Search results for: weather classification
609 Solar Power Generation in a Mining Town: A Case Study for Australia
Authors: Ryan Chalk, G. M. Shafiullah
Abstract:
Climate change is a pertinent issue facing governments and societies around the world. The industrial revolution has resulted in a steady increase in the average global temperature. The mining and energy production industries have been significant contributors to this change prompting government to intervene by promoting low emission technology within these sectors. This paper initially reviews the energy problem in Australia and the mining sector with a focus on the energy requirements and production methods utilised in Western Australia (WA). Renewable energy in the form of utility-scale solar photovoltaics (PV) provides a solution to these problems by providing emission-free energy which can be used to supplement the existing natural gas turbines in operation at the proposed site. This research presents a custom renewable solution for the mining site considering the specific township network, local weather conditions, and seasonal load profiles. A summary of the required PV output is presented to supply slightly over 50% of the towns power requirements during the peak (summer) period, resulting in close to full coverage in the trench (winter) period. Dig Silent Power Factory Software has been used to simulate the characteristics of the existing infrastructure and produces results of integrating PV. Large scale PV penetration in the network introduce technical challenges, that includes; voltage deviation, increased harmonic distortion, increased available fault current and power factor. Results also show that cloud cover has a dramatic and unpredictable effect on the output of a PV system. The preliminary analyses conclude that mitigation strategies are needed to overcome voltage deviations, unacceptable levels of harmonics, excessive fault current and low power factor. Mitigation strategies are proposed to control these issues predominantly through the use of high quality, made for purpose inverters. Results show that use of inverters with harmonic filtering reduces the level of harmonic injections to an acceptable level according to Australian standards. Furthermore, the configuration of inverters to supply active and reactive power assist in mitigating low power factor problems. Use of FACTS devices; SVC and STATCOM also reduces the harmonics and improve the power factor of the network, and finally, energy storage helps to smooth the power supply.Keywords: climate change, mitigation strategies, photovoltaic (PV), power quality
Procedia PDF Downloads 166608 Contribution of Spatial Teledetection to the Geological Mapping of the Imiter Buttonhole: Application to the Mineralized Structures of the Principal Corps B3 (CPB3) of the Imiter Mine (Anti-atlas, Morocco)
Authors: Bouayachi Ali, Alikouss Saida, Baroudi Zouhir, Zerhouni Youssef, Zouhair Mohammed, El Idrissi Assia, Essalhi Mourad
Abstract:
The world-class Imiter silver deposit is located on the northern flank of the Precambrian Imiter buttonhole. This deposit is formed by epithermal veins hosted in the sandstone-pelite formations of the lower complex and in the basic conglomerates of the upper complex, these veins are controlled by a regional scale fault cluster, oriented N70°E to N90°E. The present work on the contribution of remote sensing on the geological mapping of the Imiter buttonhole and application to the mineralized structures of the Principal Corps B3. Mapping on satellite images is a very important tool in mineral prospecting. It allows the localization of the zones of interest in order to orientate the field missions by helping the localization of the major structures which facilitates the interpretation, the programming and the orientation of the mining works. The predictive map also allows for the correction of field mapping work, especially the direction and dimensions of structures such as dykes, corridors or scrapings. The use of a series of processing such as SAM, PCA, MNF and unsupervised and supervised classification on a Landsat 8 satellite image of the study area allowed us to highlight the main facies of the Imite area. To improve the exploration research, we used another processing that allows to realize a spatial distribution of the alteration mineral indices, and the application of several filters on the different bands to have lineament maps.Keywords: principal corps B3, teledetection, Landsat 8, Imiter II, silver mineralization, lineaments
Procedia PDF Downloads 95607 Incorporating Lexical-Semantic Knowledge into Convolutional Neural Network Framework for Pediatric Disease Diagnosis
Authors: Xiaocong Liu, Huazhen Wang, Ting He, Xiaozheng Li, Weihan Zhang, Jian Chen
Abstract:
The utilization of electronic medical record (EMR) data to establish the disease diagnosis model has become an important research content of biomedical informatics. Deep learning can automatically extract features from the massive data, which brings about breakthroughs in the study of EMR data. The challenge is that deep learning lacks semantic knowledge, which leads to impracticability in medical science. This research proposes a method of incorporating lexical-semantic knowledge from abundant entities into a convolutional neural network (CNN) framework for pediatric disease diagnosis. Firstly, medical terms are vectorized into Lexical Semantic Vectors (LSV), which are concatenated with the embedded word vectors of word2vec to enrich the feature representation. Secondly, the semantic distribution of medical terms serves as Semantic Decision Guide (SDG) for the optimization of deep learning models. The study evaluate the performance of LSV-SDG-CNN model on four kinds of Chinese EMR datasets. Additionally, CNN, LSV-CNN, and SDG-CNN are designed as baseline models for comparison. The experimental results show that LSV-SDG-CNN model outperforms baseline models on four kinds of Chinese EMR datasets. The best configuration of the model yielded an F1 score of 86.20%. The results clearly demonstrate that CNN has been effectively guided and optimized by lexical-semantic knowledge, and LSV-SDG-CNN model improves the disease classification accuracy with a clear margin.Keywords: convolutional neural network, electronic medical record, feature representation, lexical semantics, semantic decision
Procedia PDF Downloads 126606 Network Conditioning and Transfer Learning for Peripheral Nerve Segmentation in Ultrasound Images
Authors: Harold Mauricio Díaz-Vargas, Cristian Alfonso Jimenez-Castaño, David Augusto Cárdenas-Peña, Guillermo Alberto Ortiz-Gómez, Alvaro Angel Orozco-Gutierrez
Abstract:
Precise identification of the nerves is a crucial task performed by anesthesiologists for an effective Peripheral Nerve Blocking (PNB). Now, anesthesiologists use ultrasound imaging equipment to guide the PNB and detect nervous structures. However, visual identification of the nerves from ultrasound images is difficult, even for trained specialists, due to artifacts and low contrast. The recent advances in deep learning make neural networks a potential tool for accurate nerve segmentation systems, so addressing the above issues from raw data. The most widely spread U-Net network yields pixel-by-pixel segmentation by encoding the input image and decoding the attained feature vector into a semantic image. This work proposes a conditioning approach and encoder pre-training to enhance the nerve segmentation of traditional U-Nets. Conditioning is achieved by the one-hot encoding of the kind of target nerve a the network input, while the pre-training considers five well-known deep networks for image classification. The proposed approach is tested in a collection of 619 US images, where the best C-UNet architecture yields an 81% Dice coefficient, outperforming the 74% of the best traditional U-Net. Results prove that pre-trained models with the conditional approach outperform their equivalent baseline by supporting learning new features and enriching the discriminant capability of the tested networks.Keywords: nerve segmentation, U-Net, deep learning, ultrasound imaging, peripheral nerve blocking
Procedia PDF Downloads 106605 A Strategic Approach for Promoting Renewable Energy Technologies in Developing Countries
