Search results for: TensorFlow probability
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1262

Search results for: TensorFlow probability

1052 An Analysis of a Queueing System with Heterogeneous Servers Subject to Catastrophes

Authors: M. Reni Sagayaraj, S. Anand Gnana Selvam, R. Reynald Susainathan

Abstract:

This study analyzed a queueing system with blocking and no waiting line. The customers arrive according to a Poisson process and the service times follow exponential distribution. There are two non-identical servers in the system. The queue discipline is FCFS, and the customers select the servers on fastest server first (FSF) basis. The service times are exponentially distributed with parameters μ1 and μ2 at servers I and II, respectively. Besides, the catastrophes occur in a Poisson manner with rate γ in the system. When server I is busy or blocked, the customer who arrives in the system leaves the system without being served. Such customers are called lost customers. The probability of losing a customer was computed for the system. The explicit time dependent probabilities of system size are obtained and a numerical example is presented in order to show the managerial insights of the model. Finally, the probability that arriving customer finds system busy and average number of server busy in steady state are obtained numerically.

Keywords: queueing system, blocking, poisson process, heterogeneous servers, queue discipline FCFS, busy period

Procedia PDF Downloads 507
1051 An Experimental Investigation of the Cognitive Noise Influence on the Bistable Visual Perception

Authors: Alexander E. Hramov, Vadim V. Grubov, Alexey A. Koronovskii, Maria K. Kurovskaуa, Anastasija E. Runnova

Abstract:

The perception of visual signals in the brain was among the first issues discussed in terms of multistability which has been introduced to provide mechanisms for information processing in biological neural systems. In this work the influence of the cognitive noise on the visual perception of multistable pictures has been investigated. The study includes an experiment with the bistable Necker cube illusion and the theoretical background explaining the obtained experimental results. In our experiments Necker cubes with different wireframe contrast were demonstrated repeatedly to different people and the probability of the choice of one of the cubes projection was calculated for each picture. The Necker cube was placed at the middle of a computer screen as black lines on a white background. The contrast of the three middle lines centered in the left middle corner was used as one of the control parameter. Between two successive demonstrations of Necker cubes another picture was shown to distract attention and to make a perception of next Necker cube more independent from the previous one. Eleven subjects, male and female, of the ages 20 through 45 were studied. The choice of the Necker cube projection was detected with the Electroencephalograph-recorder Encephalan-EEGR-19/26, Medicom MTD. To treat the experimental results we carried out theoretical consideration using the simplest double-well potential model with the presence of noise that led to the Fokker-Planck equation for the probability density of the stochastic process. At the first time an analytical solution for the probability of the selection of one of the Necker cube projection for different values of wireframe contrast have been obtained. Furthermore, having used the results of the experimental measurements with the help of the method of least squares we have calculated the value of the parameter corresponding to the cognitive noise of the person being studied. The range of cognitive noise parameter values for studied subjects turned to be [0.08; 0.55]. It should be noted, that experimental results have a good reproducibility, the same person being studied repeatedly another day produces very similar data with very close levels of cognitive noise. We found an excellent agreement between analytically deduced probability and the results obtained in the experiment. A good qualitative agreement between theoretical and experimental results indicates that even such a simple model allows simulating brain cognitive dynamics and estimating important cognitive characteristic of the brain, such as brain noise.

Keywords: bistability, brain, noise, perception, stochastic processes

Procedia PDF Downloads 445
1050 Employers’ Preferences when Employing Solo Self-employed: a Vignette Study in the Netherlands

Authors: Lian Kösters, Wendy Smits, Raymond Montizaan

Abstract:

The number of solo self-employed in the Netherlands has been increasing for years. The relative increase is among the largest in the EU. To explain this increase, most studies have focused on the supply side, workers who offer themselves as solo self-employed. The number of studies that focus on the demand side, the employer who hires the solo self-employed, is still scarce. Studies into employer behaviour conducted until now show that employers mainly choose self-employed workers when they have a temporary need for specialist knowledge, but also during projects or production peaks. These studies do not provide insight into the employers’ considerations for different contract types. In this study, interviews with employers were conducted, and available literature was consulted to provide an overview of the several factors employers use to compare different contract types. That input was used to set up a vignette study. This was carried out at the end of 2021 among almost 1000 business owners, HR managers, and business leaders of Dutch companies. Each respondent was given two sets of five fictitious candidates for two possible positions in their organization. They were asked to rank these candidates. The positions varied with regard to the type of tasks (core tasks or support tasks) and the time it took to train new people for the position. The respondents were asked additional questions about the positions, such as the required level of education, the duration, and the degree of predictability of tasks. The fictitious candidates varied, among other things, in the type of contract on which they would come to work for the organization. The results were analyzed using a rank-ordered logit analysis. This vignette setup makes it possible to see which factors are most important for employers when choosing to hire a solo self-employed person compared to other contracts. The results show that there are no indications that employers would want to hire solo self-employed workers en masse. They prefer regular employee contracts. The probability of being chosen with a solo self-employed contract over someone who comes to work as a temporary employee is 32 percent. This probability is even lower than for on-call and temporary agency workers. For a permanent contract, this probability is 46 percent. The results provide indications that employers consider knowledge and skills more important than the solo self-employed contract and that this can compensate. A solo self-employed candidate with 10 years of work experience has a 63 percent probability of being found attractive by an employer compared to a temporary employee without work experience. This suggests that employers are willing to give someone a less attractive contract for the employer if the worker so wishes. The results also show that the probability that a solo self-employed person is preferred over a candidate with a temporary employee contract is somewhat higher in business economics, administrative and technical professions. No significant results were found for factors where it was expected that solo self-employed workers are preferred more often, such as for unpredictable or temporary work.

