Search results for: speech signal processing
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5629

Search results for: speech signal processing

3289 Creating Energy Sustainability in an Enterprise

Authors: John Lamb, Robert Epstein, Vasundhara L. Bhupathi, Sanjeev Kumar Marimekala

Abstract:

As we enter the new era of Artificial Intelligence (AI) and Cloud Computing, we mostly rely on the Machine and Natural Language Processing capabilities of AI, and Energy Efficient Hardware and Software Devices in almost every industry sector. In these industry sectors, much emphasis is on developing new and innovative methods for producing and conserving energy and sustaining the depletion of natural resources. The core pillars of sustainability are economic, environmental, and social, which is also informally referred to as the 3 P's (People, Planet and Profits). The 3 P's play a vital role in creating a core Sustainability Model in the Enterprise. Natural resources are continually being depleted, so there is more focus and growing demand for renewable energy. With this growing demand, there is also a growing concern in many industries on how to reduce carbon emissions and conserve natural resources while adopting sustainability in corporate business models and policies. In our paper, we would like to discuss the driving forces such as Climate changes, Natural Disasters, Pandemic, Disruptive Technologies, Corporate Policies, Scaled Business Models and Emerging social media and AI platforms that influence the 3 main pillars of Sustainability (3P’s). Through this paper, we would like to bring an overall perspective on enterprise strategies and the primary focus on bringing cultural shifts in adapting energy-efficient operational models. Overall, many industries across the globe are incorporating core sustainability principles such as reducing energy costs, reducing greenhouse gas (GHG) emissions, reducing waste and increasing recycling, adopting advanced monitoring and metering infrastructure, reducing server footprint and compute resources (Shared IT services, Cloud computing, and Application Modernization) with the vision for a sustainable environment.

Keywords: climate change, pandemic, disruptive technology, government policies, business model, machine learning and natural language processing, AI, social media platform, cloud computing, advanced monitoring, metering infrastructure

Procedia PDF Downloads 111
3288 The Relevance of Family Involvement in the Journey of Dementia Patients

Authors: Akankunda Veronicah Karuhanga

Abstract:

Dementia is an age mental disorder that makes victims lose normal functionality that needs delicate attention. It has been technically defined as a clinical syndrome that presents a number of difficulties in speech and other cognitive functions that change someone’s behaviors and can also cause impairments in activities of daily living, not forgetting a range of neurological disorders that bring memory loss and cognitive impairment. Family members are the primary healthcare givers and therefore, the way how they handle the situation in its early stages determines future deterioration syndromes like total memory loss. Unfortunately, most family members are ignorant about this condition and in most cases, the patients are brought to our facilities when their condition was already mismanaged by family members and we thus cannot do much. For example, incontinence can be managed at early stages through potty training or toilet scheduling before resorting to 24/7 diapers which are also not good. Professional Elderly care should be understood and practiced as an extension of homes, not a dumping place for people considered “abnormal” on account of ignorance. Immediate relatives should therefore be sensitized concerning the normalcy of dementia in the context of old age so that they can be understanding and supportive of dementia patients rather than discriminating against them as present-day lepers. There is a need to skill home-based caregivers on how to handle dementia in its early stages. Unless this is done, many of our elderly homes shall be filled with patients who should have been treated and supported from their homes. This skilling of home-based caregivers is a vital intervention because until elderly care is appreciated as a human moral obligation, many transactional rehabilitation centers will crop up and this shall be one of the worst moral decadences of our times.

Keywords: dementia, family, Alzheimers, relevancy

Procedia PDF Downloads 97
3287 Automatic Identification of Pectoral Muscle

Authors: Ana L. M. Pavan, Guilherme Giacomini, Allan F. F. Alves, Marcela De Oliveira, Fernando A. B. Neto, Maria E. D. Rosa, Andre P. Trindade, Diana R. De Pina

Abstract:

Mammography is a worldwide image modality used to diagnose breast cancer, even in asymptomatic women. Due to its large availability, mammograms can be used to measure breast density and to predict cancer development. Women with increased mammographic density have a four- to sixfold increase in their risk of developing breast cancer. Therefore, studies have been made to accurately quantify mammographic breast density. In clinical routine, radiologists perform image evaluations through BIRADS (Breast Imaging Reporting and Data System) assessment. However, this method has inter and intraindividual variability. An automatic objective method to measure breast density could relieve radiologist’s workload by providing a first aid opinion. However, pectoral muscle is a high density tissue, with similar characteristics of fibroglandular tissues. It is consequently hard to automatically quantify mammographic breast density. Therefore, a pre-processing is needed to segment the pectoral muscle which may erroneously be quantified as fibroglandular tissue. The aim of this work was to develop an automatic algorithm to segment and extract pectoral muscle in digital mammograms. The database consisted of thirty medio-lateral oblique incidence digital mammography from São Paulo Medical School. This study was developed with ethical approval from the authors’ institutions and national review panels under protocol number 3720-2010. An algorithm was developed, in Matlab® platform, for the pre-processing of images. The algorithm uses image processing tools to automatically segment and extract the pectoral muscle of mammograms. Firstly, it was applied thresholding technique to remove non-biological information from image. Then, the Hough transform is applied, to find the limit of the pectoral muscle, followed by active contour method. Seed of active contour is applied in the limit of pectoral muscle found by Hough transform. An experienced radiologist also manually performed the pectoral muscle segmentation. Both methods, manual and automatic, were compared using the Jaccard index and Bland-Altman statistics. The comparison between manual and the developed automatic method presented a Jaccard similarity coefficient greater than 90% for all analyzed images, showing the efficiency and accuracy of segmentation of the proposed method. The Bland-Altman statistics compared both methods in relation to area (mm²) of segmented pectoral muscle. The statistic showed data within the 95% confidence interval, enhancing the accuracy of segmentation compared to the manual method. Thus, the method proved to be accurate and robust, segmenting rapidly and freely from intra and inter-observer variability. It is concluded that the proposed method may be used reliably to segment pectoral muscle in digital mammography in clinical routine. The segmentation of the pectoral muscle is very important for further quantifications of fibroglandular tissue volume present in the breast.

Keywords: active contour, fibroglandular tissue, hough transform, pectoral muscle

Procedia PDF Downloads 350
3286 Occupational Heat Stress Condition According to Wet Bulb Globe Temperature Index in Textile Processing Unit: A Case Study of Surat, Gujarat, India

Authors: Dharmendra Jariwala, Robin Christian

Abstract:

Thermal exposure is a common problem in every manufacturing industry where heat is used in the manufacturing process. In developing countries like India, a lack of awareness regarding the proper work environmental condition is observed among workers. Improper planning of factory building, arrangement of machineries, ventilation system, etc. play a vital role in the rise of temperature within the manufacturing areas. Due to the uncontrolled thermal stress, workers may be subjected to various heat illnesses from mild disorder to heat stroke. Heat stress is responsible for the health risk and reduction in production. Wet Bulb Globe Temperature (WBGT) index and relative humidity are used to evaluate heat stress conditions. WBGT index is a weighted average of natural wet bulb temperature, globe temperature, dry bulb temperature, which are measured with standard instrument QuestTemp 36 area stress monitor. In this study textile processing units have been selected in the industrial estate in the Surat city. Based on the manufacturing process six locations were identified within the plant at which process was undertaken at 120°C to 180°C. These locations were jet dying machine area, stenter machine area, printing machine, looping machine area, washing area which generate process heat. Office area was also selected for comparision purpose as a sixth location. Present Study was conducted in the winter season and summer season for day and night shift. The results shows that average WBGT index was found above Threshold Limiting Value (TLV) during summer season for day and night shift in all three industries except office area. During summer season highest WBGT index of 32.8°C was found during day shift and 31.5°C was found during night shift at printing machine area. Also during winter season highest WBGT index of 30°C and 29.5°C was found at printing machine area during day shift and night shift respectively.