Authors: Hanee Ryu
Abstract:
The supporting policies for renewable energy have been designed to deploy renewable energy technology targeting domestic market. The government encourages market creation through obligations such as FIT or RPS on an energy supplier. With these policy measures, the securing vast market needs to induce technology development. Furthermore, it is crucial that ensuring developing market can make the environment nurture the renewable energy industry. Overseas expansion to countries being in demand is essential under immature domestic market. Extending its business abroad can make the domestic company get the knowledge through learning-by-doing. Besides, operation in the countries to be rich in renewable resources such as weather conditions helps to develop proven track record required for verifying technologies. This paper figures out the factor to hamper the global market entry and build up the strategies to overcome difficulties. Survey conducted renewable energy company having overseas experiences at least once. Based on the survey we check the obstacle against exporting home goods and services. As a result, securing funds is salient fact to proceed to business. It is difficult that only private bank or investment agencies participate in the project under uncertainty which renewable energy development project bears inherently. These uncertainties need public fund such as ODA to encourage private sectors to start a business. Furthermore, international organizations such as IRENA or multilateral development banks as WBG play a role to guarantee the investment including risk insurance against uncertainty. It can also manage excavation business cooperating with developing countries and supplement inadequate government funding involved. With survey results strategies to obtain the order, the international organization places are categorized according to the type of getting a contract. This paper suggests 3 types approaching to the international organization project (going through international competitive bidding, using ODA and project financing) and specifies the role of government to support the domestic firms with running out of funds. Under renewable energy industry environment where hard to being created as a spontaneous market, government policy approach needs to motivate the actors to get into the business. It is one of the good strategies that countries with the low demand of renewable energies participate in the project international agencies order in the developing countries having abundant resources. This provides crucial guidance for the formulation of renewable energy development policy and planning with consideration of business opportunities and funding.Keywords: exporting strategies, multilateral development banks, promoting in developing countries, renewable energy technologies
Procedia PDF Downloads 518604 Provisional Settlements and Urban Resilience: The Transformation of Refugee Camps into Cities
Authors: Hind Alshoubaki
Abstract:
The world is now confronting a widespread urban phenomenon: refugee camps, which have mostly been established in ‘rushing mode,’ pointing toward affording temporary settlements for refugees that provide them with minimum levels of safety, security and protection from harsh weather conditions within a very short time period. In fact, those emergency settlements are transforming into permanent ones since time is a decisive factor in terms of construction and camps’ age. These play an essential role in transforming their temporary character into a permanent one that generates deep modifications to the city’s territorial structure, shaping a new identity and creating a contentious change in the city’s form and history. To achieve a better understanding for the transformation of refugee camps, this study is based on a mixed-methods approach: the qualitative approach explores different refugee camps and analyzes their transformation process in terms of population density and the changes to the city’s territorial structure and urban features. The quantitative approach employs a statistical regression analysis as a reliable prediction of refugees’ satisfaction within the Zaatari camp in order to predict its future transformation. Obviously, refugees’ perceptions of their current conditions will affect their satisfaction, which plays an essential role in transforming emergency settlements into permanent cities over time. The test basically discusses five main themes: the access and readiness of schools, the dispersion of clinics and shopping centers; the camp infrastructure, the construction materials, and the street networks. The statistical analysis showed that Syrian refugees were not satisfied with their current conditions inside the Zaatari refugee camp and that they had started implementing changes according to their needs, desires, and aspirations because they are conscious about the fact of their prolonged stay in this settlement. Also, the case study analyses showed that neglecting the fact that construction takes time leads settlements being created with below-minimum standards that are deteriorating and creating ‘slums,’ which lead to increased crime rates, suicide, drug use and diseases and deeply affect cities’ urban tissues. For this reason, recognizing the ‘temporary-eternal’ character of those settlements is the fundamental concept to consider refugee camps from the beginning as definite permanent cities. This is the key factor to minimize the trauma of displacement on both refugees and the hosting countries. Since providing emergency settlements within a short time period does not mean using temporary materials, having a provisional character or creating ‘makeshift cities.’Keywords: refugee, refugee camp, temporary, Zaatari
Procedia PDF Downloads 133603 Cross-Cultural Adaptation and Validation of the Child Engagement in Daily Life in Greek
Authors: Rigas Dimakopoulos, Marianna Papadopoulou, Roser Pons
Abstract:
Background: Participation in family, recreational activities and self-care is an integral part of health. It is also the main outcome of rehabilitation services for children and adolescents with motor disabilities. There are currently no tools in Greek to assess participation in young children. Purpose: To culturally adapt and validate the Greek version of the Child Engagement in Daily Living (CEDL). Method: The CEDL was cross-culturally translated into Greek using forward-backward translation, review by the expert committee, pretest application and final review. Internal consistency was evaluated using the Cronbach alpha and test-retest reliability using the intra-class correlation coefficient (ICC). Parents of children aged 18 months to 5 years and with motor disabilities were recruited. Participants completed the CEDL and the children’s gross motor function was classified using the Gross Motor Function Classification System (GMFCS). Results: Eighty-three children were included, GMFCS I-V. Mean ± standard deviation of the CEDL domains “frequency of participation” “enjoyment of participation” and “self-care” were 58.4±14.0, 3.8±1.0 and 49.9±24, respectively. Internal consistency of all domains was high; Cronbach alpha for “frequency of participation” was 0.83, for “enjoyment of participation” was 0.76 and for “self-care” was 0.92. Test-retest reliability (ICC) was excellent for the “self-care” (0.95) and good for “frequency of participation” and “enjoyment of participation” domains (0.90 and 0.88, respectively). Conclusion: The Greek CEDL has good reliability. It can be used to evaluate participation in Greek young children with motor disabilities GMFCS levels I-V.Keywords: participation, child, disabilities, child engagement in daily living
Procedia PDF Downloads 175602 Design, Synthesis and Evaluation of 4-(Phenylsulfonamido)Benzamide Derivatives as Selective Butyrylcholinesterase Inhibitors
Authors: Sushil Kumar Singh, Ashok Kumar, Ankit Ganeshpurkar, Ravi Singh, Devendra Kumar
Abstract:
In spectrum of neurodegenerative diseases, Alzheimer’s disease (AD) is characterized by the presence of amyloid β plaques and neurofibrillary tangles in the brain. It results in cognitive and memory impairment due to loss of cholinergic neurons, which is considered to be one of the contributing factors. Donepezil, an acetylcholinesterase (AChE) inhibitor which also inhibits butyrylcholinesterase (BuChE) and improves the memory and brain’s cognitive functions, is the most successful and prescribed drug to treat the symptoms of AD. The present work is based on designing of the selective BuChE inhibitors using computational techniques. In this work, machine learning models were trained using classification algorithms followed by screening of diverse chemical library of compounds. The various molecular modelling and simulation techniques were used to obtain the virtual hits. The amide derivatives of 4-(phenylsulfonamido) benzoic acid were synthesized and characterized using 1H & 13C NMR, FTIR and mass spectrometry. The enzyme inhibition assays were performed on equine plasma BuChE and electric eel’s AChE by method developed by Ellman et al. Compounds 31, 34, 37, 42, 49, 52 and 54 were found to be active against equine BuChE. N-(2-chlorophenyl)-4-(phenylsulfonamido)benzamide and N-(2-bromophenyl)-4-(phenylsulfonamido)benzamide (compounds 34 and 37) displayed IC50 of 61.32 ± 7.21 and 42.64 ± 2.17 nM against equine plasma BuChE. Ortho-substituted derivatives were more active against BuChE. Further, the ortho-halogen and ortho-alkyl substituted derivatives were found to be most active among all with minimal AChE inhibition. The compounds were selective toward BuChE.Keywords: Alzheimer disease, butyrylcholinesterase, machine learning, sulfonamides
Procedia PDF Downloads 139601 The Role of Bone Marrow Fatty Acids in the Early Stage of Post-Menopausal Osteoporosis
Authors: Sizhu Wang, Cuisong Tang, Lin Zhang, Guangyu Tang
Abstract:
Objective: We aimed to detect the composition of bone marrow fatty acids early after ovariectomized (OVX) surgery and explore the potential mechanism. Methods: Thirty-two female Sprague-Dawley (SD) rats (12 weeks) were randomly divided into OVX group and Sham group (N=16/group), and received ovariectomy or sham surgery respectively. After 3 and 28 days, eight rats in each group were sacrificed to detect the composition of bone marrow fatty acids by gas chromatography–mass spectrometry (GC–MS) and evaluate the trabecular bone microarchitecture by micro-CT. Significant different fatty acids in the early stage of post-menopausal osteoporosis were selected by OPLS-DA and t test. Then selected fatty acids were further studied in the process of osteogenic differentiation through RT-PCR and Alizarin Red S staining. Results: An apparent sample clustering and group separation were observed between OVX group and sham group three days after surgery, which suggested the role of bone marrow fatty acids in the early stage of postmenopausal osteoporosis. Specifically, myristate, palmitoleate and arachidonate were found to play an important role in classification between OVX group and sham group. We further investigated the effect of palmitoleate and arachidonate on osteogenic differentiation and found that palmitoleate promoted the osteogenic differentiation of MC3T3-E1 cells while arachidonate inhibited this process. Conclusion: Profound bone marrow fatty acids changes have taken place in the early stage of post-menopausal osteoporosis. Bone marrow fatty acids may begin to affect osteogenic differentiation shortly after deficiency of estrogen.Keywords: bone marrow fatty acids, GC-MS, osteoblast, osteoporosis, post-menopausal
Procedia PDF Downloads 106600 Web and Smart Phone-based Platform Combining Artificial Intelligence and Satellite Remote Sensing Data to Geoenable Villages for Crop Health Monitoring
Authors: Siddhartha Khare, Nitish Kr Boro, Omm Animesh Mishra
Abstract:
Recent food price hikes may signal the end of an era of predictable global grain crop plenty due to climate change, population expansion, and dietary changes. Food consumption will treble in 20 years, requiring enormous production expenditures. Climate and the atmosphere changed owing to rainfall and seasonal cycles in the past decade. India's tropical agricultural relies on evapotranspiration and monsoons. In places with limited resources, the global environmental change affects agricultural productivity and farmers' capacity to adjust to changing moisture patterns. Motivated by these difficulties, satellite remote sensing might be combined with near-surface imaging data (smartphones, UAVs, and PhenoCams) to enable phenological monitoring and fast evaluations of field-level consequences of extreme weather events on smallholder agriculture output. To accomplish this technique, we must digitally map all communities agricultural boundaries and crop kinds. With the improvement of satellite remote sensing technologies, a geo-referenced database may be created for rural Indian agriculture fields. Using AI, we can design digital agricultural solutions for individual farms. Main objective is to Geo-enable each farm along with their seasonal crop information by combining Artificial Intelligence (AI) with satellite and near-surface data and then prepare long term crop monitoring through in-depth field analysis and scanning of fields with satellite derived vegetation indices. We developed an AI based algorithm to understand the timelapse based growth of vegetation using PhenoCam or Smartphone based images. We developed an android platform where user can collect images of their fields based on the android application. These images will be sent to our local server, and then further AI based processing will be done at our server. We are creating digital boundaries of individual farms and connecting these farms with our smart phone application to collect information about farmers and their crops in each season. We are extracting satellite-based information for each farm from Google earth engine APIs and merging this data with our data of tested crops from our app according to their farm’s locations and create a database which will provide the data of quality of crops from their location.Keywords: artificial intelligence, satellite remote sensing, crop monitoring, android and web application
Procedia PDF Downloads 100599 Spatial Comparative Analysis on Travels of Mackay in Taiwan
Authors: Shao-Chi Chien, Ying-Ju Chen, Chiao-Yu Tseng, Wan-Ting Lee, Yi-Wen Cheng
Abstract:
Dr. George Leslie Mackay arrived at Takoukang (now Port of Kaohsiung) in Taiwan on December 30, 1871. When Dr. Mackay dedicated at Taiwan for 30 years, he has been an important factor in such areas as preaching, medical and engaged in education. Many researchers have thoroughly studied Dr. Mackay's travels to understand his impact on the state of education, medicine and religion in Taiwan. In the 30-year period of hard work, Dr. Mackay's made outstanding influence on the church in Taiwan. Therefore, the present study will be the mission of the establishment of hospitals, schools, churches which preaching, education, and medicine whether there are related the number of comparisons to explore. According to The Diaries of George Leslie Mackay, our research uses the Geographic Information System (GIS) to map the location of Dr. Mackay's travel in Taiwan and compares it with today's local churches, hospitals, and schools whether there are related the number of comparisons to explore. Therefore, our research focuses on the whole of Taiwan, divided into missionary, medical and education as the main content of the three major parts. Additionally, use of point layer, the surface layer of the property table to establish, in-depth mission of Dr. Mackay's development in Taiwan and Today's comparison. The results will be based on the classification of three different colors pictures that the distance of Mackay's contribution of preaching, medicine, and education. Our research will be compared with the current churches, hospitals, schools and the past churches, hospitals, schools. The results of the present study will provide a reference for future research.Keywords: George Leslie Mackay, geographic information system, spatial distribution, color categories analysis
Procedia PDF Downloads 397598 Groundwater Quality and Its Suitability for Agricultural Use in the Jeloula Basin, Tunisia
Authors: Intissar Farid
Abstract:
Groundwater quality assessment is crucial for sustainable water use, especially in semi-arid regions like the Jeloula basin in Tunisia, where groundwater is essential for domestic and agricultural needs. The present research aims to characterize the suitability of groundwater for irrigational purposes by considering various parameters: total salt concentration as measured by Electrical Conductivity EC, relative proportions of Na⁺ as expressed by %Na and SAR, Kelly’s ratio, Permeability Index, Magnesium hazard and Residual Sodium chloride. Chemical data indicate that the percent sodium (%Na) in the study area ranged from 26.3 to 45.3%. According to the Wilcox diagram, the quality classification of irrigation water suggests that analyzed groundwaters are suitable for irrigation purposes. The SAR values vary between 2.1 and 5. Most of the groundwater samples plot in the Richards’C3S1 water class and indicate little danger from sodium content to soil and plant growth. The Kelly’s ratio of the analyzed samples ranged from 0.3 to 0.8. These values indicate that the waters are fit for agricultural purposes. Magnesium hazard (MH) values range from 27.5 to 52.6, with an average of 38.9 in the analyzed waters. Hence, the Mg²⁺ content of the groundwater from the shallow aquifer cannot cause any problem to the soil permeability. Permeability index (PI) values computed for the area ranged from 33.6 to 52.7%. The above result, therefore, suggests that most of the water samples fall within class I of the Doneen chart and can be categorized as good irrigation water. The groundwaters collected from the Jeloula shallow aquifer were found to be within the safe limits and thus suitable for irrigation purposes.Keywords: Kelly's ratio, magnesium hazard, permeability index, residual sodium chloride
Procedia PDF Downloads 26597 Specific Earthquake Ground Motion Levels That Would Affect Medium-To-High Rise Buildings
Authors: Rhommel Grutas, Ishmael Narag, Harley Lacbawan
Abstract:
Construction of high-rise buildings is a means to address the increasing population in Metro Manila, Philippines. The existence of the Valley Fault System within the metropolis and other nearby active faults poses threats to a densely populated city. The distant, shallow and large magnitude earthquakes have the potential to generate slow and long-period vibrations that would affect medium-to-high rise buildings. Heavy damage and building collapse are consequences of prolonged shaking of the structure. If the ground and the building have almost the same period, there would be a resonance effect which would cause the prolonged shaking of the building. Microzoning the long-period ground response would aid in the seismic design of medium to high-rise structures. The shear-wave velocity structure of the subsurface is an important parameter in order to evaluate ground response. Borehole drilling is one of the conventional methods of determining shear-wave velocity structure however, it is an expensive approach. As an alternative geophysical exploration, microtremor array measurements can be used to infer the structure of the subsurface. Microtremor array measurement system was used to survey fifty sites around Metro Manila including some municipalities of Rizal and Cavite. Measurements were carried out during the day under good weather conditions. The team was composed of six persons for the deployment and simultaneous recording of the microtremor array sensors. The instruments were laid down on the ground away from sewage systems and leveled using the adjustment legs and bubble level. A total of four sensors were deployed for each site, three at the vertices of an equilateral triangle with one sensor at the centre. The circular arrays were set up with a maximum side length of approximately four kilometers and the shortest side length for the smallest array is approximately at 700 meters. Each recording lasted twenty to sixty minutes. From the recorded data, f-k analysis was applied to obtain phase velocity curves. Inversion technique is applied to construct the shear-wave velocity structure. This project provided a microzonation map of the metropolis and a profile showing the long-period response of the deep sedimentary basin underlying Metro Manila which would be suitable for local administrators in their land use planning and earthquake resistant design of medium to high-rise buildings.Keywords: earthquake, ground motion, microtremor, seismic microzonation
Procedia PDF Downloads 468596 Land Cover, Land Surface Temperature, and Urban Heat Island Effects in Tropical Sub Saharan City of Accra
Authors: Eric Mensah
Abstract:
The effects of rapid urbanisation of tropical sub-Saharan developing cities on local and global climate are of great concern due to the negative impacts of Urban Heat Island (UHI) effects. The importance of urban parks, vegetative cover and forest reserves in these tropical cities have been undervalued with a rapid degradation and loss of these vegetative covers to urban developments which continue to cause an increase in daily mean temperatures and changes to local climatic conditions. Using Landsat data of the same months and period intervals, the spatial variations of land cover changes, temperature, and vegetation were examined to determine how vegetation improves local temperature and the effects of urbanisation on daily mean temperatures over the past 12 years. The remote sensing techniques of maximum likelihood supervised classification, land surface temperature retrieval technique, and normalised differential vegetation index techniques were used to analyse and create the land use land cover (LULC), land surface temperature (LST), and vegetation and non-vegetation cover maps respectively. Results from the study showed an increase in daily mean temperature by 0.80 °C as a result of rapid increase in urban area by 46.13 sq. km and loss of vegetative cover by 46.24 sq. km between 2005 and 2017. The LST map also shows the existence of UHI within the urban areas of Accra, the potential mitigating effects offered by the existence of forest and vegetative cover as demonstrated by the existence of cool islands around the Achimota ecological forest and University of Ghana botanical gardens areas.Keywords: land surface temperature, climate, remote sensing, urbanisation
Procedia PDF Downloads 320595 The Importance of Visual Communication in Artificial Intelligence
Authors: Manjitsingh Rajput
Abstract:
Visual communication plays an important role in artificial intelligence (AI) because it enables machines to understand and interpret visual information, similar to how humans do. This abstract explores the importance of visual communication in AI and emphasizes the importance of various applications such as computer vision, object emphasis recognition, image classification and autonomous systems. In going deeper, with deep learning techniques and neural networks that modify visual understanding, In addition to AI programming, the abstract discusses challenges facing visual interfaces for AI, such as data scarcity, domain optimization, and interpretability. Visual communication and other approaches, such as natural language processing and speech recognition, have also been explored. Overall, this abstract highlights the critical role that visual communication plays in advancing AI capabilities and enabling machines to perceive and understand the world around them. The abstract also explores the integration of visual communication with other modalities like natural language processing and speech recognition, emphasizing the critical role of visual communication in AI capabilities. This methodology explores the importance of visual communication in AI development and implementation, highlighting its potential to enhance the effectiveness and accessibility of AI systems. It provides a comprehensive approach to integrating visual elements into AI systems, making them more user-friendly and efficient. In conclusion, Visual communication is crucial in AI systems for object recognition, facial analysis, and augmented reality, but challenges like data quality, interpretability, and ethics must be addressed. Visual communication enhances user experience, decision-making, accessibility, and collaboration. Developers can integrate visual elements for efficient and accessible AI systems.Keywords: visual communication AI, computer vision, visual aid in communication, essence of visual communication.