Keywords: employer behaviour, rank-ordered logit analysis, solo self-employment, temporary contract, vignette study

Procedia PDF Downloads 73
1049 Wireless Transmission of Big Data Using Novel Secure Algorithm

Authors: K. Thiagarajan, K. Saranya, A. Veeraiah, B. Sudha

Abstract:

This paper presents a novel algorithm for secure, reliable and flexible transmission of big data in two hop wireless networks using cooperative jamming scheme. Two hop wireless networks consist of source, relay and destination nodes. Big data has to transmit from source to relay and from relay to destination by deploying security in physical layer. Cooperative jamming scheme determines transmission of big data in more secure manner by protecting it from eavesdroppers and malicious nodes of unknown location. The novel algorithm that ensures secure and energy balance transmission of big data, includes selection of data transmitting region, segmenting the selected region, determining probability ratio for each node (capture node, non-capture and eavesdropper node) in every segment, evaluating the probability using binary based evaluation. If it is secure transmission resume with the two- hop transmission of big data, otherwise prevent the attackers by cooperative jamming scheme and transmit the data in two-hop transmission.

Keywords: big data, two-hop transmission, physical layer wireless security, cooperative jamming, energy balance

Procedia PDF Downloads 491
1048 Study of Seismic Damage Reinforced Concrete Frames in Variable Height with Logistic Statistic Function Distribution

Authors: P. Zarfam, M. Mansouri Baghbaderani

Abstract:

In seismic design, the proper reaction to the earthquake and the correct and accurate prediction of its subsequent effects on the structure are critical. Choose a proper probability distribution, which gives a more realistic probability of the structure's damage rate, is essential in damage discussions. With the development of design based on performance, analytical method of modal push over as an inexpensive, efficacious, and quick one in the estimation of the structures' seismic response is broadly used in engineering contexts. In this research three concrete frames of 3, 6, and 13 stories are analyzed in non-linear modal push over by 30 different earthquake records by OpenSEES software, then the detriment indexes of roof's displacement and relative displacement ratio of the stories are calculated by two parameters: peak ground acceleration and spectra acceleration. These indexes are used to establish the value of damage relations with log-normal distribution and logistics distribution. Finally the value of these relations is compared and the effect of height on the mentioned damage relations is studied, too.

Keywords: modal pushover analysis, concrete structure, seismic damage, log-normal distribution, logistic distribution

Procedia PDF Downloads 247
1047 Convex Restrictions for Outage Constrained MU-MISO Downlink under Imperfect Channel State Information

Authors: A. Preetha Priyadharshini, S. B. M. Priya

Abstract:

In this paper, we consider the MU-MISO downlink scenario, under imperfect channel state information (CSI). The main issue in imperfect CSI is to keep the probability of each user achievable outage rate below the given threshold level. Such a rate outage constraints present significant and analytical challenges. There are many probabilistic methods are used to minimize the transmit optimization problem under imperfect CSI. Here, decomposition based large deviation inequality and Bernstein type inequality convex restriction methods are used to perform the optimization problem under imperfect CSI. These methods are used for achieving improved output quality and lower complexity. They provide a safe tractable approximation of the original rate outage constraints. Based on these method implementations, performance has been evaluated in the terms of feasible rate and average transmission power. The simulation results are shown that all the two methods offer significantly improved outage quality and lower computational complexity.

Keywords: imperfect channel state information, outage probability, multiuser- multi input single output, channel state information

Procedia PDF Downloads 814
1046 The Best Prediction Data Mining Model for Breast Cancer Probability in Women Residents in Kabul

Authors: Mina Jafari, Kobra Hamraee, Saied Hossein Hosseini

Abstract:

The prediction of breast cancer disease is one of the challenges in medicine. In this paper we collected 528 records of women’s information who live in Kabul including demographic, life style, diet and pregnancy data. There are many classification algorithm in breast cancer prediction and tried to find the best model with most accurate result and lowest error rate. We evaluated some other common supervised algorithms in data mining to find the best model in prediction of breast cancer disease among afghan women living in Kabul regarding to momography result as target variable. For evaluating these algorithms we used Cross Validation which is an assured method for measuring the performance of models. After comparing error rate and accuracy of three models: Decision Tree, Naive Bays and Rule Induction, Decision Tree with accuracy of 94.06% and error rate of %15 is found the best model to predicting breast cancer disease based on the health care records.

Keywords: decision tree, breast cancer, probability, data mining

Procedia PDF Downloads 140
1045 Mathematical Model of Corporate Bond Portfolio and Effective Border Preview

Authors: Sergey Podluzhnyy

Abstract:

One of the most important tasks of investment and pension fund management is building decision support system which helps to make right decision on corporate bond portfolio formation. Today there are several basic methods of bond portfolio management. They are duration management, immunization and convexity management. Identified methods have serious disadvantage: they do not take into account credit risk or insolvency risk of issuer. So, identified methods can be applied only for management and evaluation of high-quality sovereign bonds. Applying article proposes mathematical model for building an optimal in case of risk and yield corporate bond portfolio. Proposed model takes into account the default probability in formula of assessment of bonds which results to more correct evaluation of bonds prices. Moreover, applied model provides tools for visualization of the efficient frontier of corporate bonds portfolio taking into account the exposure to credit risk, which will increase the quality of the investment decisions of portfolio managers.