Keywords: relative humidity, textile industry, thermal stress, WBGT

Procedia PDF Downloads 173
3285 Emotional Processing Difficulties in Recovered Anorexia Nervosa Patients: State or Trait

Authors: Telma Fontao de Castro, Kylee Miller, Maria Xavier Araújo, Isabel Brandao, Sandra Torres

Abstract:

Objective: There is a dearth of research investigating the long-term emotional functioning of individuals recovered from anorexia nervosa (AN). This 15-year longitudinal study aimed to examine whether difficulties in cognitive processing of emotions persisted after long-term AN recovery and its link to anxiety and depression. Method: Twenty-four females, who were tested longitudinally during their acute and recovered AN phases, and 24 healthy control (HC) women, were screened for anxiety, depression, alexithymia, and emotion regulation difficulties (ER; only assessed in recovery phase). Results: Anxiety, depression, and alexithymia levels decreased significantly with AN recovery. However, scores on anxiety and difficulty in identifying feelings (alexithymia factor) remained high when compared to the HC group. Scores on emotion regulation difficulties were also lower in HC group. The abovementioned differences between AN recovered group and HC group in difficulties in identifying and accepting feelings and lack of emotional clarity were no longer present when the effect of anxiety and depression was controlled. Conclusions: Findings suggest that emotional dysfunction tends to decrease in AN recovered phase. However, using an HC group as a reference, we conclude that several emotional difficulties are still increased after long-term AN recovery, in particular, limited access to emotion regulation strategies, and difficulty controlling impulses and engaging in goal-directed behavior, thus suggesting to be a trait vulnerability. In turn, competencies related to emotional clarity and acceptance of emotional responses seem to be state-dependent phenomena linked to anxiety and depression. In sum, managing emotions remains a challenge for individuals recovered from AN. Under this circumstance, maladaptive eating behavior can serve as an affect regulatory function, increasing the risk of relapse. Emotional education and stabilization of depressive and anxious symptomatology after recovery emerge as an important avenue to protect from long-term AN relapse.

Keywords: alexithymia, anorexia nervosa, emotion recognition, emotion regulation

Procedia PDF Downloads 123
3284 Emotional State and Cognitive Workload during a Flight Simulation: Heart Rate Study

Authors: Damien Mouratille, Antonio R. Hidalgo-Muñoz, Nadine Matton, Yves Rouillard, Mickael Causse, Radouane El Yagoubi

Abstract:

Background: The monitoring of the physiological activity related to mental workload (MW) on pilots will be useful to improve aviation safety by anticipating human performance degradation. The electrocardiogram (ECG) can reveal MW fluctuations due to either cognitive workload or/and emotional state since this measure exhibits autonomic nervous system modulations. Arguably, heart rate (HR) is one of its most intuitive and reliable parameters. It would be particularly interesting to analyze the interaction between cognitive requirements and emotion in ecologic sets such as a flight simulator. This study aims to explore by means of HR the relation between cognitive demands and emotional activation. Presumably, the effects of cognition and emotion overloads are not necessarily cumulative. Methodology: Eight healthy volunteers in possession of the Private Pilot License were recruited (male; 20.8±3.2 years). ECG signal was recorded along the whole experiment by placing two electrodes on the clavicle and left pectoral of the participants. The HR was computed within 4 minutes segments. NASA-TLX and Big Five inventories were used to assess subjective workload and to consider the influence of individual personality differences. The experiment consisted in completing two dual-tasks of approximately 30 minutes of duration into a flight simulator AL50. Each dual-task required the simultaneous accomplishment of both a pre-established flight plan and an additional task based on target stimulus discrimination inserted between Air Traffic Control instructions. This secondary task allowed us to vary the cognitive workload from low (LC) to high (HC) levels, by combining auditory and visual numerical stimuli to respond to meeting specific criteria. Regarding emotional condition, the two dual-tasks were designed to assure analogous difficulty in terms of solicited cognitive demands. The former was realized by the pilot alone, i.e. Low Arousal (LA) condition. In contrast, the latter generates a high arousal (HA), since the pilot was supervised by two evaluators, filmed and involved into a mock competition with the rest of the participants. Results: Performance for the secondary task showed significant faster reaction times (RT) for HA compared to LA condition (p=.003). Moreover, faster RT was found for LC compared to HC (p < .001) condition. No interaction was found. Concerning HR measure, despite the lack of main effects an interaction between emotion and cognition is evidenced (p=.028). Post hoc analysis showed smaller HR for HA compared to LA condition only for LC (p=.049). Conclusion. The control of an aircraft is a very complex task including strong cognitive demands and depends on the emotional state of pilots. According to the behavioral data, the experimental set has permitted to generate satisfactorily different emotional and cognitive levels. As suggested by the interaction found in HR measure, these two factors do not seem to have a cumulative impact on the sympathetic nervous system. Apparently, low cognitive workload makes pilots more sensitive to emotional variations. These results hint the independency between data processing and emotional regulation. Further physiological data are necessary to confirm and disentangle this relation. This procedure may be useful for monitoring objectively pilot’s mental workload.

