Search results for: computational error
3613 Fast and Scale-Adaptive Target Tracking via PCA-SIFT
Authors: Yawen Wang, Hongchang Chen, Shaomei Li, Chao Gao, Jiangpeng Zhang
Abstract:
As the main challenge for target tracking is accounting for target scale change and real-time, we combine Mean-Shift and PCA-SIFT algorithm together to solve the problem. We introduce similarity comparison method to determine how the target scale changes, and taking different strategies according to different situation. For target scale getting larger will cause location error, we employ backward tracking to reduce the error. Mean-Shift algorithm has poor performance when tracking scale-changing target due to the fixed bandwidth of its kernel function. In order to overcome this problem, we introduce PCA-SIFT matching. Through key point matching between target and template, that adjusting the scale of tracking window adaptively can be achieved. Because this algorithm is sensitive to wrong match, we introduce RANSAC to reduce mismatch as far as possible. Furthermore target relocating will trigger when number of match is too small. In addition we take comprehensive consideration about target deformation and error accumulation to put forward a new template update method. Experiments on five image sequences and comparison with 6 kinds of other algorithm demonstrate favorable performance of the proposed tracking algorithm.Keywords: target tracking, PCA-SIFT, mean-shift, scale-adaptive
Procedia PDF Downloads 4333612 FPGA Implementation of the BB84 Protocol
Authors: Jaouadi Ikram, Machhout Mohsen
Abstract:
The development of a quantum key distribution (QKD) system on a field-programmable gate array (FPGA) platform is the subject of this paper. A quantum cryptographic protocol is designed based on the properties of quantum information and the characteristics of FPGAs. The proposed protocol performs key extraction, reconciliation, error correction, and privacy amplification tasks to generate a perfectly secret final key. We modeled the presence of the spy in our system with a strategy to reveal some of the exchanged information without being noticed. Using an FPGA card with a 100 MHz clock frequency, we have demonstrated the evolution of the error rate as well as the amounts of mutual information (between the two interlocutors and that of the spy) passing from one step to another in the key generation process.Keywords: QKD, BB84, protocol, cryptography, FPGA, key, security, communication
Procedia PDF Downloads 1843611 Frequency of Refractive Errors in Squinting Eyes of Children from 4 to 16 Years Presenting at Tertiary Care Hospital
Authors: Maryum Nawaz
Abstract:
Purpose: To determine the frequency of refractive errors in squinting eyes of children from 4 to 16 years presenting at tertiary care hospital. Study Design: A descriptive cross-sectional study was done. Place and Duration: The study was conducted in Pediatric Ophthalmology, Hayatabad Medical Complex, Peshawar. Materials and Methods: The sample size was 146 keeping 41.45%5 proportion of refractive errors in children with squinting eyes, 95% confidence interval and 8% margin of error under WHO sample size calculations. Non-probability consecutive sampling was done. Result: Mean age was 8.57±2.66 years. Male were 89 (61.0%) and female were 57 (39.0%). Refractive error was present in 56 (38.4%) and was not present in 90 (61.6%) of patients. There was no association of gender, age, parent refractive errors, or early usage of electric equipment with the refractive errors. Conclusion: There is a high prevalence of refractive errors in a patient with strabismus. There is no association of age, gender, parent refractive errors, or early usage of electric equipment in the occurrence of refractive errors. Further studies are recommended for confirmation of these.Keywords: strabismus, refractive error, myopia, hypermetropia, astigmatism
Procedia PDF Downloads 1453610 Big Data Analytics and Data Security in the Cloud via Fully Homomorphic Encyption Scheme
Authors: Victor Onomza Waziri, John K. Alhassan, Idris Ismaila, Noel Dogonyara
Abstract:
This paper describes the problem of building secure computational services for encrypted information in the Cloud. Computing without decrypting the encrypted data; therefore, it meets the yearning of computational encryption algorithmic aspiration model that could enhance the security of big data for privacy or confidentiality, availability and integrity of the data and user’s security. The cryptographic model applied for the computational process of the encrypted data is the Fully Homomorphic Encryption Scheme. We contribute a theoretical presentations in a high-level computational processes that are based on number theory that is derivable from abstract algebra which can easily be integrated and leveraged in the Cloud computing interface with detail theoretic mathematical concepts to the fully homomorphic encryption models. This contribution enhances the full implementation of big data analytics based on cryptographic security algorithm.Keywords: big data analytics, security, privacy, bootstrapping, Fully Homomorphic Encryption Scheme
Procedia PDF Downloads 4843609 Comparing the Apparent Error Rate of Gender Specifying from Human Skeletal Remains by Using Classification and Cluster Methods
Authors: Jularat Chumnaul
Abstract:
In forensic science, corpses from various homicides are different; there are both complete and incomplete, depending on causes of death or forms of homicide. For example, some corpses are cut into pieces, some are camouflaged by dumping into the river, some are buried, some are burned to destroy the evidence, and others. If the corpses are incomplete, it can lead to the difficulty of personally identifying because some tissues and bones are destroyed. To specify gender of the corpses from skeletal remains, the most precise method is DNA identification. However, this method is costly and takes longer so that other identification techniques are used instead. The first technique that is widely used is considering the features of bones. In general, an evidence from the corpses such as some pieces of bones, especially the skull and pelvis can be used to identify their gender. To use this technique, forensic scientists are required observation skills in order to classify the difference between male and female bones. Although this technique is uncomplicated, saving time and cost, and the forensic scientists can fairly accurately determine gender by using this technique (apparently an accuracy rate of 90% or more), the crucial disadvantage is there are only some positions of skeleton that can be used to specify gender such as supraorbital ridge, nuchal crest, temporal lobe, mandible, and chin. Therefore, the skeletal remains that will be used have to be complete. The other technique that is widely used for gender specifying in forensic science and archeology is skeletal measurements. The advantage of this method is it can be used in several positions in one piece of bones, and it can be used even if the bones are not complete. In this study, the classification and cluster analysis are applied to this technique, including the Kth Nearest Neighbor Classification, Classification Tree, Ward Linkage Cluster, K-mean Cluster, and Two Step Cluster. The data contains 507 particular individuals and 9 skeletal measurements (diameter measurements), and the performance of five methods are investigated by considering the apparent error rate (APER). The results from this study indicate that the Two Step Cluster and Kth Nearest Neighbor method seem to be suitable to specify gender from human skeletal remains because both yield small apparent error rate of 0.20% and 4.14%, respectively. On the other hand, the Classification Tree, Ward Linkage Cluster, and K-mean Cluster method are not appropriate since they yield large apparent error rate of 10.65%, 10.65%, and 16.37%, respectively. However, there are other ways to evaluate the performance of classification such as an estimate of the error rate using the holdout procedure or misclassification costs, and the difference methods can make the different conclusions.Keywords: skeletal measurements, classification, cluster, apparent error rate
Procedia PDF Downloads 2523608 Neural Network Supervisory Proportional-Integral-Derivative Control of the Pressurized Water Reactor Core Power Load Following Operation
Authors: Derjew Ayele Ejigu, Houde Song, Xiaojing Liu
Abstract:
This work presents the particle swarm optimization trained neural network (PSO-NN) supervisory proportional integral derivative (PID) control method to monitor the pressurized water reactor (PWR) core power for safe operation. The proposed control approach is implemented on the transfer function of the PWR core, which is computed from the state-space model. The PWR core state-space model is designed from the neutronics, thermal-hydraulics, and reactivity models using perturbation around the equilibrium value. The proposed control approach computes the control rod speed to maneuver the core power to track the reference in a closed-loop scheme. The particle swarm optimization (PSO) algorithm is used to train the neural network (NN) and to tune the PID simultaneously. The controller performance is examined using integral absolute error, integral time absolute error, integral square error, and integral time square error functions, and the stability of the system is analyzed by using the Bode diagram. The simulation results indicated that the controller shows satisfactory performance to control and track the load power effectively and smoothly as compared to the PSO-PID control technique. This study will give benefit to design a supervisory controller for nuclear engineering research fields for control application.Keywords: machine learning, neural network, pressurized water reactor, supervisory controller
Procedia PDF Downloads 1573607 Computational Neurosciences: An Inspiration from Biological Neurosciences
Authors: Harsh Sadawarti, Kamal Malik
Abstract:
Humans are the unique and the most powerful creature on this planet just because of the high level of intelligence gifted by nature. Computational Intelligence is highly influenced by the term natural intelligence, neurosciences and mathematics. To deal with the in-depth study of computational intelligence and to utilize it in real-life applications, it is quite important to understand its simulation with the human brain. In this paper, the three important parts, Frontal Lobe, Occipital Lobe and Parietal Lobe of the human brain, are compared with the ANN(Artificial Neural Network), CNN(Convolutional Neural network), and RNN(Recurrent Neural Network), respectively. Intelligent computational systems are created by combining deductive reasoning, logical concepts and high-level algorithms with the simulation and study of the human brain. Human brain is a combination of Physiology, Psychology, emotions, calculations and many other parameters which are of utmost importance that determines the overall intelligence. To create intelligent algorithms, smart machines and to simulate the human brain in an effective manner, it is quite important to have an insight into the human brain and the basic concepts of biological neurosciences.Keywords: computational intelligence, neurosciences, convolutional neural network, recurrent neural network, artificial neural network, frontal lobe, occipital lobe, parietal lobe
Procedia PDF Downloads 1123606 Aggregate Production Planning Framework in a Multi-Product Factory: A Case Study
Authors: Ignatio Madanhire, Charles Mbohwa
Abstract:
This study looks at the best model of aggregate planning activity in an industrial entity and uses the trial and error method on spreadsheets to solve aggregate production planning problems. Also linear programming model is introduced to optimize the aggregate production planning problem. Application of the models in a furniture production firm is evaluated to demonstrate that practical and beneficial solutions can be obtained from the models. Finally some benchmarking of other furniture manufacturing industries was undertaken to assess relevance and level of use in other furniture firmsKeywords: aggregate production planning, trial and error, linear programming, furniture industry
Procedia PDF Downloads 5603605 Error Analysis of Wavelet-Based Image Steganograhy Scheme
Authors: Geeta Kasana, Kulbir Singh, Satvinder Singh
Abstract:
In this paper, a steganographic scheme for digital images using Integer Wavelet Transform (IWT) is proposed. The cover image is decomposed into wavelet sub bands using IWT. Each of the subband is divided into blocks of equal size and secret data is embedded into the largest and smallest pixel values of each block of the subband. Visual quality of stego images is acceptable as PSNR between cover image and stego is above 40 dB, imperceptibility is maintained. Experimental results show better tradeoff between capacity and visual perceptivity compared to the existing algorithms. Maximum possible error analysis is evaluated for each of the wavelet subbands of an image. Procedia PDF Downloads 5053604 A Fast Convergence Subband BSS Structure
Authors: Salah Al-Din I. Badran, Samad Ahmadi, Ismail Shahin
Abstract:
A blind source separation method is proposed; in this method we use a non-uniform filter bank and a novel normalisation. This method provides a reduced computational complexity and increased convergence speed comparing to the full-band algorithm. Recently, adaptive sub-band scheme has been recommended to solve two problems: reduction of computational complexity and increase the convergence speed of the adaptive algorithm for correlated input signals. In this work the reduction in computational complexity is achieved with the use of adaptive filters of orders less than the full-band adaptive filters, which operate at a sampling rate lower than the sampling rate of the input signal. The decomposed signals by analysis bank filter are less correlated in each sub-band than the input signal at full bandwidth, and can promote better rates of convergence.Keywords: blind source separation, computational complexity, subband, convergence speed, mixture
Procedia PDF Downloads 5553603 Feedback in the Language Class: An Action Research Process
Authors: Arash Golzari Koloor
Abstract:
Feedback seems to be an inseparable part of teaching a second/foreign language. One type of feedback is corrective feedback which is one type of error treatment in second language classrooms. This study is a report on the types of corrective feedback employed in an IELTS preparation course. The types of feedback, their frequencies, and their effectiveness are enlisted, enumerated, and interpreted. The results showed that explicit correction and recast were the most frequent types of feedback while repetition and elicitation were the least. The results also revealed that metalinguistic feedback, elicitation, and explicit correction were the most effective types of feedback and affected learners performance greatly.Keywords: classroom interaction, corrective feedback, error treatment, oral performance
Procedia PDF Downloads 3353602 Error Estimation for the Reconstruction Algorithm with Fan Beam Geometry
Authors: Nirmal Yadav, Tanuja Srivastava
Abstract:
Shannon theory is an exact method to recover a band limited signals from its sampled values in discrete implementation, using sinc interpolators. But sinc based results are not much satisfactory for band-limited calculations so that convolution with window function, having compact support, has been introduced. Convolution Backprojection algorithm with window function is an approximation algorithm. In this paper, the error has been calculated, arises due to this approximation nature of reconstruction algorithm. This result will be defined for fan beam projection data which is more faster than parallel beam projection.Keywords: computed tomography, convolution backprojection, radon transform, fan beam
Procedia PDF Downloads 4933601 Bayesian Estimation under Different Loss Functions Using Gamma Prior for the Case of Exponential Distribution
Authors: Md. Rashidul Hasan, Atikur Rahman Baizid
Abstract:
The Bayesian estimation approach is a non-classical estimation technique in statistical inference and is very useful in real world situation. The aim of this paper is to study the Bayes estimators of the parameter of exponential distribution under different loss functions and then compared among them as well as with the classical estimator named maximum likelihood estimator (MLE). In our real life, we always try to minimize the loss and we also want to gather some prior information (distribution) about the problem to solve it accurately. Here the gamma prior is used as the prior distribution of exponential distribution for finding the Bayes estimator. In our study, we also used different symmetric and asymmetric loss functions such as squared error loss function, quadratic loss function, modified linear exponential (MLINEX) loss function and non-linear exponential (NLINEX) loss function. Finally, mean square error (MSE) of the estimators are obtained and then presented graphically.Keywords: Bayes estimator, maximum likelihood estimator (MLE), modified linear exponential (MLINEX) loss function, Squared Error (SE) loss function, non-linear exponential (NLINEX) loss function
Procedia PDF Downloads 3853600 A Comparison of Computational and Experimental Data to Investigate the Influence of the Tangential Velocity of Inner Rotating Wall on Axial Velocity Profile of Flow through Vertical Annular Pipe with Rotating Inner Surface
Authors: Abdusalam Sharf
Abstract:
In the oil and gas industries, one of the most important issues in drilling wells is understanding the behavior of a flow through an annulus gap in a vertical position, whose outer wall is stationary whilst the inner wall rotates. The main emphasis is placed on a comparison of experimental and computational investigations into the effects of the rotation speed of the inner pipe on the axial velocity profiles. The computational investigations were carried out by employing CFD software, and Gambit and Fluent. Three turbulence models were used: standard, RNG with enhanced wall treatment, and SST model. The profiles of the axial velocity had investigated at different rotation speeds of the inner pipe with three different volumetric flow rates. The comparison results showed that the calculations satisfactorily predict the qualitative features of the axial and swirl velocity profiles and the RNG model performs the best results.Keywords: computational fluid dynamics (CFD), SST k−ω shear-stress transport (k−ω mode variant), RNG k–ε renormalisation group (k−ε mode variant), y+ dimensionless distance from wall
Procedia PDF Downloads 3783599 Reducing the Computational Cost of a Two-way Coupling CFD-FEA Model via a Multi-scale Approach for Fire Determination
Authors: Daniel Martin Fellows, Sean P. Walton, Jennifer Thompson, Oubay Hassan, Kevin Tinkham, Ella Quigley
Abstract:
Structural integrity for cladding products is a key performance parameter, especially concerning fire performance. Cladding products such as PIR-based sandwich panels are tested rigorously, in line with industrial standards. Physical fire tests are necessary to ensure the customer's safety but can give little information about critical behaviours that can help develop new materials. Numerical modelling is a tool that can help investigate a fire's behaviour further by replicating the fire test. However, fire is an interdisciplinary problem as it is a chemical reaction that behaves fluidly and impacts structural integrity. An analysis using Computational Fluid Dynamics (CFD) and Finite Element Analysis (FEA) is needed to capture all aspects of a fire performance test. One method is a two-way coupling analysis that imports the updated changes in thermal data, due to the fire's behaviour, to the FEA solver in a series of iterations. In light of our recent work with Tata Steel U.K using a two-way coupling methodology to determine the fire performance, it has been shown that a program called FDS-2-Abaqus can make predictions of a BS 476 -22 furnace test with a degree of accuracy. The test demonstrated the fire performance of Tata Steel U.K Trisomet product, a Polyisocyanurate (PIR) based sandwich panel used for cladding. Previous works demonstrated the limitations of the current version of the program, the main limitation being the computational cost of modelling three Trisomet panels, totalling an area of 9 . The computational cost increases substantially, with the intention to scale up to an LPS 1181-1 test, which includes a total panel surface area of 200 .The FDS-2-Abaqus program is developed further within this paper to overcome this obstacle and better accommodate Tata Steel U.K PIR sandwich panels. The new developments aim to reduce the computational cost and error margin compared to experimental data. One avenue explored is a multi-scale approach in the form of Reduced Order Modeling (ROM). The approach allows the user to include refined details of the sandwich panels, such as the overlapping joints, without a computationally costly mesh size.Comparative studies will be made between the new implementations and the previous study completed using the original FDS-2-ABAQUS program. Validation of the study will come from physical experiments in line with governing body standards such as BS 476 -22 and LPS 1181-1. The physical experimental data includes the panels' gas and surface temperatures and mechanical deformation. Conclusions are drawn, noting the new implementations' impact factors and discussing the reasonability for scaling up further to a whole warehouse.Keywords: fire testing, numerical coupling, sandwich panels, thermo fluids
Procedia PDF Downloads 793598 A Low Order Thermal Envelope Model for Heat Transfer Characteristics of Low-Rise Residential Buildings
Authors: Nadish Anand, Richard D. Gould
Abstract:
A simplistic model is introduced for determining the thermal characteristics of a Low-rise Residential (LRR) building and then predicts the energy usage by its Heating Ventilation & Air Conditioning (HVAC) system according to changes in weather conditions which are reflected in the Ambient Temperature (Outside Air Temperature). The LRR buildings are treated as a simple lump for solving the heat transfer problem and the model is derived using the lumped capacitance model of transient conduction heat transfer from bodies. Since most contemporary HVAC systems have a thermostat control which will have an offset temperature and user defined set point temperatures which define when the HVAC system will switch on and off. The aim is to predict without any error the Body Temperature (i.e. the Inside Air Temperature) which will estimate the switching on and off of the HVAC system. To validate the mathematical model derived from lumped capacitance we have used EnergyPlus simulation engine, which simulates Buildings with considerable accuracy. We have predicted through the low order model the Inside Air Temperature of a single house kept in three different climate zones (Detroit, Raleigh & Austin) and different orientations for summer and winter seasons. The prediction error from the model for the same day as that of model parameter calculation has showed an error of < 10% in winter for almost all the orientations and climate zones. Whereas the prediction error is only <10% for all the orientations in the summer season for climate zone at higher latitudes (Raleigh & Detroit). Possible factors responsible for the large variations are also noted in the work, paving way for future research.Keywords: building energy, energy consumption, energy+, HVAC, low order model, lumped capacitance