Keywords: corporate bond portfolio, default probability, effective boundary, portfolio optimization task

Procedia PDF Downloads 318
1044 Challenges for IoT Adoption in India: A Study Based on Foresight Analysis for 2025

Authors: Shruti Chopra, Vikas Rao Vadi

Abstract:

In the era of the digital world, the Internet of Things (IoT) has been receiving significant attention. Its ubiquitous connectivity between humans, machines to machines (M2M) and machines to humans provides it a potential to transform the society and establish an ecosystem to serve new dimensions to the economy of the country. Thereby, this study has attempted to identify the challenges that seem prevalent in IoT adoption in India through the literature survey. Further, the data has been collected by taking the opinions of experts to conduct the foresight analysis and it has been analyzed with the help of scenario planning process – Micmac, Mactor, Multipol, and Smic-Prob. As a methodology, the study has identified the relationship between variables through variable analysis using Micmac and actor analysis using Mactor, this paper has attempted to generate the entire field of possibilities in terms of hypotheses and construct various scenarios through Multipol. And lastly, the findings of the study include final scenarios that are selected using Smic-Prob by assigning the probability to all the scenarios (including the conditional probability). This study may help the practitioners and policymakers to remove the obstacles to successfully implement the IoT in India.

Keywords: Internet of Thing (IoT), foresight analysis, scenario planning, challenges, policymaking

Procedia PDF Downloads 148
1043 Statistical Correlation between Ply Mechanical Properties of Composite and Its Effect on Structure Reliability

Authors: S. Zhang, L. Zhang, X. Chen

Abstract:

Due to the large uncertainty on the mechanical properties of FRP (fibre reinforced plastic), the reliability evaluation of FRP structures are currently receiving much attention in industry. However, possible statistical correlation between ply mechanical properties has been so far overlooked, and they are mostly assumed to be independent random variables. In this study, the statistical correlation between ply mechanical properties of uni-directional and plain weave composite is firstly analyzed by a combination of Monte-Carlo simulation and finite element modeling of the FRP unit cell. Large linear correlation coefficients between the in-plane mechanical properties are observed, and the correlation coefficients are heavily dependent on the uncertainty of the fibre volume ratio. It is also observed that the correlation coefficients related to Poisson’s ratio are negative while others are positive. To experimentally achieve the statistical correlation coefficients between in-plane mechanical properties of FRP, all concerned in-plane mechanical properties of the same specimen needs to be known. In-plane shear modulus of FRP is experimentally derived by the approach suggested in the ASTM standard D5379M. Tensile tests are conducted using the same specimens used for the shear test, and due to non-uniform tensile deformation a modification factor is derived by a finite element modeling. Digital image correlation is adopted to characterize the specimen non-uniform deformation. The preliminary experimental results show a good agreement with the numerical analysis on the statistical correlation. Then, failure probability of laminate plates is calculated in cases considering and not considering the statistical correlation, using the Monte-Carlo and Markov Chain Monte-Carlo methods, respectively. The results highlight the importance of accounting for the statistical correlation between ply mechanical properties to achieve accurate failure probability of laminate plates. Furthermore, it is found that for the multi-layer laminate plate, the statistical correlation between the ply elastic properties significantly affects the laminate reliability while the effect of statistical correlation between the ply strength is minimal.

Keywords: failure probability, FRP, reliability, statistical correlation

Procedia PDF Downloads 162
1042 Cyber Security Enhancement via Software Defined Pseudo-Random Private IP Address Hopping

Authors: Andre Slonopas, Zona Kostic, Warren Thompson

Abstract:

Obfuscation is one of the most useful tools to prevent network compromise. Previous research focused on the obfuscation of the network communications between external-facing edge devices. This work proposes the use of two edge devices, external and internal facing, which communicate via private IPv4 addresses in a software-defined pseudo-random IP hopping. This methodology does not require additional IP addresses and/or resources to implement. Statistical analyses demonstrate that the hopping surface must be at least 1e3 IP addresses in size with a broad standard deviation to minimize the possibility of coincidence of monitored and communication IPs. The probability of breaking the hopping algorithm requires a collection of at least 1e6 samples, which for large hopping surfaces will take years to collect. The probability of dropped packets is controlled via memory buffers and the frequency of hops and can be reduced to levels acceptable for video streaming. This methodology provides an impenetrable layer of security ideal for information and supervisory control and data acquisition systems.

Keywords: moving target defense, cybersecurity, network security, hopping randomization, software defined network, network security theory

Procedia PDF Downloads 187
1041 Constructing the Joint Mean-Variance Regions for Univariate and Bivariate Normal Distributions: Approach Based on the Measure of Cumulative Distribution Functions

Authors: Valerii Dashuk

Abstract:

The usage of the confidence intervals in economics and econometrics is widespread. To be able to investigate a random variable more thoroughly, joint tests are applied. One of such examples is joint mean-variance test. A new approach for testing such hypotheses and constructing confidence sets is introduced. Exploring both the value of the random variable and its deviation with the help of this technique allows checking simultaneously the shift and the probability of that shift (i.e., portfolio risks). Another application is based on the normal distribution, which is fully defined by mean and variance, therefore could be tested using the introduced approach. This method is based on the difference of probability density functions. The starting point is two sets of normal distribution parameters that should be compared (whether they may be considered as identical with given significance level). Then the absolute difference in probabilities at each 'point' of the domain of these distributions is calculated. This measure is transformed to a function of cumulative distribution functions and compared to the critical values. Critical values table was designed from the simulations. The approach was compared with the other techniques for the univariate case. It differs qualitatively and quantitatively in easiness of implementation, computation speed, accuracy of the critical region (theoretical vs. real significance level). Stable results when working with outliers and non-normal distributions, as well as scaling possibilities, are also strong sides of the method. The main advantage of this approach is the possibility to extend it to infinite-dimension case, which was not possible in the most of the previous works. At the moment expansion to 2-dimensional state is done and it allows to test jointly up to 5 parameters. Therefore the derived technique is equivalent to classic tests in standard situations but gives more efficient alternatives in nonstandard problems and on big amounts of data.