Keywords: cognitive demands, emotion, flight simulator, heart rate, mental workload

Procedia PDF Downloads 275
3283 Evaluating the Feasibility of Magnetic Induction to Cross an Air-Water Boundary

Authors: Mark Watson, J.-F. Bousquet, Adam Forget

Abstract:

A magnetic induction based underwater communication link is evaluated using an analytical model and a custom Finite-Difference Time-Domain (FDTD) simulation tool. The analytical model is based on the Sommerfeld integral, and a full-wave simulation tool evaluates Maxwell’s equations using the FDTD method in cylindrical coordinates. The analytical model and FDTD simulation tool are then compared and used to predict the system performance for various transmitter depths and optimum frequencies of operation. To this end, the system bandwidth, signal to noise ratio, and the magnitude of the induced voltage are used to estimate the expected channel capacity. The models show that in seawater, a relatively low-power and small coils may be capable of obtaining a throughput of 40 to 300 kbps, for the case where a transmitter is at depths of 1 to 3 m and a receiver is at a height of 1 m.

Keywords: magnetic induction, FDTD, underwater communication, Sommerfeld

Procedia PDF Downloads 125
3282 Molecular Approach for the Detection of Lactic Acid Bacteria in the Kenyan Spontaneously Fermented Milk, Mursik

Authors: John Masani Nduko, Joseph Wafula Matofari

Abstract:

Many spontaneously fermented milk products are produced in Kenya, where they are integral to the human diet and play a central role in enhancing food security and income generation via small-scale enterprises. Fermentation enhances product properties such as taste, aroma, shelf-life, safety, texture, and nutritional value. Some of these products have demonstrated therapeutic and probiotic effects although recent reports have linked some to death, biotoxin infections, and esophageal cancer. These products are mostly processed from poor quality raw materials under unhygienic conditions resulting to inconsistent product quality and limited shelf-lives. Though very popular, research on their processing technologies is low, and none of the products has been produced under controlled conditions using starter cultures. To modernize the processing technologies for these products, our study aims at describing the microbiology and biochemistry of a representative Kenyan spontaneously fermented milk product, Mursik using modern biotechnology (DNA sequencing) and their chemical composition. Moreover, co-creation processes reflecting stakeholders’ experiences on traditional fermented milk production technologies and utilization, ideals and senses of value, which will allow the generation of products based on common ground for rapid progress will be discussed. Knowledge of the value of clean starting raw material will be emphasized, the need for the definition of fermentation parameters highlighted, and standard equipment employment to attain controlled fermentation discussed. This presentation will review the available information regarding traditional fermented milk (Mursik) and highlight our current research work on the application of molecular approaches (metagenomics) for the valorization of Mursik production process through starter culture/ probiotic strains isolation and identification, and quality and safety aspects of the product. The importance of the research and future research areas on the same subject will also be highlighted.

