognition
Procedia PDF Downloads 289224 Rapid Building Detection in Population-Dense Regions with Overfitted Machine Learning Models
Authors: V. Mantey, N. Findlay, I. Maddox
Abstract:
The quality and quantity of global satellite data have been increasing exponentially in recent years as spaceborne systems become more affordable and the sensors themselves become more sophisticated. This is a valuable resource for many applications, including disaster management and relief. However, while more information can be valuable, the volume of data available is impossible to manually examine. Therefore, the question becomes how to extract as much information as possible from the data with limited manpower. Buildings are a key feature of interest in satellite imagery with applications including telecommunications, population models, and disaster relief. Machine learning tools are fast becoming one of the key resources to solve this problem, and models have been developed to detect buildings in optical satellite imagery. However, by and large, most models focus on affluent regions where buildings are generally larger and constructed further apart. This work is focused on the more difficult problem of detection in populated regions. The primary challenge with detecting small buildings in densely populated regions is both the spatial and spectral resolution of the optical sensor. Densely packed buildings with similar construction materials will be difficult to separate due to a similarity in color and because the physical separation between structures is either non-existent or smaller than the spatial resolution. This study finds that training models until they are overfitting the input sample can perform better in these areas than a more robust, generalized model. An overfitted model takes less time to fine-tune from a generalized pre-trained model and requires fewer input data. The model developed for this study has also been fine-tuned using existing, open-source, building vector datasets. This is particularly valuable in the context of disaster relief, where information is required in a very short time span. Leveraging existing datasets means that little to no manpower or time is required to collect data in the region of interest. The training period itself is also shorter for smaller datasets. Requiring less data means that only a few quality areas are necessary, and so any weaknesses or underpopulated regions in the data can be skipped over in favor of areas with higher quality vectors. In this study, a landcover classification model was developed in conjunction with the building detection tool to provide a secondary source to quality check the detected buildings. This has greatly reduced the false positive rate. The proposed methodologies have been implemented and integrated into a configurable production environment and have been employed for a number of large-scale commercial projects, including continent-wide DEM production, where the extracted building footprints are being used to enhance digital elevation models. Overfitted machine learning models are often considered too specific to have any predictive capacity. However, this study demonstrates that, in cases where input data is scarce, overfitted models can be judiciously applied to solve time-sensitive problems.Keywords: building detection, disaster relief, mask-RCNN, satellite mapping
Procedia PDF Downloads 169223 Metamorphosis in Nature through Adéquation: An Ecocritical Reading of Charles Tomlinson's Poetry
Authors: Zahra Barzegar, Reza Deedari, Behzad Pourgharib
Abstract:
This study examines how metamorphosis in nature is depicted in Charles Tomlinson's poetry through Lawrence Buell's mimesis and referential strategy of adéquation. This study aims to answer the questions that what is the relationship between Tomlinson's selected poems and nature, and how does Tomlinson's poetry bring the reader close to the natural environment. Adéquation is a way that brings the reader close to nature, not by imitating nature but by referring to it imaginatively and creating a stylized image. Using figurative language, namely imagery, metaphor, and analogy, adéquation creates a stylized image of metamorphosis in a nature scene that acts as a middle way between the reader and nature. This paper proves that adéquation reinvents the metamorphosis in natural occurrences in Charles Tomlinson's selected poems. Thus, a reader whose imagination is addressed achieves closeness with nature and a caring outlook toward natural happenings. This article confirms that Tomlinson's poems are potential enough to represent metamorphosis in nature through adéquation. Therefore, the reader understands nature beyond the poem as the poem presents a gist of nature through adéquation.Keywords: adéquation, metamorphosis, nature, referentiality
Procedia PDF Downloads 186222 Media, Myth and Hero: Sacred Political Narrative in Semiotic and Anthropological Analysis
Authors: Guilherme Oliveira
Abstract:
The assimilation of images and their potential symbolism into lived experiences is inherent. It is through this exercise of recognition via imagistic records that the questioning of the origins of a constant narrative stimulated by the media arises. The construction of the "Man" archetype and the reflections of active masculine imagery in the 21st century, when conveyed through media channels, could potentially have detrimental effects. Addressing this systematic behavioral chronology of virile cisgender, permeated imagistically through these means, involves exploring potential resolutions. Thus, an investigation process is initiated into the potential representation of the 'hero' in this media emulation through idols contextualized in the political sphere, with the purpose of elucidating the processes of simulation and emulation of narratives based on mythical, historical, and sacred accounts. In this process of sharing, the narratives contained in the imagistic structuring offered by information dissemination channels seek validation through a process of public acceptance. To achieve this consensus, a visual set adorned with mythological and sacred symbolisms adapted to the intended environment is promoted, thus utilizing sociocultural characteristics in favor of political marketing. Visual recognition, therefore, becomes a direct reflection of a cultural heritage acquired through lived human experience, stimulated by continuous representations throughout history. Echoes of imagery and narratives undergo a constant process of resignification of their concepts, sharpened by their premises, and adapted to the environment in which they seek to establish themselves. Political figures analyzed in this article employ the practice of taking possession of symbolisms, mythological stories, and heroisms and adapt their visual construction through a continuous praxis of emulation. Thus, they utilize iconic mythological narratives to gain credibility through belief. Utilizing iconic mythological narratives for credibility through belief, the idol becomes the very act of release of trauma, offering believers liberation from preconceived concepts and allowing for the attribution of new meanings. To dissolve this issue and highlight the subjectivities within the intention of the image, a linguistic, semiotic, and anthropological methodology is created. Linguistics uses expressions like 'Blaming the Image' to create a mechanism of expressive action in questioning why to blame a construction or visual composition and thus seek answers in the first act. Semiotics and anthropology develop an imagistic atlas of graphic analysis, seeking to make connections, comparisons, and relations between modern and sacred/mystical narratives, emphasizing the different subjective layers of embedded symbolism. Thus, it constitutes a performative act of disarming the image. It creates a disenchantment of the superficial gaze under the constant reproduction of visual content stimulated by virtual networks, enabling a discussion about the acceptance of caricatures characterized by past fables.Keywords: image, heroic narrative, media heroism, virile politics, political, myth, sacred performance, visual mythmaking, characterization dynamics
Procedia PDF Downloads 50221 Design of Quality Assessment System for On-Orbit 3D Printing Based on 3D Reconstruction Technology
Authors: Jianning Tang, Trevor Hocksun Kwan, Xiaofeng Wu
Abstract:
With the increasing demand for space use in multiple sectors (navigation, telecommunication, imagery, etc.), the deployment and maintenance demand of satellites are growing. Considering the high launching cost and the restrictions on weight and size of the payload when using launch vehicle, the technique of on-orbit manufacturing has obtained more attention because of its significant potential to support future space missions. 3D printing is the most promising manufacturing technology that could be applied in space. However, due to the lack of autonomous quality assessment, the operation of conventional 3D printers still relies on human presence to supervise the printing process. This paper is proposed to develop an automatic 3D reconstruction system aiming at detecting failures on the 3D printed objects through application of point cloud technology. Based on the data obtained from the point cloud, the 3D printer could locate the failure and repair the failure. The system will increase automation and provide 3D printing with more feasibilities for space use without human interference.Keywords: 3D printing, quality assessment, point cloud, on-orbit manufacturing
Procedia PDF Downloads 120220 Ship Detection Requirements Analysis for Different Sea States: Validation on Real SAR Data
Authors: Jaime Martín-de-Nicolás, David Mata-Moya, Nerea del-Rey-Maestre, Pedro Gómez-del-Hoyo, María-Pilar Jarabo-Amores
Abstract:
Ship detection is nowadays quite an important issue in tasks related to sea traffic control, fishery management and ship search and rescue. Although it has traditionally been carried out by patrol ships or aircrafts, coverage and weather conditions and sea state can become a problem. Synthetic aperture radars can surpass these coverage limitations and work under any climatological condition. A fast CFAR ship detector based on a robust statistical modeling of sea clutter with respect to sea states in SAR images is used. In this paper, the minimum SNR required to obtain a given detection probability with a given false alarm rate for any sea state is determined. A Gaussian target model using real SAR data is considered. Results show that SNR does not depend heavily on the class considered. Provided there is some variation in the backscattering of targets in SAR imagery, the detection probability is limited and a post-processing stage based on morphology would be suitable.Keywords: SAR, generalized gamma distribution, detection curves, radar detection
Procedia PDF Downloads 452219 Blind Super-Resolution Reconstruction Based on PSF Estimation
Authors: Osama A. Omer, Amal Hamed
Abstract:
Successful blind image Super-Resolution algorithms require the exact estimation of the Point Spread Function (PSF). In the absence of any prior information about the imagery system and the true image; this estimation is normally done by trial and error experimentation until an acceptable restored image quality is obtained. Multi-frame blind Super-Resolution algorithms often have disadvantages of slow convergence and sensitiveness to complex noises. This paper presents a Super-Resolution image reconstruction algorithm based on estimation of the PSF that yields the optimum restored image quality. The estimation of PSF is performed by the knife-edge method and it is implemented by measuring spreading of the edges in the reproduced HR image itself during the reconstruction process. The proposed image reconstruction approach is using L1 norm minimization and robust regularization based on a bilateral prior to deal with different data and noise models. A series of experiment results show that the proposed method can outperform other previous work robustly and efficiently.Keywords: blind, PSF, super-resolution, knife-edge, blurring, bilateral, L1 norm
Procedia PDF Downloads 365218 Modern Hybrid of Older Black Female Stereotypes in Hollywood Film
Authors: Frederick W. Gooding, Jr., Mark Beeman
Abstract:
Nearly a century ago, the groundbreaking 1915 film ‘The Birth of a Nation’ popularized the way Hollywood made movies with its avant-garde, feature-length style. The movie's subjugating and demeaning depictions of African American women (and men) reflected popular racist beliefs held during the time of slavery and the early Jim Crow era. Although much has changed concerning race relations in the past century, American sociologist Patricia Hill Collins theorizes that the disparaging images of African American women originating in the era of plantation slavery are adaptable and endure as controlling images today. In this context, a comparative analysis of the successful contemporary film, ‘Bringing Down the House’ starring Queen Latifah is relevant as this 2004 film was designed to purposely defy and ridicule classic stereotypes of African American women. However, the film is still tied to the controlling images from the past, although in a modern hybrid form. Scholars of race and film have noted that the pervasive filmic imagery of the African American woman as the loyal mammy stereotype faded from the screen in the post-civil rights era in favor of more sexualized characters (i.e., the Jezebel trope). Analyzing scenes and dialogue through the lens of sociological and critical race theory, the troubling persistence of African American controlling images in film stubbornly emerge in a movie like ‘Bringing Down the House.’ Thus, these controlling images, like racism itself, can adapt to new social and economic conditions. Although the classic controlling images appeared in the first feature length film focusing on race relations a century ago, ‘The Birth of a Nation,’ this black and white rendition of the mammy figure was later updated in 1939 with the classic hit, ‘Gone with the Wind’ in living color. These popular controlling images have loomed quite large in the minds of international audiences, as ‘Gone with the Wind’ is still shown in American theaters currently, and experts at the British Film Institute in 2004 rated ‘Gone with the Wind’ as the number one movie of all time in UK movie history based upon the total number of actual viewings. Critical analysis of character patterns demonstrate that images that appear superficially benign contribute to a broader and quite persistent pattern of marginalization within the aggregate. This approach allows experts and viewers alike to detect more subtle and sophisticated strands of racial discrimination that are ‘hidden in plain sight’ despite numerous changes in the Hollywood industry that appear to be more voluminous and diverse than three or four decades ago. In contrast to white characters, non-white or minority characters are likely to be subtly compromised or marginalized relative to white characters if and when seen within mainstream movies, rather than be subjected to obvious and offensive racist tropes. The hybrid form of both the older Jezebel and Mammy stereotypes exhibited by lead actress Queen Latifah in ‘Bringing Down the House’ represents a more suave and sophisticated merging of past imagery ideas deemed problematic in the past as well as the present.Keywords: African Americans, Hollywood film, hybrid, stereotypes
Procedia PDF Downloads 177217 Enhanced Iceberg Information Dissemination for Public and Autonomous Maritime Use
Authors: Ronald Mraz, Gary C. Kessler, Ethan Gold, John G. Cline
Abstract:
The International Ice Patrol (IIP) continually monitors iceberg activity in the North Atlantic by direct observation using ships, aircraft, and satellite imagery. Daily reports detailing navigational boundaries of icebergs have significantly reduced the risk of iceberg contact. What is currently lacking is formatting this data for automatic transmission and display of iceberg navigational boundaries in commercial navigation equipment. This paper describes the methodology and implementation of a system to format iceberg limit information for dissemination through existing radio network communications. This information will then automatically display on commercial navigation equipment. Additionally, this information is reformatted for Google Earth rendering of iceberg track line limits. Having iceberg limit information automatically available in standard navigation equipment will help support full autonomous operation of sailing vessels.Keywords: iceberg, iceberg risk, iceberg track lines, AIS messaging, international ice patrol, North American ice service, google earth, autonomous surface vessels