Keywords: confidence set, cumulative distribution function, hypotheses testing, normal distribution, probability density function

Procedia PDF Downloads 176
1040 Organizational Innovations of the 20th Century as High Tech of the 21st: Evidence from Patent Data

Authors: Valery Yakubovich, Shuping wu

Abstract:

Organization theorists have long claimed that organizational innovations are nontechnological, in part because they are unpatentable. The claim rests on the assumption that organizational innovations are abstract ideas embodied in persons and contexts rather than in context-free practical tools. However, over the last three decades, organizational knowledge has been increasingly embodied in digital tools which, in principle, can be patented. To provide the first empirical evidence regarding the patentability of organizational innovations, we trained two machine learning algorithms to identify a population of 205,434 patent applications for organizational technologies (OrgTech) and, among them, 141,285 applications that use organizational innovations accumulated over the 20th century. Our event history analysis of the probability of patenting an OrgTech invention shows that ideas from organizational innovations decrease the probability of patent allowance unless they describe a practical tool. We conclude that the present-day digital transformation places organizational innovations in the realm of high tech and turns the debate about organizational technologies into the challenge of designing practical organizational tools that embody big ideas about organizing. We outline an agenda for patent-based research on OrgTech as an emerging phenomenon.

Keywords: organizational innovation, organizational technology, high tech, patents, machine learning

Procedia PDF Downloads 122
1039 Determinants of Income Diversification among Support Zone Communities of National Parks in Nigeria

Authors: Daniel Etim Jacob, Samuel Onadeko, Edem A. Eniang, Imaobong Ufot Nelson

Abstract:

This paper examined determinants of income diversification among households in support zones communities of national parks in Nigeria. This involved the use household data collected through questionnaires administered randomly among 1009 household heads in the study area. The data obtained were analyzed using probability and non-probability statistical analysis such as regression and analysis of variance to test for mean difference between parks. The result obtained indicates that majority of the household heads were male (92.57%0, between the age class of 21 – 40 years (44.90%), had non-formal education (38.16%), were farmers (65.21%), owned land (95.44%), with a household size of 1 – 5 (36.67%) and an annual income range of ₦401,000 - ₦600,000 (24.58%). Mean Simpson index of diversity showed a general low (0.375) level of income diversification among the households. Income, age, off-farm dependence, education, household size and occupation where significant (p<0.01) factors that affected households’ income diversification. The study recommends improvement in the existing infrastructures and social capital in the communities as avenues to improve the livelihood and ensure positive conservation behaviors in the study area.

Keywords: income diversification, protected area, livelihood, poverty, Nigeria

Procedia PDF Downloads 143
1038 Off-Line Text-Independent Arabic Writer Identification Using Optimum Codebooks

Authors: Ahmed Abdullah Ahmed

Abstract:

The task of recognizing the writer of a handwritten text has been an attractive research problem in the document analysis and recognition community with applications in handwriting forensics, paleography, document examination and handwriting recognition. This research presents an automatic method for writer recognition from digitized images of unconstrained writings. Although a great effort has been made by previous studies to come out with various methods, their performances, especially in terms of accuracy, are fallen short, and room for improvements is still wide open. The proposed technique employs optimal codebook based writer characterization where each writing sample is represented by a set of features computed from two codebooks, beginning and ending. Unlike most of the classical codebook based approaches which segment the writing into graphemes, this study is based on fragmenting a particular area of writing which are beginning and ending strokes. The proposed method starting with contour detection to extract significant information from the handwriting and the curve fragmentation is then employed to categorize the handwriting into Beginning and Ending zones into small fragments. The similar fragments of beginning strokes are grouped together to create Beginning cluster, and similarly, the ending strokes are grouped to create the ending cluster. These two clusters lead to the development of two codebooks (beginning and ending) by choosing the center of every similar fragments group. Writings under study are then represented by computing the probability of occurrence of codebook patterns. The probability distribution is used to characterize each writer. Two writings are then compared by computing distances between their respective probability distribution. The evaluations carried out on ICFHR standard dataset of 206 writers using Beginning and Ending codebooks separately. Finally, the Ending codebook achieved the highest identification rate of 98.23%, which is the best result so far on ICFHR dataset.

Keywords: off-line text-independent writer identification, feature extraction, codebook, fragments

Procedia PDF Downloads 513
1037 Real-World Comparison of Adherence to and Persistence with Dulaglutide and Liraglutide in UAE e-Claims Database

Authors: Ibrahim Turfanda, Soniya Rai, Karan Vadher

Abstract:

Objectives— The study aims to compare real-world adherence to and persistence with dulaglutide and liraglutide in patients with type 2 diabetes (T2D) initiating treatment in UAE. Methods— This was a retrospective, non-interventional study (observation period: 01 March 2017–31 August 2019) using the UAE Dubai e-Claims database. Included: adult patients initiating dulaglutide/liraglutide 01 September 2017–31 August 2018 (index period) with: ≥1 claim for T2D in the 6 months before index date (ID); ≥1 claim for dulaglutide/liraglutide during index period; and continuous medical enrolment for ≥6 months before and ≥12 months after ID. Key endpoints, assessed 3/6/12 months after ID: adherence to treatment (proportion of days covered [PDC; PDC ≥80% considered ‘adherent’], per-group mean±standard deviation [SD] PDC); and persistence (number of continuous therapy days from ID until discontinuation [i.e., >45 days gap] or end of observation period). Patients initiating dulaglutide/liraglutide were propensity score matched (1:1) based on baseline characteristics. Between-group comparison of adherence was analysed using the McNemar test (α=0.025). Persistence was analysed using Kaplan–Meier estimates with log-rank tests (α=0.025) for between-group comparisons. This study presents 12-month outcomes. Results— Following propensity score matching, 263 patients were included in each group. Mean±SD PDC for all patients at 12 months was significantly higher in the dulaglutide versus the liraglutide group (dulaglutide=0.48±0.30, liraglutide=0.39±0.28, p=0.0002). The proportion of adherent patients favored dulaglutide (dulaglutide=20.2%, liraglutide=12.9%, p=0.0302), as did the probability of being adherent to treatment (odds ratio [97.5% CI]: 1.70 [0.99, 2.91]; p=0.03). Proportion of persistent patients also favoured dulaglutide (dulaglutide=15.2%, liraglutide=9.1%, p=0.0528), as did the probability of discontinuing treatment 12 months after ID (p=0.027). Conclusions— Based on the UAE Dubai e-Claims database data, dulaglutide initiators exhibited significantly greater adherence in terms of mean PDC versus liraglutide initiators. The proportion of adherent patients and the probability of being adherent favored the dulaglutide group, as did treatment persistence.

Keywords: adherence, dulaglutide, effectiveness, liraglutide, persistence

Procedia PDF Downloads 126
1036 Modal Approach for Decoupling Damage Cost Dependencies in Building Stories

Authors: Haj Najafi Leila, Tehranizadeh Mohsen

Abstract:

Dependencies between diverse factors involved in probabilistic seismic loss evaluation are recognized to be an imperative issue in acquiring accurate loss estimates. Dependencies among component damage costs could be taken into account considering two partial distinct states of independent or perfectly-dependent for component damage states; however, in our best knowledge, there is no available procedure to take account of loss dependencies in story level. This paper attempts to present a method called "modal cost superposition method" for decoupling story damage costs subjected to earthquake ground motions dealt with closed form differential equations between damage cost and engineering demand parameters which should be solved in complex system considering all stories' cost equations by the means of the introduced "substituted matrixes of mass and stiffness". Costs are treated as probabilistic variables with definite statistic factors of median and standard deviation amounts and a presumed probability distribution. To supplement the proposed procedure and also to display straightforwardness of its application, one benchmark study has been conducted. Acceptable compatibility has been proven for the estimated damage costs evaluated by the new proposed modal and also frequently used stochastic approaches for entire building; however, in story level, insufficiency of employing modification factor for incorporating occurrence probability dependencies between stories has been revealed due to discrepant amounts of dependency between damage costs of different stories. Also, more dependency contribution in occurrence probability of loss could be concluded regarding more compatibility of loss results in higher stories than the lower ones, whereas reduction in incorporation portion of cost modes provides acceptable level of accuracy and gets away from time consuming calculations including some limited number of cost modes in high mode situation.

Keywords: dependency, story-cost, cost modes, engineering demand parameter

Procedia PDF Downloads 181
1035 A Convolutional Neural Network-Based Model for Lassa fever Virus Prediction Using Patient Blood Smear Image

Authors: A. M. John-Otumu, M. M. Rahman, M. C. Onuoha, E. P. Ojonugwa

Abstract:

A Convolutional Neural Network (CNN) model for predicting Lassa fever was built using Python 3.8.0 programming language, alongside Keras 2.2.4 and TensorFlow 2.6.1 libraries as the development environment in order to reduce the current high risk of Lassa fever in West Africa, particularly in Nigeria. The study was prompted by some major flaws in existing conventional laboratory equipment for diagnosing Lassa fever (RT-PCR), as well as flaws in AI-based techniques that have been used for probing and prognosis of Lassa fever based on literature. There were 15,679 blood smear microscopic image datasets collected in total. The proposed model was trained on 70% of the dataset and tested on 30% of the microscopic images in avoid overfitting. A 3x3x3 convolution filter was also used in the proposed system to extract features from microscopic images. The proposed CNN-based model had a recall value of 96%, a precision value of 93%, an F1 score of 95%, and an accuracy of 94% in predicting and accurately classifying the images into clean or infected samples. Based on empirical evidence from the results of the literature consulted, the proposed model outperformed other existing AI-based techniques evaluated. If properly deployed, the model will assist physicians, medical laboratory scientists, and patients in making accurate diagnoses for Lassa fever cases, allowing the mortality rate due to the Lassa fever virus to be reduced through sound decision-making.

Keywords: artificial intelligence, ANN, blood smear, CNN, deep learning, Lassa fever

Procedia PDF Downloads 120
1034 A Theoretical Approach on Electoral Competition, Lobby Formation and Equilibrium Policy Platforms

Authors: Deepti Kohli, Meeta Keswani Mehra

Abstract:

The paper develops a theoretical model of electoral competition with purely opportunistic candidates and a uni-dimensional policy using the probability voting approach while focusing on the aspect of lobby formation to analyze the inherent complex interactions between centripetal and centrifugal forces and their effects on equilibrium policy platforms. There exist three types of agents, namely, Left-wing, Moderate and Right-wing who comprise of the total voting population. Also, it is assumed that the Left and Right agents are free to initiate a lobby of their choice. If initiated, these lobbies generate donations which in turn can be contributed to one (or both) electoral candidates in order to influence them to implement the lobby’s preferred policy. Four different lobby formation scenarios have been considered: no lobby formation, only Left, only Right and both Left and Right. The equilibrium policy platforms, amount of individual donations by agents to their respective lobbies and the contributions offered to the electoral candidates have been solved for under each of the above four cases. Since it is assumed that the agents cannot coordinate each other’s actions during the lobby formation stage, there exists a probability with which a lobby would be formed, which is also solved for in the model. The results indicate that the policy platforms of the two electoral candidates converge completely under the cases of no lobby and both (extreme) formations but diverge under the cases of only one (Left or Right) lobby formation. This is because in the case of no lobby being formed, only the centripetal forces (emerging from the election-winning aspect) are present while in the case of both extreme (Left-wing and Right-wing) lobbies being formed, centrifugal forces (emerging from the lobby formation aspect) also arise but cancel each other out, again resulting in a pure policy convergence phenomenon. In contrast, in case of only one lobby being formed, both centripetal and centrifugal forces interact strategically, leading the two electoral candidates to choose completely different policy platforms in equilibrium. Additionally, it is found that in equilibrium, while the donation by a specific agent type increases with the formation of both lobbies in comparison to when only one lobby is formed, the probability of implementation of the policy being advocated by that lobby group falls.