Procedia PDF Downloads 95594 Crash and Injury Characteristics of Riders in Motorcycle-Passenger Vehicle Crashes
Authors: Z. A. Ahmad Noor Syukri, A. J. Nawal Aswan, S. V. Wong
Abstract:
The motorcycle has become one of the most common type of vehicles used on the road, particularly in the Asia region, including Malaysia, due to its size-convenience and affordable price. This study focuses only on crashes involving motorcycles with passenger cars consisting 43 real world crashes obtained from in-depth crash investigation process from June 2016 till July 2017. The study collected and analyzed vehicle and site parameters obtained during crash investigation and injury information acquired from the patient-treating hospital. The investigation team, consisting of two personnel, is stationed at the Emergency Department of the treatment facility, and was dispatched to the crash scene once receiving notification of the related crashes. The injury information retrieved was coded according to the level of severity using the Abbreviated Injury Scale (AIS) and classified into different body regions. The data revealed that weekend crashes were significantly higher for the night time period and the crash occurrence was the highest during morning hours (commuting to work period) for weekdays. Bad weather conditions play a minimal effect towards the occurrence of motorcycle – passenger vehicle crashes and nearly 90% involved motorcycles with single riders. Riders up to 25 years old are heavily involved in crashes with passenger vehicles (60%), followed by 26-55 year age group with 35%. Male riders were dominant in each of the age segments. The majority of the crashes involved side impacts, followed by rear impacts and cars outnumbered the rest of the passenger vehicle types in terms of crash involvement with motorcycles. The investigation data also revealed that passenger vehicles were the most at-fault counterpart (62%) when involved in crashes with motorcycles and most of the crashes involved situations whereby both of the vehicles are travelling in the same direction and one of the vehicles is in a turning maneuver. More than 80% of the involved motorcycle riders had sustained yellow severity level during triage process. The study also found that nearly 30% of the riders sustained injuries to the lower extremities, while MAIS level 3 injuries were recorded for all body regions except for thorax region. The result showed that crashes in which the motorcycles were found to be at fault were more likely to occur during night and raining conditions. These types of crashes were also found to be more likely to involve other types of passenger vehicles rather than cars and possess higher likelihood in resulting higher ISS (>6) value to the involved rider. To reduce motorcycle fatalities, it first has to understand the characteristics concerned and focus may be given on crashes involving passenger vehicles as the most dominant crash partner on Malaysian roads.Keywords: motorcycle crash, passenger vehicle, in-depth crash investigation, injury mechanism
Procedia PDF Downloads 322593 Classification of Regional Innovation Types and Region-Based Innovation Policies
Authors: Seongho Han, Dongkwan Kim
Abstract:
The focus of regional innovation policies is shifting from a central government to local governments. The central government demands that regions enforce autonomous and responsible regional innovation policies and that regional governments seek for innovation policies fit for regional characteristics. However, the central government and local governments have not arrived yet at a conclusion on what innovation policies are appropriate for regional circumstances. In particular, even if each local government is trying to find regional innovation strategies that are based on the needs of a region, its innovation strategies turn out to be similar with those of other regions. This leads to a consequence that is inefficient not only at a national level, but also at a regional level. Existing researches on regional innovation types point out that there are remarkable differences in the types or characteristics of innovation among the regions of a nation. In addition they imply that there would be no expected innovation output in cases in which policies are enforced with ignoring such differences. This means that it is undesirable to enforce regional innovation policies under a single standard. This research, given this problem, aims to find out the characteristics and differences in innovation types among the regions in Korea and suggests appropriate policy implications by classifying such characteristics and differences. This research, given these objectives, classified regions in consideration of the various indicators that comprise the innovation suggested by existing related researches and illustrated policies based on such characteristics and differences. This research used recent data, mainly from 2012, and as a methodology, clustering analysis based on multiple factor analysis was applied. Supplementary researches on dynamically analyzing stability in regional innovation types, establishing systematic indicators based on the regional innovation theory, and developing additional indicators are necessary in the future.Keywords: regional innovation policy, regional innovation type, region-based innovation, multiple factor analysis, clustering analysis
Procedia PDF Downloads 475592 Prevention of Corruption in Public Purchases
Authors: Anatoly Krivinsh
Abstract:
The results of dissertation research "Preventing and combating corruption in public procurement" are presented in this publication. The study was conducted 2011 till 2013 in a Member State of the European Union, in the Republic of Latvia. Goal of the thesis is to explore corruption prevention and combating issues in public procurement sphere, to identify the prevalence rates, determinants and contributing factors and prevention opportunities in Latvia. In the first chapter the author analyses theoretical aspects of understanding corruption in public procurement, with particular emphasis on corruption definition problem, its nature, causes and consequences. A separate section is dedicated to the public procurement concept, mechanism and legal framework. In the first part of this work the author presents cognitive methodology of corruption in public procurement field, based on which the author has carried out an analysis of corruption situation in public procurement in Republic of Latvia. In the second chapter of the thesis, the author analyzes the problem of corruption in public procurement, including its historical aspects, typology and classification of corruption subjects involved, corruption risk elements in public procurement and their identification. During the development of the second chapter author's practical experience in public procurements was widely used. The third and fourth chapter deals with issues related to the prevention and combating corruption in public procurement, namely the operation of the concept, principles, methods and techniques, subjects in Republic of Latvia, as well as an analysis of foreign experience in preventing and combating corruption. The fifth chapter is devoted to the corruption prevention and combating perspectives and their assessment. In this chapter the author has made the evaluation of corruption prevention and combating measures efficiency in Republic of Latvia, assessment of anti-corruption legislation development stage in public procurement field in Latvia.Keywords: prevention of corruption, public purchases, good governance, human rights
Procedia PDF Downloads 332591 Cirrhosis Mortality Prediction as Classification using Frequent Subgraph Mining
Authors: Abdolghani Ebrahimi, Diego Klabjan, Chenxi Ge, Daniela Ladner, Parker Stride
Abstract:
In this work, we use machine learning and novel data analysis techniques to predict the one-year mortality of cirrhotic patients. Data from 2,322 patients with liver cirrhosis are collected at a single medical center. Different machine learning models are applied to predict one-year mortality. A comprehensive feature space including demographic information, comorbidity, clinical procedure and laboratory tests is being analyzed. A temporal pattern mining technic called Frequent Subgraph Mining (FSM) is being used. Model for End-stage liver disease (MELD) prediction of mortality is used as a comparator. All of our models statistically significantly outperform the MELD-score model and show an average 10% improvement of the area under the curve (AUC). The FSM technic itself does not improve the model significantly, but FSM, together with a machine learning technique called an ensemble, further improves the model performance. With the abundance of data available in healthcare through electronic health records (EHR), existing predictive models can be refined to identify and treat patients at risk for higher mortality. However, due to the sparsity of the temporal information needed by FSM, the FSM model does not yield significant improvements. To the best of our knowledge, this is the first work to apply modern machine learning algorithms and data analysis methods on predicting one-year mortality of cirrhotic patients and builds a model that predicts one-year mortality significantly more accurate than the MELD score. We have also tested the potential of FSM and provided a new perspective of the importance of clinical features.Keywords: machine learning, liver cirrhosis, subgraph mining, supervised learning