Procedia PDF Downloads 136216 Analysis of the Unmanned Aerial Vehicles’ Incidents and Accidents: The Role of Human Factors
Authors: Jacob J. Shila, Xiaoyu O. Wu
Abstract:
As the applications of unmanned aerial vehicles (UAV) continue to increase across the world, it is critical to understand the factors that contribute to incidents and accidents associated with these systems. Given the variety of daily applications that could utilize the operations of the UAV (e.g., medical, security operations, construction activities, landscape activities), the main discussion has been how to safely incorporate the UAV into the national airspace system. The types of UAV incidents being reported range from near sightings by other pilots to actual collisions with aircraft or UAV. These incidents have the potential to impact the rest of aviation operations in a variety of ways, including human lives, liability costs, and delay costs. One of the largest causes of these incidents cited is the human factor; other causes cited include maintenance, aircraft, and others. This work investigates the key human factors associated with UAV incidents. To that end, the data related to UAV incidents that have occurred in the United States is both reviewed and analyzed to identify key human factors related to UAV incidents. The data utilized in this work is gathered from the Federal Aviation Administration (FAA) drone database. This study adopts the human factor analysis and classification system (HFACS) to identify key human factors that have contributed to some of the UAV failures to date. The uniqueness of this work is the incorporation of UAV incident data from a variety of applications and not just military data. In addition, identifying the specific human factors is crucial towards developing safety operational models and human factor guidelines for the UAV. The findings of these common human factors are also compared to similar studies in other countries to determine whether these factors are common internationally.Keywords: human factors, incidents and accidents, safety, UAS, UAV
Procedia PDF Downloads 242215 Generating Individualized Wildfire Risk Assessments Utilizing Multispectral Imagery and Geospatial Artificial Intelligence
Authors: Gus Calderon, Richard McCreight, Tammy Schwartz
Abstract:
Forensic analysis of community wildfire destruction in California has shown that reducing or removing flammable vegetation in proximity to buildings and structures is one of the most important wildfire defenses available to homeowners. State laws specify the requirements for homeowners to create and maintain defensible space around all structures. Unfortunately, this decades-long effort had limited success due to noncompliance and minimal enforcement. As a result, vulnerable communities continue to experience escalating human and economic costs along the wildland-urban interface (WUI). Quantifying vegetative fuels at both the community and parcel scale requires detailed imaging from an aircraft with remote sensing technology to reduce uncertainty. FireWatch has been delivering high spatial resolution (5” ground sample distance) wildfire hazard maps annually to the community of Rancho Santa Fe, CA, since 2019. FireWatch uses a multispectral imaging system mounted onboard an aircraft to create georeferenced orthomosaics and spectral vegetation index maps. Using proprietary algorithms, the vegetation type, condition, and proximity to structures are determined for 1,851 properties in the community. Secondary data processing combines object-based classification of vegetative fuels, assisted by machine learning, to prioritize mitigation strategies within the community. The remote sensing data for the 10 sq. mi. community is divided into parcels and sent to all homeowners in the form of defensible space maps and reports. Follow-up aerial surveys are performed annually using repeat station imaging of fixed GPS locations to address changes in defensible space, vegetation fuel cover, and condition over time. These maps and reports have increased wildfire awareness and mitigation efforts from 40% to over 85% among homeowners in Rancho Santa Fe. To assist homeowners fighting increasing insurance premiums and non-renewals, FireWatch has partnered with Black Swan Analytics, LLC, to leverage the multispectral imagery and increase homeowners’ understanding of wildfire risk drivers. For this study, a subsample of 100 parcels was selected to gain a comprehensive understanding of wildfire risk and the elements which can be mitigated. Geospatial data from FireWatch’s defensible space maps was combined with Black Swan’s patented approach using 39 other risk characteristics into a 4score Report. The 4score Report helps property owners understand risk sources and potential mitigation opportunities by assessing four categories of risk: Fuel sources, ignition sources, susceptibility to loss, and hazards to fire protection efforts (FISH). This study has shown that susceptibility to loss is the category residents and property owners must focus their efforts. The 4score Report also provides a tool to measure the impact of homeowner actions on risk levels over time. Resiliency is the only solution to breaking the cycle of community wildfire destruction and it starts with high-quality data and education.Keywords: defensible space, geospatial data, multispectral imaging, Rancho Santa Fe, susceptibility to loss, wildfire risk.