Keywords: electoral competition, equilibrium policy platforms, lobby formation, opportunistic candidates

Procedia PDF Downloads 334
1033 Reliability Analysis of Glass Epoxy Composite Plate under Low Velocity

Authors: Shivdayal Patel, Suhail Ahmad

Abstract:

Safety assurance and failure prediction of composite material component of an offshore structure due to low velocity impact is essential for associated risk assessment. It is important to incorporate uncertainties associated with material properties and load due to an impact. Likelihood of this hazard causing a chain of failure events plays an important role in risk assessment. The material properties of composites mostly exhibit a scatter due to their in-homogeneity and anisotropic characteristics, brittleness of the matrix and fiber and manufacturing defects. In fact, the probability of occurrence of such a scenario is due to large uncertainties arising in the system. Probabilistic finite element analysis of composite plates due to low-velocity impact is carried out considering uncertainties of material properties and initial impact velocity. Impact-induced damage of composite plate is a probabilistic phenomenon due to a wide range of uncertainties arising in material and loading behavior. A typical failure crack initiates and propagates further into the interface causing de-lamination between dissimilar plies. Since individual crack in the ply is difficult to track. The progressive damage model is implemented in the FE code by a user-defined material subroutine (VUMAT) to overcome these problems. The limit state function is accordingly established while the stresses in the lamina are such that the limit state function (g(x)>0). The Gaussian process response surface method is presently adopted to determine the probability of failure. A comparative study is also carried out for different combination of impactor masses and velocities. The sensitivity based probabilistic design optimization procedure is investigated to achieve better strength and lighter weight of composite structures. Chain of failure events due to different modes of failure is considered to estimate the consequences of failure scenario. Frequencies of occurrence of specific impact hazards yield the expected risk due to economic loss.

Keywords: composites, damage propagation, low velocity impact, probability of failure, uncertainty modeling

Procedia PDF Downloads 279
1032 Exploring the Activity Fabric of an Intelligent Environment with Hierarchical Hidden Markov Theory

Authors: Chiung-Hui Chen

Abstract:

The Internet of Things (IoT) was designed for widespread convenience. With the smart tag and the sensing network, a large quantity of dynamic information is immediately presented in the IoT. Through the internal communication and interaction, meaningful objects provide real-time services for users. Therefore, the service with appropriate decision-making has become an essential issue. Based on the science of human behavior, this study employed the environment model to record the time sequences and locations of different behaviors and adopted the probability module of the hierarchical Hidden Markov Model for the inference. The statistical analysis was conducted to achieve the following objectives: First, define user behaviors and predict the user behavior routes with the environment model to analyze user purposes. Second, construct the hierarchical Hidden Markov Model according to the logic framework, and establish the sequential intensity among behaviors to get acquainted with the use and activity fabric of the intelligent environment. Third, establish the intensity of the relation between the probability of objects’ being used and the objects. The indicator can describe the possible limitations of the mechanism. As the process is recorded in the information of the system created in this study, these data can be reused to adjust the procedure of intelligent design services.

Keywords: behavior, big data, hierarchical hidden Markov model, intelligent object

Procedia PDF Downloads 234
1031 Risk Assessment of Flood Defences by Utilising Condition Grade Based Probabilistic Approach

Authors: M. Bahari Mehrabani, Hua-Peng Chen

Abstract:

Management and maintenance of coastal defence structures during the expected life cycle have become a real challenge for decision makers and engineers. Accurate evaluation of the current condition and future performance of flood defence structures is essential for effective practical maintenance strategies on the basis of available field inspection data. Moreover, as coastal defence structures age, it becomes more challenging to implement maintenance and management plans to avoid structural failure. Therefore, condition inspection data are essential for assessing damage and forecasting deterioration of ageing flood defence structures in order to keep the structures in an acceptable condition. The inspection data for flood defence structures are often collected using discrete visual condition rating schemes. In order to evaluate future condition of the structure, a probabilistic deterioration model needs to be utilised. However, existing deterioration models may not provide a reliable prediction of performance deterioration for a long period due to uncertainties. To tackle the limitation, a time-dependent condition-based model associated with a transition probability needs to be developed on the basis of condition grade scheme for flood defences. This paper presents a probabilistic method for predicting future performance deterioration of coastal flood defence structures based on condition grading inspection data and deterioration curves estimated by expert judgement. In condition-based deterioration modelling, the main task is to estimate transition probability matrices. The deterioration process of the structure related to the transition states is modelled according to Markov chain process, and a reliability-based approach is used to estimate the probability of structural failure. Visual inspection data according to the United Kingdom Condition Assessment Manual are used to obtain the initial condition grade curve of the coastal flood defences. The initial curves then modified in order to develop transition probabilities through non-linear regression based optimisation algorithms. The Monte Carlo simulations are then used to evaluate the future performance of the structure on the basis of the estimated transition probabilities. Finally, a case study is given to demonstrate the applicability of the proposed method under no-maintenance and medium-maintenance scenarios. Results show that the proposed method can provide an effective predictive model for various situations in terms of available condition grading data. The proposed model also provides useful information on time-dependent probability of failure in coastal flood defences.