Procedia PDF Downloads 2683597 Heterogeneous Intelligence Traders and Market Efficiency: New Evidence from Computational Approach in Artificial Stock Markets
Authors: Yosra Mefteh Rekik
Abstract:
A computational agent-based model of financial markets stresses interactions and dynamics among a very diverse set of traders. The growing body of research in this area relies heavily on computational tools which by-pass the restrictions of an analytical method. The main goal of this research is to understand how the stock market operates and behaves how to invest in the stock market and to study traders’ behavior within the context of the artificial stock markets populated by heterogeneous agents. All agents are characterized by adaptive learning behavior represented by the Artificial Neuron Networks. By using agent-based simulations on artificial market, we show that the existence of heterogeneous agents can explain the price dynamics in the financial market. We investigate the relation between market diversity and market efficiency. Our empirical findings demonstrate that greater market heterogeneity play key roles in market efficiency.Keywords: agent-based modeling, artificial stock market, heterogeneous expectations, financial stylized facts, computational finance
Procedia PDF Downloads 4393596 A Carrier Phase High Precision Ranging Theory Based on Frequency Hopping
Authors: Jie Xu, Zengshan Tian, Ze Li
Abstract:
Previous indoor ranging or localization systems achieving high accuracy time of flight (ToF) estimation relied on two key points. One is to do strict time and frequency synchronization between the transmitter and receiver to eliminate equipment asynchronous errors such as carrier frequency offset (CFO), but this is difficult to achieve in a practical communication system. The other one is to extend the total bandwidth of the communication because the accuracy of ToF estimation is proportional to the bandwidth, and the larger the total bandwidth, the higher the accuracy of ToF estimation obtained. For example, ultra-wideband (UWB) technology is implemented based on this theory, but high precision ToF estimation is difficult to achieve in common WiFi or Bluetooth systems with lower bandwidth compared to UWB. Therefore, it is meaningful to study how to achieve high-precision ranging with lower bandwidth when the transmitter and receiver are asynchronous. To tackle the above problems, we propose a two-way channel error elimination theory and a frequency hopping-based carrier phase ranging algorithm to achieve high accuracy ranging under asynchronous conditions. The two-way channel error elimination theory uses the symmetry property of the two-way channel to solve the asynchronous phase error caused by the asynchronous transmitter and receiver, and we also study the effect of the two-way channel generation time difference on the phase according to the characteristics of different hardware devices. The frequency hopping-based carrier phase ranging algorithm uses frequency hopping to extend the equivalent bandwidth and incorporates a carrier phase ranging algorithm with multipath resolution to achieve a ranging accuracy comparable to that of UWB at 400 MHz bandwidth in the typical 80 MHz bandwidth of commercial WiFi. Finally, to verify the validity of the algorithm, we implement this theory using a software radio platform, and the actual experimental results show that the method proposed in this paper has a median ranging error of 5.4 cm in the 5 m range, 7 cm in the 10 m range, and 10.8 cm in the 20 m range for a total bandwidth of 80 MHz.Keywords: frequency hopping, phase error elimination, carrier phase, ranging
Procedia PDF Downloads 1243595 Numerical Simulation of Flow and Heat Transfer Characteristics with Various Working Conditions inside a Reactor of Wet Scrubber
Authors: Jonghyuk Yoon, Hyoungwoon Song, Youngbae Kim, Eunju Kim
Abstract:
Recently, with the rapid growth of semiconductor industry, lots of interests have been focused on after treatment system that remove the polluted gas produced from semiconductor manufacturing process, and a wet scrubber is the one of the widely used system. When it comes to mechanism of removing the gas, the polluted gas is removed firstly by chemical reaction in a reactor part. After that, the polluted gas stream is brought into contact with the scrubbing liquid, by spraying it with the liquid. Effective design of the reactor part inside the wet scrubber is highly important since removal performance of the polluted gas in the reactor plays an important role in overall performance and stability. In the present study, a CFD (Computational Fluid Dynamics) analysis was performed to figure out the thermal and flow characteristics inside unit a reactor of wet scrubber. In order to verify the numerical result, temperature distribution of the numerical result at various monitoring points was compared to the experimental result. The average error rates (12~15%) between them was shown and the numerical result of temperature distribution was in good agreement with the experimental data. By using validated numerical method, the effect of the reactor geometry on heat transfer rate was also taken into consideration. Uniformity of temperature distribution was improved about 15%. Overall, the result of present study could be useful information to identify the fluid behavior and thermal performance for various scrubber systems. This project is supported by the ‘R&D Center for the reduction of Non-CO₂ Greenhouse gases (RE201706054)’ funded by the Korea Ministry of Environment (MOE) as the Global Top Environment R&D Program.Keywords: semiconductor, polluted gas, CFD (Computational Fluid Dynamics), wet scrubber, reactor
Procedia PDF Downloads 1453594 Exploring the Intersection of Categorification and Computation in Algebraic Combinatorial Structures
Authors: Gebreegziabher Hailu Gebrecherkos
Abstract:
This study explores the intersection of categorification and computation within algebraic combinatorial structures, aiming to deepen the understanding of how categorical frameworks can enhance computational methods. We investigate the role of higher-dimensional categories in organizing and analyzing combinatorial data, revealing how these structures can lead to new computational techniques for solving complex problems in algebraic combinatory. By examining examples such as species, posets, and operads, we illustrate the transformative potential of categorification in generating new algorithms and optimizing existing ones. Our findings suggest that integrating categorical insights with computational approaches not only enriches the theoretical landscape but also provides practical tools for tackling intricate combinatorial challenges, ultimately paving the way for future research in both fields.Keywords: categorification, computation, algebraic structures, combinatorics
Procedia PDF Downloads 193593 Method of False Alarm Rate Control for Cyclic Redundancy Check-Aided List Decoding of Polar Codes
Authors: Dmitry Dikarev, Ajit Nimbalker, Alexei Davydov
Abstract:
Polar coding is a novel example of error correcting codes, which can achieve Shannon limit at block length N→∞ with log-linear complexity. Active research is being carried to adopt this theoretical concept for using in practical applications such as 5th generation wireless communication systems. Cyclic redundancy check (CRC) error detection code is broadly used in conjunction with successive cancellation list (SCL) decoding algorithm to improve finite-length polar code performance. However, there are two issues: increase of code block payload overhead by CRC bits and decrease of CRC error-detection capability. This paper proposes a method to control CRC overhead and false alarm rate of polar decoding. As shown in the computer simulations results, the proposed method provides the ability to use any set of CRC polynomials with any list size while maintaining the desired level of false alarm rate. This level of flexibility allows using polar codes in 5G New Radio standard.Keywords: 5G New Radio, channel coding, cyclic redundancy check, list decoding, polar codes
Procedia PDF Downloads 2383592 Applying Genetic Algorithm in Exchange Rate Models Determination
Authors: Mehdi Rostamzadeh
Abstract:
Genetic Algorithms (GAs) are an adaptive heuristic search algorithm premised on the evolutionary ideas of natural selection and genetic. In this study, we apply GAs for fundamental and technical models of exchange rate determination in exchange rate market. In this framework, we estimated absolute and relative purchasing power parity, Mundell-Fleming, sticky and flexible prices (monetary models), equilibrium exchange rate and portfolio balance model as fundamental models and Auto Regressive (AR), Moving Average (MA), Auto-Regressive with Moving Average (ARMA) and Mean Reversion (MR) as technical models for Iranian Rial against European Union’s Euro using monthly data from January 1992 to December 2014. Then, we put these models into the genetic algorithm system for measuring their optimal weight for each model. These optimal weights have been measured according to four criteria i.e. R-Squared (R2), mean square error (MSE), mean absolute percentage error (MAPE) and root mean square error (RMSE).Based on obtained Results, it seems that for explaining of Iranian Rial against EU Euro exchange rate behavior, fundamental models are better than technical models.Keywords: exchange rate, genetic algorithm, fundamental models, technical models
Procedia PDF Downloads 2733591 The Extension of Monomeric Computational Results to Polymeric Measurable Properties: An Introductory Computational Chemistry Experiment
Authors: Jing Zhao, Yongqing Bai, Qiaofang Shi, Huaihao Zhang
Abstract:
Advances in software technology enable computational chemistry to be commonly applied in various research fields, especially in pedagogy. Thus, in order to expand and improve experimental instructions of computational chemistry for undergraduates, we designed an introductory experiment—research on acrylamide molecular structure and physicochemical properties. Initially, students construct molecular models of acrylamide and polyacrylamide in Gaussian and Materials Studio software respectively. Then, the infrared spectral data, atomic charge and molecular orbitals of acrylamide as well as solvation effect of polyacrylamide are calculated to predict their physicochemical performance. At last, rheological experiments are used to validate these predictions. Through the combination of molecular simulation (performed on Gaussian, Materials Studio) with experimental verification (rheology experiment), learners have deeply comprehended the chemical nature of acrylamide and polyacrylamide, achieving good learning outcomes.Keywords: upper-division undergraduate, computer-based learning, laboratory instruction, molecular modeling
Procedia PDF Downloads 1333590 Getting It Right Before Implementation: Using Simulation to Optimize Recommendations and Interventions After Adverse Event Review
Authors: Melissa Langevin, Natalie Ward, Colleen Fitzgibbons, Christa Ramsey, Melanie Hogue, Anna Theresa Lobos
Abstract:
Description: Root Cause Analysis (RCA) is used by health care teams to examine adverse events (AEs) to identify causes which then leads to recommendations for prevention Despite widespread use, RCA has limitations. Best practices have not been established for implementing recommendations or tracking the impact of interventions after AEs. During phase 1 of this study, we used simulation to analyze two fictionalized AEs that occurred in hospitalized paediatric patients to identify and understand how the errors occurred and generated recommendations to mitigate and prevent recurrences. Scenario A involved an error of commission (inpatient drug error), and Scenario B involved detecting an error that already occurred (critical care drug infusion error). Recommendations generated were: improved drug labeling, specialized drug kids, alert signs and clinical checklists. Aim: Use simulation to optimize interventions recommended post critical event analysis prior to implementation in the clinical environment. Methods: Suggested interventions from Phase 1 were designed and tested through scenario simulation in the clinical environment (medicine ward or pediatric intensive care unit). Each scenario was simulated 8 times. Recommendations were tested using different, voluntary teams and each scenario was debriefed to understand why the error was repeated despite interventions and how interventions could be improved. Interventions were modified with subsequent simulations until recommendations were felt to have an optimal effect and data saturation was achieved. Along with concrete suggestions for design and process change, qualitative data pertaining to employee communication and hospital standard work was collected and analyzed. Results: Each scenario had a total of three interventions to test. In, scenario 1, the error was reproduced in the initial two iterations and mitigated following key intervention changes. In scenario 2, the error was identified immediately in all cases where the intervention checklist was utilized properly. Independently of intervention changes and improvements, the simulation was beneficial to identify which of these should be prioritized for implementation and highlighted that even the potential solutions most frequently suggested by participants did not always translate into error prevention in the clinical environment. Conclusion: We conclude that interventions that help to change process (epinephrine kit or mandatory checklist) were more successful at preventing errors than passive interventions (signage, change in memory aids). Given that even the most successful interventions needed modifications and subsequent re-testing, simulation is key to optimizing suggested changes. Simulation is a safe, practice changing modality for institutions to use prior to implementing recommendations from RCA following AE reviews.Keywords: adverse events, patient safety, pediatrics, root cause analysis, simulation
Procedia PDF Downloads 1533589 A Real Time Ultra-Wideband Location System for Smart Healthcare
Authors: Mingyang Sun, Guozheng Yan, Dasheng Liu, Lei Yang
Abstract:
Driven by the demand of intelligent monitoring in rehabilitation centers or hospitals, a high accuracy real-time location system based on UWB (ultra-wideband) technology was proposed. The system measures precise location of a specific person, traces his movement and visualizes his trajectory on the screen for doctors or administrators. Therefore, doctors could view the position of the patient at any time and find them immediately and exactly when something emergent happens. In our design process, different algorithms were discussed, and their errors were analyzed. In addition, we discussed about a , simple but effective way of correcting the antenna delay error, which turned out to be effective. By choosing the best algorithm and correcting errors with corresponding methods, the system attained a good accuracy. Experiments indicated that the ranging error of the system is lower than 7 cm, the locating error is lower than 20 cm, and the refresh rate exceeds 5 times per second. In future works, by embedding the system in wearable IoT (Internet of Things) devices, it could provide not only physical parameters, but also the activity status of the patient, which would help doctors a lot in performing healthcare.Keywords: intelligent monitoring, ultra-wideband technology, real-time location, IoT devices, smart healthcare
Procedia PDF Downloads 1413588 Setting Uncertainty Conditions Using Singular Values for Repetitive Control in State Feedback
Authors: Muhammad A. Alsubaie, Mubarak K. H. Alhajri, Tarek S. Altowaim
Abstract:
A repetitive controller designed to accommodate periodic disturbances via state feedback is discussed. Periodic disturbances can be represented by a time delay model in a positive feedback loop acting on system output. A direct use of the small gain theorem solves the periodic disturbances problem via 1) isolating the delay model, 2) finding the overall system representation around the delay model and 3) designing a feedback controller that assures overall system stability and tracking error convergence. This paper addresses uncertainty conditions for the repetitive controller designed in state feedback in either past error feedforward or current error feedback using singular values. The uncertainty investigation is based on the overall system found and the stability condition associated with it; depending on the scheme used, to set an upper/lower limit weighting parameter. This creates a region that should not be exceeded in selecting the weighting parameter which in turns assures performance improvement against system uncertainty. Repetitive control problem can be described in lifted form. This allows the usage of singular values principle in setting the range for the weighting parameter selection. The Simulation results obtained show a tracking error convergence against dynamic system perturbation if the weighting parameter chosen is within the range obtained. Simulation results also show the advantage of weighting parameter usage compared to the case where it is omitted.Keywords: model mismatch, repetitive control, singular values, state feedback
Procedia PDF Downloads 1563587 Bayesian Structural Identification with Systematic Uncertainty Using Multiple Responses
Authors: André Jesus, Yanjie Zhu, Irwanda Laory
Abstract:
Structural health monitoring is one of the most promising technologies concerning aversion of structural risk and economic savings. Analysts often have to deal with a considerable variety of uncertainties that arise during a monitoring process. Namely the widespread application of numerical models (model-based) is accompanied by a widespread concern about quantifying the uncertainties prevailing in their use. Some of these uncertainties are related with the deterministic nature of the model (code uncertainty) others with the variability of its inputs (parameter uncertainty) and the discrepancy between a model/experiment (systematic uncertainty). The actual process always exhibits a random behaviour (observation error) even when conditions are set identically (residual variation). Bayesian inference assumes that parameters of a model are random variables with an associated PDF, which can be inferred from experimental data. However in many Bayesian methods the determination of systematic uncertainty can be problematic. In this work systematic uncertainty is associated with a discrepancy function. The numerical model and discrepancy function are approximated by Gaussian processes (surrogate model). Finally, to avoid the computational burden of a fully Bayesian approach the parameters that characterise the Gaussian processes were estimated in a four stage process (modular Bayesian approach). The proposed methodology has been successfully applied on fields such as geoscience, biomedics, particle physics but never on the SHM context. This approach considerably reduces the computational burden; although the extent of the considered uncertainties is lower (second order effects are neglected). To successfully identify the considered uncertainties this formulation was extended to consider multiple responses. The efficiency of the algorithm has been tested on a small scale aluminium bridge structure, subjected to a thermal expansion due to infrared heaters. Comparison of its performance with responses measured at different points of the structure and associated degrees of identifiability is also carried out. A numerical FEM model of the structure was developed and the stiffness from its supports is considered as a parameter to calibrate. Results show that the modular Bayesian approach performed best when responses of the same type had the lowest spatial correlation. Based on previous literature, using different types of responses (strain, acceleration, and displacement) should also improve the identifiability problem. Uncertainties due to parametric variability, observation error, residual variability, code variability and systematic uncertainty were all recovered. For this example the algorithm performance was stable and considerably quicker than Bayesian methods that account for the full extent of uncertainties. Future research with real-life examples is required to fully access the advantages and limitations of the proposed methodology.Keywords: bayesian, calibration, numerical model, system identification, systematic uncertainty, Gaussian process
Procedia PDF Downloads 3273586 A Subband BSS Structure with Reduced Complexity and Fast Convergence
Authors: Salah Al-Din I. Badran, Samad Ahmadi, Ismail Shahin
Abstract:
A blind source separation method is proposed; in this method, we use a non-uniform filter bank and a novel normalisation. This method provides a reduced computational complexity and increased convergence speed comparing to the full-band algorithm. Recently, adaptive sub-band scheme has been recommended to solve two problems: reduction of computational complexity and increase the convergence speed of the adaptive algorithm for correlated input signals. In this work, the reduction in computational complexity is achieved with the use of adaptive filters of orders less than the full-band adaptive filters, which operate at a sampling rate lower than the sampling rate of the input signal. The decomposed signals by analysis bank filter are less correlated in each subband than the input signal at full bandwidth, and can promote better rates of convergence.Keywords: blind source separation, computational complexity, subband, convergence speed, mixture
Procedia PDF Downloads 5803585 Simulation of Growth and Yield of Rice Under Irrigation and Nitrogen Management Using ORYZA2000
Authors: Mojtaba Esmaeilzad Limoudehi
Abstract:
To evaluate the model ORYZA2000, under the management of irrigation and nitrogen fertilization experiment, a split plot with a randomized complete block design with three replications on hybrid cultivars (spring) in the 1388-1387 crop year was conducted at the Rice Research Institute. Permanent flood irrigation as the main plot in the fourth level, around 5 days, from 11 days to 8 days away, and the four levels of nitrogen fertilizer as the subplots 0, 90, 120, and 150 kg N Ha were considered. Simulated and measured values of leaf area index, grain yield, and biological parameters using the regression coefficient, t-test, the root mean square error (RMSE), and normalized root mean square error (RMSEn) were performed. Results, the normalized root mean square error of 10% in grain yield, the biological yield of 9%, and 23% of maximum LAI was determined. The simulation results show that grain yield and biological ORYZA2000 model accuracy are good but do not simulate maximum LAI well. The results show that the model can support ORYZA2000 test results and can be used under conditions of nitrogen fertilizer and irrigation management.Keywords: evaluation, rice, nitrogen fertilizer, model ORYZA2000
Procedia PDF Downloads 703584 Circular Approximation by Trigonometric Bézier Curves
Authors: Maria Hussin, Malik Zawwar Hussain, Mubashrah Saddiqa
Abstract:
We present a trigonometric scheme to approximate a circular arc with its two end points and two end tangents/unit tangents. A rational cubic trigonometric Bézier curve is constructed whose end control points are defined by the end points of the circular arc. Weight functions and the remaining control points of the cubic trigonometric Bézier curve are estimated by variational approach to reproduce a circular arc. The radius error is calculated and found less than the existing techniques.Keywords: control points, rational trigonometric Bézier curves, radius error, shape measure, weight functions
Procedia PDF Downloads 477