Procedia PDF Downloads 108214 Land Suitability Analysis for Maize Production in Egbeda Local Government Area of Oyo State Using GIS Techniques
Authors: Abegunde Linda, Adedeji Oluwatayo, Tope-Ajayi Opeyemi
Abstract:
Maize constitutes a major agrarian production for use by the vast population but despite its economic importance, it has not been produced to meet the economic needs of the country. Achieving optimum yield in maize can meaningfully be supported by land suitability analysis in order to guarantee self-sufficiency for future production optimization. This study examines land suitability for maize production through the analysis of the physic-chemical variations in soil properties over space using a Geographic Information System (GIS) framework. Physic-chemical parameters of importance selected include slope, landuse, and physical and chemical properties of the soil. Landsat imagery was used to categorize the landuse, Shuttle Radar Topographic Mapping (SRTM) generated the slope and soil samples were analyzed for its physical and chemical components. Suitability was categorized into highly, moderately and marginally suitable based on Food and Agricultural Organisation (FAO) classification using the Analytical Hierarchy Process (AHP) technique of GIS. This result can be used by small scale farmers for efficient decision making in the allocation of land for maize production.Keywords: AHP, GIS, MCE, suitability, Zea mays
Procedia PDF Downloads 396213 Moving Images and Re-Articulations of Self-Identity: Young People's Experiences of Viewing Representations Disability in Films
Authors: Alison Wilde, Stephen Millett
Abstract:
The cultural value of disabled people has largely been overlooked within forms of media and cultural analysis until the 1980s, when disabled people and disability studies highlighted the cultural misrecognition of disabled people and called for improved forms of cultural recognition and representation. Despite an increase in cultural analysis of representations of disabled people, much has been assumed about how images are read, and little work has been done on the value attributed to disabled people by media audiences and the viewing interests and encounters of film audiences. In particular, there has been little work on film reception, or on the way that young people interpret images of disability. We set out to understand some of the ways that young people read disability imagery, by showing small groups of young people different types of film featuring impairments, chosen from three different eras in film. These were Freaks, Rear Window (remake), and Finding Nemo. The discussions after these films allowed them to explore their own experiences of disability alongside the evolution of cultural representations; in so doing they discussed significant themes of cultural value and reflected on their own identities, e.g. in/dependency, autonomy, and competency and the ways these intersected with self-identity, and attitudes to disabled people.Keywords: film, audience, identity, disability
Procedia PDF Downloads 419212 When the Children Touched the Paintings: New German Cinema, the Red Army Faction, and their Filmic Afterlives
Authors: Rudy Ralph Martinez
Abstract:
The 1960s provided us with some of the most iconic protest images of the late-20th century. This was the result of worldwide unrest and the proliferation of filmmaking equipment, which led to a flood of photos and films depicting war and activism. Many of these images and films played a pivotal role in shaping the ever-evolving discussions surrounding the ‘60s. However, too often, radical imagery finds itself subsumed by consumer culture, a degradation that flattens radical imagery and turns it into consumer products. With this in mind, the work that follows is an analysis of one of the little-discussed chapters of the 60s and 70s, and it is that of the New German Cinema movement and its relationship with the Rote Armee Fraktion, or Red Army Faction (RAF), an armed Marxist-Leninist group founded in West Germany in 1970. The RAF arose out of a milieu which included student activists protesting Western military involvement in the Vietnam War, civil rights activists, and third world guerillas. The actions undertaken by the group throughout their first decade in existence, including bombings, and assassinations, would create West Germany’s most dire political crisis since the Nazi era, culminating in a crisis of legitimation remembered as the German Autumn, which saw the suicides of several of the militants and the assassination of SS officer-cum-prominent industrialist, Hans Martin-Schleyer. Throughout the 1970s, young filmmakers associated with the New German Cinema sought to analyze the political situation as it was unfolding, their films contributing to the public discourse in concomitance with the government and the media. Four notable examples of these films are Volker Schlöndorff and Margarethe von Trotta’sDie Verlorene