Procedia PDF Downloads 134590 Object-Based Image Analysis for Gully-Affected Area Detection in the Hilly Loess Plateau Region of China Using Unmanned Aerial Vehicle
Authors: Hu Ding, Kai Liu, Guoan Tang
Abstract:
The Chinese Loess Plateau suffers from serious gully erosion induced by natural and human causes. Gully features detection including gully-affected area and its two dimension parameters (length, width, area et al.), is a significant task not only for researchers but also for policy-makers. This study aims at gully-affected area detection in three catchments of Chinese Loess Plateau, which were selected in Changwu, Ansai, and Suide by using unmanned aerial vehicle (UAV). The methodology includes a sequence of UAV data generation, image segmentation, feature calculation and selection, and random forest classification. Two experiments were conducted to investigate the influences of segmentation strategy and feature selection. Results showed that vertical and horizontal root-mean-square errors were below 0.5 and 0.2 m, respectively, which were ideal for the Loess Plateau region. The segmentation strategy adopted in this paper, which considers the topographic information, and optimal parameter combination can improve the segmentation results. Besides, the overall extraction accuracy in Changwu, Ansai, and Suide achieved was 84.62%, 86.46%, and 93.06%, respectively, which indicated that the proposed method for detecting gully-affected area is more objective and effective than traditional methods. This study demonstrated that UAV can bridge the gap between field measurement and satellite-based remote sensing, obtaining a balance in resolution and efficiency for catchment-scale gully erosion research.Keywords: unmanned aerial vehicle (UAV), object-analysis image analysis, gully erosion, gully-affected area, Loess Plateau, random forest
Procedia PDF Downloads 218589 Fully Automated Methods for the Detection and Segmentation of Mitochondria in Microscopy Images
Authors: Blessing Ojeme, Frederick Quinn, Russell Karls, Shannon Quinn
Abstract:
The detection and segmentation of mitochondria from fluorescence microscopy are crucial for understanding the complex structure of the nervous system. However, the constant fission and fusion of mitochondria and image distortion in the background make the task of detection and segmentation challenging. In the literature, a number of open-source software tools and artificial intelligence (AI) methods have been described for analyzing mitochondrial images, achieving remarkable classification and quantitation results. However, the availability of combined expertise in the medical field and AI required to utilize these tools poses a challenge to its full adoption and use in clinical settings. Motivated by the advantages of automated methods in terms of good performance, minimum detection time, ease of implementation, and cross-platform compatibility, this study proposes a fully automated framework for the detection and segmentation of mitochondria using both image shape information and descriptive statistics. Using the low-cost, open-source python and openCV library, the algorithms are implemented in three stages: pre-processing, image binarization, and coarse-to-fine segmentation. The proposed model is validated using the mitochondrial fluorescence dataset. Ground truth labels generated using a Lab kit were also used to evaluate the performance of our detection and segmentation model. The study produces good detection and segmentation results and reports the challenges encountered during the image analysis of mitochondrial morphology from the fluorescence mitochondrial dataset. A discussion on the methods and future perspectives of fully automated frameworks conclude the paper.Keywords: 2D, binarization, CLAHE, detection, fluorescence microscopy, mitochondria, segmentation
Procedia PDF Downloads 357588 LIZTOXD: Inclusive Lizard Toxin Database by Using MySQL Protocol
Authors: Iftikhar A. Tayubi, Tabrej Khan, Mansoor M. Alsubei, Fahad A. Alsaferi
Abstract:
LIZTOXD provides a single source of high-quality information about proteinaceous lizard toxins that will be an invaluable resource for pharmacologists, neuroscientists, toxicologists, medicinal chemists, ion channel scientists, clinicians, and structural biologists. We will provide an intuitive, well-organized and user-friendly web interface that allows users to explore the detail information of Lizard and toxin proteins. It includes common name, scientific name, entry id, entry name, protein name and length of the protein sequence. The utility of this database is that it can provide a user-friendly interface for users to retrieve the information about Lizard, toxin and toxin protein of different Lizard species. These interfaces created in this database will satisfy the demands of the scientific community by providing in-depth knowledge about Lizard and its toxin. In the next phase of our project we will adopt methodology and by using A MySQL and Hypertext Preprocessor (PHP) which and for designing Smart Draw. A database is a wonderful piece of equipment for storing large quantities of data efficiently. The users can thus navigate from one section to another, depending on the field of interest of the user. This database contains a wealth of information on species, toxins, toxins, clinical data etc. LIZTOXD resource that provides comprehensive information about protein toxins from lizard toxins. The combination of specific classification schemes and a rich user interface allows researchers to easily locate and view information on the sequence, structure, and biological activity of these toxins. This manually curated database will be a valuable resource for both basic researchers as well as those interested in potential pharmaceutical and agricultural applications of lizard toxins.Keywords: LIZTOXD, MySQL, PHP, smart draw
Procedia PDF Downloads 162587 Intrusion Detection in Cloud Computing Using Machine Learning
Authors: Faiza Babur Khan, Sohail Asghar
Abstract:
With an emergence of distributed environment, cloud computing is proving to be the most stimulating computing paradigm shift in computer technology, resulting in spectacular expansion in IT industry. Many companies have augmented their technical infrastructure by adopting cloud resource sharing architecture. Cloud computing has opened doors to unlimited opportunities from application to platform availability, expandable storage and provision of computing environment. However, from a security viewpoint, an added risk level is introduced from clouds, weakening the protection mechanisms, and hardening the availability of privacy, data security and on demand service. Issues of trust, confidentiality, and integrity are elevated due to multitenant resource sharing architecture of cloud. Trust or reliability of cloud refers to its capability of providing the needed services precisely and unfailingly. Confidentiality is the ability of the architecture to ensure authorization of the relevant party to access its private data. It also guarantees integrity to protect the data from being fabricated by an unauthorized user. So in order to assure provision of secured cloud, a roadmap or model is obligatory to analyze a security problem, design mitigation strategies, and evaluate solutions. The aim of the paper is twofold; first to enlighten the factors which make cloud security critical along with alleviation strategies and secondly to propose an intrusion detection model that identifies the attackers in a preventive way using machine learning Random Forest classifier with an accuracy of 99.8%. This model uses less number of features. A comparison with other classifiers is also presented.Keywords: cloud security, threats, machine learning, random forest, classification
Procedia PDF Downloads 320586 Examining Smallholder Farmers’ Perceptions of Climate Change and Barriers to Strategic Adaptation in Todee District, Liberia
Authors: Joe Dorbor Wuokolo
Abstract:
Thousands of smallholder farmers in Todee District, Montserrado county, are currently vulnerable to the negative impact of climate change. The district, which is the agricultural hot spot for the county, is faced with unfavorable changes in the daily temperature due to climate change. Farmers in the district have observed a dramatic change in the ratio of rainfall to sunshine, which has caused a chilling effect on their crop yields. However, there is a lack of documentation regarding how farmers perceive and respond to these changes and challenges. A study was conducted in the region to examine the perceptions of smallholder farmers regarding the negative impact of climate change, the adaptation strategies practice, and the barriers that hinder the process of advancing adaptation strategy. On purpose, a sample of 41 respondents from five towns was selected, including five town chiefs, five youth leaders, five women leaders, and sixteen community members. Women and youth leaders were specifically chosen to provide gender balance and enhance the quality of the investigation. Additionally, to validate the barriers farmers face during adaptation to climate change, this study interviewed eight experts from local and international organizations and government ministries and agencies involved in climate change and agricultural programs on what they perceived as the major barrier in both local and national level that impede farmers adaptation to climate change impact. SPSS was used to code the data, and descriptive statistics were used to analyze the data. The weighted average index (WAI) was used to rank adaptation strategies and the perceived importance of adaptation practices among farmers. On a scale from 0 to 3, 0 indicates the least important technique, and 3 indicates the most effective technique. In addition, the Problem Confrontation Index (PCI) was used to rank the barriers that prevented farmers from implementing adaptation measures. According to the findings, approximately 60% of all respondents considered the use of irrigation systems to be the most effective adaptation strategy, with drought-resistant varieties making up 30% of the total. Additionally, 80% of respondents placed a high value on drought-resistant varieties, while 63% percent placed it on irrigation practices. In addition, 78% of farmers ranked and indicated that unpredictability of the weather is the most significant barrier to their adaptation strategies, followed by the high cost of farm inputs and lack of access to financing facilities. 80% of respondents believe that the long-term changes in precipitation (rainfall) and temperature (hotness) are accelerating. This suggests that decision-makers should adopt policies and increase the capacity of smallholder farmers to adapt to the negative impact of climate change in order to ensure sustainable food production.Keywords: adaptation strategies, climate change, farmers’ perception, smallholder farmers
Procedia PDF Downloads 82585 Text Mining of Veterinary Forums for Epidemiological Surveillance Supplementation
Authors: Samuel Munaf, Kevin Swingler, Franz Brülisauer, Anthony O’Hare, George Gunn, Aaron Reeves
Abstract:
Web scraping and text mining are popular computer science methods deployed by public health researchers to augment traditional epidemiological surveillance. However, within veterinary disease surveillance, such techniques are still in the early stages of development and have not yet been fully utilised. This study presents an exploration into the utility of incorporating internet-based data to better understand the smallholder farming communities within Scotland by using online text extraction and the subsequent mining of this data. Web scraping of the livestock fora was conducted in conjunction with text mining of the data in search of common themes, words, and topics found within the text. Results from bi-grams and topic modelling uncover four main topics of interest within the data pertaining to aspects of livestock husbandry: feeding, breeding, slaughter, and disposal. These topics were found amongst both the poultry and pig sub-forums. Topic modeling appears to be a useful method of unsupervised classification regarding this form of data, as it has produced clusters that relate to biosecurity and animal welfare. Internet data can be a very effective tool in aiding traditional veterinary surveillance methods, but the requirement for human validation of said data is crucial. This opens avenues of research via the incorporation of other dynamic social media data, namely Twitter and Facebook/Meta, in addition to time series analysis to highlight temporal patterns.Keywords: veterinary epidemiology, disease surveillance, infodemiology, infoveillance, smallholding, social media, web scraping, sentiment analysis, geolocation, text mining, NLP
Procedia PDF Downloads 99584 Calibration of Residential Buildings Energy Simulations Using Real Data from an Extensive in situ Sensor Network – A Study of Energy Performance Gap
Authors: Mathieu Bourdeau, Philippe Basset, Julien Waeytens, Elyes Nefzaoui
Abstract:
As residential buildings account for a third of the overall energy consumption and greenhouse gas emissions in Europe, building energy modeling is an essential tool to reach energy efficiency goals. In the energy modeling process, calibration is a mandatory step to obtain accurate and reliable energy simulations. Nevertheless, the comparison between simulation results and the actual building energy behavior often highlights a significant performance gap. The literature discusses different origins of energy performance gaps, from building design to building operation. Then, building operation description in energy models, especially energy usages and users’ behavior, plays an important role in the reliability of simulations but is also the most accessible target for post-occupancy energy management and optimization. Therefore, the present study aims to discuss results on the calibration ofresidential building energy models using real operation data. Data are collected through a sensor network of more than 180 sensors and advanced energy meters deployed in three collective residential buildings undergoing major retrofit actions. The sensor network is implemented at building scale and in an eight-apartment sample. Data are collected for over one year and half and coverbuilding energy behavior – thermal and electricity, indoor environment, inhabitants’ comfort, occupancy, occupants behavior and energy uses, and local weather. Building energy simulations are performed using a physics-based building energy modeling software (Pleaides software), where the buildings’features are implemented according to the buildingsthermal regulation code compliance study and the retrofit project technical files. Sensitivity analyses are performed to highlight the most energy-driving building features regarding each end-use. These features are then compared with the collected post-occupancy data. Energy-driving features are progressively replaced with field data for a step-by-step calibration of the energy model. Results of this study provide an analysis of energy performance gap on an existing residential case study under deep retrofit actions. It highlights the impact of the different building features on the energy behavior and the performance gap in this context, such as temperature setpoints, indoor occupancy, the building envelopeproperties but also domestic hot water usage or heat gains from electric appliances. The benefits of inputting field data from an extensive instrumentation campaign instead of standardized scenarios are also described. Finally, the exhaustive instrumentation solution provides useful insights on the needs, advantages, and shortcomings of the implemented sensor network for its replicability on a larger scale and for different use cases.Keywords: calibration, building energy modeling, performance gap, sensor network
Procedia PDF Downloads 160583 Development of a Quick On-Site Pass/Fail Test for the Evaluation of Fresh Concrete Destined for Application as Exposed Concrete
Authors: Laura Kupers, Julie Piérard, Niki Cauberg
Abstract:
The use of exposed concrete (sometimes referred to as architectural concrete), keeps gaining popularity. Exposed concrete has the advantage to combine the structural properties of concrete with an aesthetic finish. However, for a successful aesthetic finish, much attention needs to be paid to the execution (formwork, release agent, curing, weather conditions…), the concrete composition (choice of the raw materials and mix proportions) as well as to its fresh properties. For the latter, a simple on-site pass/fail test could halt the casting of concrete not suitable for architectural concrete and thus avoid expensive repairs later. When architects opt for an exposed concrete, they usually want a smooth, uniform and nearly blemish-free surface. For this choice, a standard ‘construction’ concrete does not suffice. An aesthetic surface finishing requires the concrete to contain a minimum content of fines to minimize the risk of segregation and to allow complete filling of more complex shaped formworks. The concrete may neither be too viscous as this makes it more difficult to compact and it increases the risk of blow holes blemishing the surface. On the other hand, too much bleeding may cause color differences on the concrete surface. An easy pass/fail test, which can be performed on the site just before the casting, could avoid these problems. In case the fresh concrete fails the test, the concrete can be rejected. Only in case the fresh concrete passes the test, the concrete would be cast. The pass/fail tests are intended for a concrete with a consistency class S4. Five tests were selected as possible onsite pass/fail test. Two of these tests already exist: the K-slump test (ASTM C1362) and the Bauer Filter Press Test. The remaining three tests were developed by the BBRI in order to test the segregation resistance of fresh concrete on site: the ‘dynamic sieve stability test’, the ‘inverted cone test’ and an adapted ‘visual stability index’ (VSI) for the slump and flow test. These tests were inspired by existing tests for self-compacting concrete, for which the segregation resistance is of great importance. The suitability of the fresh concrete mixtures was also tested by means of a laboratory reference test (resistance to segregation) and by visual inspection (blow holes, structure…) of small test walls. More than fifteen concrete mixtures of different quality were tested. The results of the pass/fail tests were compared with the results of this laboratory reference test and the test walls. The preliminary laboratory results indicate that concrete mixtures ‘suitable’ for placing as exposed concrete (containing sufficient fines, a balanced grading curve etc.) can be distinguished from ‘inferior’ concrete mixtures. Additional laboratory tests, as well as tests on site, will be conducted to confirm these preliminary results and to set appropriate pass/fail values.Keywords: exposed concrete, testing fresh concrete, segregation resistance, bleeding, consistency
Procedia PDF Downloads 423582 1-D Convolutional Neural Network Approach for Wheel Flat Detection for Freight Wagons
Authors: Dachuan Shi, M. Hecht, Y. Ye
Abstract:
With the trend of digitalization in railway freight transport, a large number of freight wagons in Germany have been equipped with telematics devices, commonly placed on the wagon body. A telematics device contains a GPS module for tracking and a 3-axis accelerometer for shock detection. Besides these basic functions, it is desired to use the integrated accelerometer for condition monitoring without any additional sensors. Wheel flats as a common type of failure on wheel tread cause large impacts on wagons and infrastructure as well as impulsive noise. A large wheel flat may even cause safety issues such as derailments. In this sense, this paper proposes a machine learning approach for wheel flat detection by using car body accelerations. Due to suspension systems, impulsive signals caused by wheel flats are damped significantly and thus could be buried in signal noise and disturbances. Therefore, it is very challenging to detect wheel flats using car body accelerations. The proposed algorithm considers the envelope spectrum of car body accelerations to eliminate the effect of noise and disturbances. Subsequently, a 1-D convolutional neural network (CNN), which is well known as a deep learning method, is constructed to automatically extract features in the envelope-frequency domain and conduct classification. The constructed CNN is trained and tested on field test data, which are measured on the underframe of a tank wagon with a wheel flat of 20 mm length in the operational condition. The test results demonstrate the good performance of the proposed algorithm for real-time fault detection.Keywords: fault detection, wheel flat, convolutional neural network, machine learning
Procedia PDF Downloads 131581 Application of Response Surface Methodology to Assess the Impact of Aqueous and Particulate Phosphorous on Diazotrophic and Non-Diazotrophic Cyanobacteria Associated with Harmful Algal Blooms
Authors: Elizabeth Crafton, Donald Ott, Teresa Cutright
Abstract:
Harmful algal blooms (HABs), more notably cyanobacteria-dominated HABs, compromise water quality, jeopardize access to drinking water and are a risk to public health and safety. HABs are representative of ecosystem imbalance largely caused by environmental changes, such as eutrophication, that are associated with the globally expanding human population. Cyanobacteria-dominated HABs are anticipated to increase in frequency, magnitude, and are predicted to plague a larger geographical area as a result of climate change. The weather pattern is important as storm-driven, pulse-input of nutrients have been correlated to cyanobacteria-dominated HABs. The mobilization of aqueous and particulate nutrients and the response of the phytoplankton community is an important relationship in this complex phenomenon. This relationship is most apparent in high-impact areas of adequate sunlight, > 20ᵒC, excessive nutrients and quiescent water that corresponds to ideal growth of HABs. Typically the impact of particulate phosphorus is dismissed as an insignificant contribution; which is true for areas that are not considered high-impact. The objective of this study was to assess the impact of a simulated storm-driven, pulse-input of reactive phosphorus and the response of three different cyanobacteria assemblages (~5,000 cells/mL). The aqueous and particulate sources of phosphorus and changes in HAB were tracked weekly for 4 weeks. The first cyanobacteria composition consisted of Planktothrix sp., Microcystis sp., Aphanizomenon sp., and Anabaena sp., with 70% of the total population being non-diazotrophic and 30% being diazotrophic. The second was comprised of Anabaena sp., Planktothrix sp., and Microcystis sp., with 87% diazotrophic and 13% non-diazotrophic. The third composition has yet to be determined as these experiments are ongoing. Preliminary results suggest that both aqueous and particulate sources are contributors of total reactive phosphorus in high-impact areas. The results further highlight shifts in the cyanobacteria assemblage after the simulated pulse-input. In the controls, the reactors dosed with aqueous reactive phosphorus maintained a constant concentration for the duration of the experiment; whereas, the reactors that were dosed with aqueous reactive phosphorus and contained soil decreased from 1.73 mg/L to 0.25 mg/L of reactive phosphorus from time zero to 7 days; this was higher than the blank (0.11 mg/L). Suggesting a binding of aqueous reactive phosphorus to sediment, which is further supported by the positive correlation observed between total reactive phosphorus concentration and turbidity. The experiments are nearly completed and a full statistical analysis will be completed of the results prior to the conference.Keywords: Anabaena, cyanobacteria, harmful algal blooms, Microcystis, phosphorous, response surface methodology
Procedia PDF Downloads 167580 Decision Support System Based On GIS and MCDM to Identify Land Suitability for Agriculture
Authors: Abdelkader Mendas
Abstract:
The integration of MultiCriteria Decision Making (MCDM) approaches in a Geographical Information System (GIS) provides a powerful spatial decision support system which offers the opportunity to efficiently produce the land suitability maps for agriculture. Indeed, GIS is a powerful tool for analyzing spatial data and establishing a process for decision support. Because of their spatial aggregation functions, MCDM methods can facilitate decision making in situations where several solutions are available, various criteria have to be taken into account and decision-makers are in conflict. The parameters and the classification system used in this work are inspired from the FAO (Food and Agriculture Organization) approach dedicated to a sustainable agriculture. A spatial decision support system has been developed for establishing the land suitability map for agriculture. It incorporates the multicriteria analysis method ELECTRE Tri (ELimitation Et Choix Traduisant la REalité) in a GIS within the GIS program package environment. The main purpose of this research is to propose a conceptual and methodological framework for the combination of GIS and multicriteria methods in a single coherent system that takes into account the whole process from the acquisition of spatially referenced data to decision-making. In this context, a spatial decision support system for developing land suitability maps for agriculture has been developed. The algorithm of ELECTRE Tri is incorporated into a GIS environment and added to the other analysis functions of GIS. This approach has been tested on an area in Algeria. A land suitability map for durum wheat has been produced. Through the obtained results, it appears that ELECTRE Tri method, integrated into a GIS, is better suited to the problem of land suitability for agriculture. The coherence of the obtained maps confirms the system effectiveness.Keywords: multicriteria decision analysis, decision support system, geographical information system, land suitability for agriculture
Procedia PDF Downloads 638