Keywords: condition grading, flood defense, performance assessment, stochastic deterioration modelling

Procedia PDF Downloads 235
1030 Implicit Transaction Costs and the Fundamental Theorems of Asset Pricing

Authors: Erindi Allaj

Abstract:

This paper studies arbitrage pricing theory in financial markets with transaction costs. We extend the existing theory to include the more realistic possibility that the price at which the investors trade is dependent on the traded volume. The investors in the market always buy at the ask and sell at the bid price. Transaction costs are composed of two terms, one is able to capture the implicit transaction costs and the other the price impact. Moreover, a new definition of a self-financing portfolio is obtained. The self-financing condition suggests that continuous trading is possible, but is restricted to predictable trading strategies which have left and right limit and finite quadratic variation. That is, predictable trading strategies of infinite variation and of finite quadratic variation are allowed in our setting. Within this framework, the existence of an equivalent probability measure is equivalent to the absence of arbitrage opportunities, so that the first fundamental theorem of asset pricing (FFTAP) holds. It is also proved that, when this probability measure is unique, any contingent claim in the market is hedgeable in an L2-sense. The price of any contingent claim is equal to the risk-neutral price. To better understand how to apply the theory proposed we provide an example with linear transaction costs.

Keywords: arbitrage pricing theory, transaction costs, fundamental theorems of arbitrage, financial markets

Procedia PDF Downloads 361
1029 Disaggregation the Daily Rainfall Dataset into Sub-Daily Resolution in the Temperate Oceanic Climate Region

Authors: Mohammad Bakhshi, Firas Al Janabi

Abstract:

High resolution rain data are very important to fulfill the input of hydrological models. Among models of high-resolution rainfall data generation, the temporal disaggregation was chosen for this study. The paper attempts to generate three different rainfall resolutions (4-hourly, hourly and 10-minutes) from daily for around 20-year record period. The process was done by DiMoN tool which is based on random cascade model and method of fragment. Differences between observed and simulated rain dataset are evaluated with variety of statistical and empirical methods: Kolmogorov-Smirnov test (K-S), usual statistics, and Exceedance probability. The tool worked well at preserving the daily rainfall values in wet days, however, the generated data are cumulated in a shorter time period and made stronger storms. It is demonstrated that the difference between generated and observed cumulative distribution function curve of 4-hourly datasets is passed the K-S test criteria while in hourly and 10-minutes datasets the P-value should be employed to prove that their differences were reasonable. The results are encouraging considering the overestimation of generated high-resolution rainfall data.

Keywords: DiMoN Tool, disaggregation, exceedance probability, Kolmogorov-Smirnov test, rainfall

Procedia PDF Downloads 202
1028 An Insite to the Probabilistic Assessment of Reserves in Conventional Reservoirs

Authors: Sai Sudarshan, Harsh Vyas, Riddhiman Sherlekar

Abstract:

The oil and gas industry has been unwilling to adopt stochastic definition of reserves. Nevertheless, Monte Carlo simulation methods have gained acceptance by engineers, geoscientists and other professionals who want to evaluate prospects or otherwise analyze problems that involve uncertainty. One of the common applications of Monte Carlo simulation is the estimation of recoverable hydrocarbon from a reservoir.Monte Carlo Simulation makes use of random samples of parameters or inputs to explore the behavior of a complex system or process. It finds application whenever one needs to make an estimate, forecast or decision where there is significant uncertainty. First, the project focuses on performing Monte-Carlo Simulation on a given data set using U. S Department of Energy’s MonteCarlo Software, which is a freeware e&p tool. Further, an algorithm for simulation has been developed for MATLAB and program performs simulation by prompting user for input distributions and parameters associated with each distribution (i.e. mean, st.dev, min., max., most likely, etc.). It also prompts user for desired probability for which reserves are to be calculated. The algorithm so developed and tested in MATLAB further finds implementation in Python where existing libraries on statistics and graph plotting have been imported to generate better outcome. With PyQt designer, codes for a simple graphical user interface have also been written. The graph so plotted is then validated with already available results from U.S DOE MonteCarlo Software.

Keywords: simulation, probability, confidence interval, sensitivity analysis

Procedia PDF Downloads 383
1027 Assortative Education and Working Arrangement among Married Couples in Indonesia

Authors: Ratu Khabiba, Qisha Quarina

Abstract:

This study aims to analyse the effect of married couples’ assortative educational attainments on the division of economic activities among themselves in the household. This study contributes to the literature on women’s participation in employment, especially among married women, to see whether the traditional values about gender roles in the household still continue to shape the employment participation among married women in Indonesia, despite increasing women’s human capital through education. This study utilizes the Indonesian National Socioeconomic Survey (SUSENAS) 2016 and estimates the results using the multinomial logit model. Our results show that compared to high-educated educational homogamy couples, educational heterogamy couples, especially hypergamy, have a higher probability of being a single-worker type. Moreover, the high-educated educational homogamy couples have the highest probability of being a dual-worker type. Thus, we found evidence that the traditional values of gender role segregation seem to still play a significant role in married women’s employment decision in Indonesia, particularly for couples’ with educational heterogamy and low-educated educational homogamy couples.