Ehre der Katharina Blum oder: Wie Gewaltentstehen und wohinsieführenkann (The Lost Honour of Katharina Blum, or: How Violence Develops and Where it Can Lead) (1975), a dark drama about the media’s role in forming public opinion, Deutschland im Herbst(Germany in Autumn) (1977), an experimental collective work released mere months after the German Autumn, Rainer Werner Fassbinder’s Die Dritte Generation (The Third Generation) (1979), a satire about an inept cell of radical militants, and Die bleierne Zeit (The Leaden Time, alt. title: Marianne and Juliane) (1981), an intimate portrayal about two sisters whose activism leads them down disparate paths. The filmmakers of the New German Cinema refused to underline their films with the Manichaean claims respectively espoused by the RAF and the government. These complex portrayals found offspring in films such as Christian Petzold’s Die innere Sicherheit(The State I Am In) (2000), a portrait of a family on the run after the reunification of Germany but were countered by glossy high-budget portrayals such as Uli Edel’s Der Baader-Meinhof Komplex(The Baader-Meinhof Complex) (2008). In focusing on the aesthetic structure of these films in relation to the political atmosphere of the late-60s and 70s West Germany, I hope to shed light on questions concerning spectatorship, surveillance, the role of journalism, and how politics disrupts personal relationships, and the kinship between artists and so-called terrorists.Keywords: new german cinema, film history, red army faction, german cinema
Procedia PDF Downloads 98211 Tigers in Film: Past, Present and Future Perspectives
Authors: Farah Benbouabdellah
Abstract:
This research examines the shifting portrayal of tigers in visual media, particularly cinema, to explore how cultural, political, and ecological perspectives influence animal symbolism. Through an interdisciplinary approach combining film studies, anthropology, art history, and material culture, this study investigates tiger representations in static and moving images, from early art forms to 20th-century films. The research highlights how the film has perpetuated, transformed, and politicised tiger imagery across contexts by analysing colonialism, identity, and ecological change themes. With a comprehensive focus on Indian and Western cinema, this study illustrates the tiger's enduring role as a cultural symbol and its impact on visual narratives, exploring techniques in cinematography, audience reception, and narratives that helped shape the animal's iconic status. This research aims to provide a comprehensive view of tiger representations in media, addressing the intersection of animal symbolism and sociocultural values across historical and regional landscapes.Keywords: tiger representation, visual media, anthropology media, material culture, film studies, comparative analysis
Procedia PDF Downloads 8210 New Insights Into Fog Role In Atmospheric Deposition Using Satellite Images
Authors: Suruchi
Abstract:
This study aims to examine the spatial and temporal patterns of fog occurrences across Czech Republic. It utilizes satellite imagery and other data sources to achieve this goal. The main objective is to understand the role of fog in atmospheric deposition processes and its potential impact on the environment and ecosystems. Through satellite image analysis, the study will identify and categorize different types of fog, including radiation fog, orographic fog, and mountain fog. Fog detection algorithms and cloud type products will be evaluated to assess the frequency and distribution of fog events throughout the Czech Republic. Furthermore, the regions covered by fog will be classified based on their fog type and associated pollution levels. This will provide insights into the variability in fog characteristics and its implications for atmospheric deposition. Spatial analysis techniques will be used to pinpoint areas prone to frequent fog events and evaluate their pollution levels. Statistical methods will be employed to analyze patterns in fog occurrence over time and its connection with environmental factors. The ultimate goal of this research is to offer fresh perspectives on fog's role in atmospheric deposition processes, enhancing our understanding of its environmental significance and informing future research and environmental management initiatives.Keywords: pollution, GIS, FOG, satellie, atmospheric deposition
Procedia PDF Downloads 22209 Quantitative Assessment of Road Infrastructure Health Using High-Resolution Remote Sensing Data
Authors: Wang Zhaoming, Shao Shegang, Chen Xiaorong, Qi Yanan, Tian Lei, Wang Jian
Abstract:
This study conducts a comparative analysis of the spectral curves of asphalt pavements at various aging stages to improve road information extraction from high-resolution remote sensing imagery. By examining the distinguishing capabilities and spectral characteristics, the research aims to establish a pavement information extraction methodology based on China's high-resolution satellite images. The process begins by analyzing the spectral features of asphalt pavements to construct a spectral assessment model suitable for evaluating pavement health. This model is then tested at a national highway traffic testing site in China, validating its effectiveness in distinguishing different pavement aging levels. The study's findings demonstrate that the proposed model can accurately assess road health, offering a valuable tool for road maintenance planning and infrastructure management.Keywords: spectral analysis, asphalt pavement aging, high-resolution remote sensing, pavement health assessment
Procedia PDF Downloads 21208 Humeral Head and Scapula Detection in Proton Density Weighted Magnetic Resonance Images Using YOLOv8
Authors: Aysun Sezer
Abstract:
Magnetic Resonance Imaging (MRI) is one of the advanced diagnostic tools for evaluating shoulder pathologies. Proton Density (PD)-weighted MRI sequences prove highly effective in detecting edema. However, they are deficient in the anatomical identification of bones due to a trauma-induced decrease in signal-to-noise ratio and blur in the traumatized cortices. Computer-based diagnostic systems require precise segmentation, identification, and localization of anatomical regions in medical imagery. Deep learning-based object detection algorithms exhibit remarkable proficiency in real-time object identification and localization. In this study, the YOLOv8 model was employed to detect humeral head and scapular regions in 665 axial PD-weighted MR images. The YOLOv8 configuration achieved an overall success rate of 99.60% and 89.90% for detecting the humeral head and scapula, respectively, with an intersection over union (IoU) of 0.5. Our findings indicate a significant promise of employing YOLOv8-based detection for the humerus and scapula regions, particularly in the context of PD-weighted images affected by both noise and intensity inhomogeneity.Keywords: YOLOv8, object detection, humerus, scapula, IRM
Procedia PDF Downloads 66207 Domain Adaptation Save Lives - Drowning Detection in Swimming Pool Scene Based on YOLOV8 Improved by Gaussian Poisson Generative Adversarial Network Augmentation
Authors: Simiao Ren, En Wei
Abstract:
Drowning is a significant safety issue worldwide, and a robust computer vision-based alert system can easily prevent such tragedies in swimming pools. However, due to domain shift caused by the visual gap (potentially due to lighting, indoor scene change, pool floor color etc.) between the training swimming pool and the test swimming pool, the robustness of such algorithms has been questionable. The annotation cost for labeling each new swimming pool is too expensive for mass adoption of such a technique. To address this issue, we propose a domain-aware data augmentation pipeline based on Gaussian Poisson Generative Adversarial Network (GP-GAN). Combined with YOLOv8, we demonstrate that such a domain adaptation technique can significantly improve the model performance (from 0.24 mAP to 0.82 mAP) on new test scenes. As the augmentation method only require background imagery from the new domain (no annotation needed), we believe this is a promising, practical route for preventing swimming pool drowning.Keywords: computer vision, deep learning, YOLOv8, detection, swimming pool, drowning, domain adaptation, generative adversarial network, GAN, GP-GAN
Procedia PDF Downloads 101206 Mapping of Arenga Pinnata Tree Using Remote Sensing
Authors: Zulkiflee Abd Latif, Sitinor Atikah Nordin, Alawi Sulaiman
Abstract:
Different tree species possess different and various benefits. Arenga Pinnata tree species own several potential uses that is valuable for the economy and the country. Mapping vegetation using remote sensing technique involves various process, techniques and consideration. Using satellite imagery, this method enables the access of inaccessible area and with the availability of near infra-red band; it is useful in vegetation analysis, especially in identifying tree species. Pixel-based and object-based classification technique is used as a method in this study. Pixel-based classification technique used in this study divided into unsupervised and supervised classification. Object based classification technique becomes more popular another alternative method in classification process. Using spectral, texture, color and other information, to classify the target make object-based classification is a promising technique for classification. Classification of Arenga Pinnata trees is overlaid with elevation, slope and aspect, soil and river data and several other data to give information regarding the tree character and living environment. This paper will present the utilization of remote sensing technique in order to map Arenga Pinnata tree speciesKeywords: Arenga Pinnata, pixel-based classification, object-based classification, remote sensing
Procedia PDF Downloads 380