Keywords: assortative education, dual-worker, hypergamy, homogamy, traditional values, women labor participation

Procedia PDF Downloads 120
1026 A Hybrid Based Algorithm to Solve the Multi-objective Minimum Spanning Tree Problem

Authors: Boumesbah Asma, Chergui Mohamed El-amine

Abstract:

Since it has been shown that the multi-objective minimum spanning tree problem (MOST) is NP-hard even with two criteria, we propose in this study a hybrid NSGA-II algorithm with an exact mutation operator, which is only used with low probability, to find an approximation to the Pareto front of the problem. In a connected graph G, a spanning tree T of G being a connected and cycle-free graph, if k edges of G\T are added to T, we obtain a partial graph H of G inducing a reduced size multi-objective spanning tree problem compared to the initial one. With a weak probability for the mutation operator, an exact method for solving the reduced MOST problem considering the graph H is then used to give birth to several mutated solutions from a spanning tree T. Then, the selection operator of NSGA-II is activated to obtain the Pareto front approximation. Finally, an adaptation of the VNS metaheuristic is called for further improvements on this front. It allows finding good individuals to counterbalance the diversification and the intensification during the optimization search process. Experimental comparison studies with an exact method show promising results and indicate that the proposed algorithm is efficient.

Keywords: minimum spanning tree, multiple objective linear optimization, combinatorial optimization, non-sorting genetic algorithm, variable neighborhood search

Procedia PDF Downloads 92
1025 Energy Detection Based Sensing and Primary User Traffic Classification for Cognitive Radio

Authors: Urvee B. Trivedi, U. D. Dalal

Abstract:

As wireless communication services grow quickly; the seriousness of spectrum utilization has been on the rise gradually. An emerging technology, cognitive radio has come out to solve today’s spectrum scarcity problem. To support the spectrum reuse functionality, secondary users are required to sense the radio frequency environment, and once the primary users are found to be active, the secondary users are required to vacate the channel within a certain amount of time. Therefore, spectrum sensing is of significant importance. Once sensing is done, different prediction rules apply to classify the traffic pattern of primary user. Primary user follows two types of traffic patterns: periodic and stochastic ON-OFF patterns. A cognitive radio can learn the patterns in different channels over time. Two types of classification methods are discussed in this paper, by considering edge detection and by using autocorrelation function. Edge detection method has a high accuracy but it cannot tolerate sensing errors. Autocorrelation-based classification is applicable in the real environment as it can tolerate some amount of sensing errors.

Keywords: cognitive radio (CR), probability of detection (PD), probability of false alarm (PF), primary user (PU), secondary user (SU), fast Fourier transform (FFT), signal to noise ratio (SNR)

Procedia PDF Downloads 345
1024 Occupational Diseases in the Automotive Industry in Czechia

Authors: J. Jarolímek, P. Urban, P. Pavlínek, D. Dzúrová

Abstract:

The industry constitutes a dominant economic sector in Czechia. The automotive industry represents the most important industrial sector in terms of gross value added and the number of employees. The objective of this study was to analyse the occurrence of occupational diseases (OD) in the automotive industry in Czechia during the 2001-2014 period. Whereas the occurrence of OD in other sectors has generally been decreasing, it has been increasing in the automotive industry, including growing spatial discrepancies. Data on OD cases were retrieved from the National Registry of Occupational Diseases. Further, we conducted a survey in automotive companies with a focus on occupational health services and positions of the companies in global production networks (GPNs). An analysis of OD distribution in the automotive industry was performed (age, gender, company size and its role in GPNs, regional distribution of studied companies, and regional unemployment rate), and was accompanied by an assessment of the quality and range of occupational health services. The employees older than 40 years had nearly 2.5 times higher probability of OD occurrence compared with employees younger than 40 years (OR 2.41; 95% CI: 2.05-2.85). The OD occurrence probability was 3 times higher for women than for men (OR 3.01; 95 % CI: 2.55-3.55). The OD incidence rate was increasing with the size of the company. An association between the OD incidence and the unemployment rate was not confirmed.

Keywords: occupational diseases, automotive industry, health geography, unemployment

Procedia PDF Downloads 251
1023 The 10-year Risk of Major Osteoporotic and Hip Fractures Among Indonesian People Living with HIV

Authors: Iqbal Pramukti, Mamat Lukman, Hasniatisari Harun, Kusman Ibrahim

Abstract:

Introduction: People living with HIV had a higher risk of osteoporotic fracture than the general population. The purpose of this study was to predict the 10-year risk of fracture among people living with HIV (PLWH) using FRAX™ and to identify characteristics related to the fracture risk. Methodology: This study consisted of 75 subjects. The ten-year probability of major osteoporotic fractures (MOF) and hip fractures was assessed using the FRAX™ algorithm. A cross-tabulation was used to identify the participant’s characteristics related to fracture risk. Results: The overall mean 10-year probability of fracture was 2.4% (1.7) for MOF and 0.4% (0.3) for hip fractures. For MOF score, participants with parents’ hip fracture history, smoking behavior and glucocorticoid use showed a higher MOF score than those who were not (3.1 vs. 2.5; 4.6 vs 2.5; and 3.4 vs 2.5, respectively). For HF score, participants with parents’ hip fracture history, smoking behavior and glucocorticoid use also showed a higher HF score than those who were not (0.5 vs. 0.3; 0.8 vs. 0.3; and 0.5 vs. 0.3, respectively). Conclusions: The 10-year risk of fracture was higher among PLWH with several factors, including the parent’s hip. Fracture history, smoking behavior and glucocorticoid used. Further analysis on determining factors using multivariate regression analysis with a larger sample size is required to confirm the factors associated with the high fracture risk.

Keywords: HIV, PLWH, osteoporotic fractures, hip fractures, 10-year risk of fracture, FRAX

Procedia PDF Downloads 49