Keywords: lactic acid bacteria, high throughput biotechnology, spontaneous fermentation, Mursik

Procedia PDF Downloads 293
3281 Geological Structure Identification in Semilir Formation: An Correlated Geological and Geophysical (Very Low Frequency) Data for Zonation Disaster with Current Density Parameters and Geological Surface Information

Authors: E. M. Rifqi Wilda Pradana, Bagus Bayu Prabowo, Meida Riski Pujiyati, Efraim Maykhel Hagana Ginting, Virgiawan Arya Hangga Reksa

Abstract:

The VLF (Very Low Frequency) method is an electromagnetic method that uses low frequencies between 10-30 KHz which results in a fairly deep penetration. In this study, the VLF method was used for zonation of disaster-prone areas by identifying geological structures in the form of faults. Data acquisition was carried out in Trimulyo Region, Jetis District, Bantul Regency, Special Region of Yogyakarta, Indonesia with 8 measurement paths. This study uses wave transmitters from Japan and Australia to obtain Tilt and Elipt values that can be used to create RAE (Rapat Arus Ekuivalen or Current Density) sections that can be used to identify areas that are easily crossed by electric current. This section will indicate the existence of a geological structure in the form of faults in the study area which is characterized by a high RAE value. In data processing of VLF method, it is obtained Tilt vs Elliptical graph and Moving Average (MA) Tilt vs Moving Average (MA) Elipt graph of each path that shows a fluctuating pattern and does not show any intersection at all. Data processing uses Matlab software and obtained areas with low RAE values that are 0%-6% which shows medium with low conductivity and high resistivity and can be interpreted as sandstone, claystone, and tuff lithology which is part of the Semilir Formation. Whereas a high RAE value of 10% -16% which shows a medium with high conductivity and low resistivity can be interpreted as a fault zone filled with fluid. The existence of the fault zone is strengthened by the discovery of a normal fault on the surface with strike N550W and dip 630E at coordinates X= 433256 and Y= 9127722 so that the activities of residents in the zone such as housing, mining activities and other activities can be avoided to reduce the risk of natural disasters.

Keywords: current density, faults, very low frequency, zonation

Procedia PDF Downloads 175
3280 Monitoring the Effect of Doxorubicin Liposomal in VX2 Tumor Using Magnetic Resonance Imaging

Authors: Ren-Jy Ben, Jo-Chi Jao, Chiu-Ya Liao, Ya-Ru Tsai, Lain-Chyr Hwang, Po-Chou Chen

Abstract:

Cancer is still one of the serious diseases threatening the lives of human beings. How to have an early diagnosis and effective treatment for tumors is a very important issue. The animal carcinoma model can provide a simulation tool for the study of pathogenesis, biological characteristics and therapeutic effects. Recently, drug delivery systems have been rapidly developed to effectively improve the therapeutic effects. Liposome plays an increasingly important role in clinical diagnosis and therapy for delivering a pharmaceutic or contrast agent to the targeted sites. Liposome can be absorbed and excreted by the human body, and is well known that no harm to the human body. This study aimed to compare the therapeutic effects between encapsulated (doxorubicin liposomal, LipoDox) and un-encapsulated (doxorubicin, Dox) anti-tumor drugs using Magnetic Resonance Imaging (MRI). Twenty-four New Zealand rabbits implanted with VX2 carcinoma at left thigh were classified into three groups: control group (untreated), Dox-treated group and LipoDox-treated group, 8 rabbits for each group. MRI scans were performed three days after tumor implantation. A 1.5T GE Signa HDxt whole body MRI scanner with a high resolution knee coil was used in this study. After a 3-plane localizer scan was performed, Three-Dimensional (3D) Fast Spin Echo (FSE) T2-Weighted Images (T2WI) was used for tumor volumetric quantification. And Two-Dimensional (2D) spoiled gradient recalled echo (SPGR) dynamic Contrast-enhanced (DCE) MRI was used for tumor perfusion evaluation. DCE-MRI was designed to acquire four baseline images, followed by contrast agent Gd-DOTA injection through the ear vein of rabbits. Afterwards, a series of 32 images were acquired to observe the signals change over time in the tumor and muscle. The MRI scanning was scheduled on a weekly basis for a period of four weeks to observe the tumor progression longitudinally. The Dox and LipoDox treatments were prescribed 3 times in the first week immediately after VX2 tumor implantation. ImageJ was used to quantitate tumor volume and time course signal enhancement on DCE images. The changes of tumor size showed that the growth of VX2 tumors was effectively inhibited for both LipoDox-treated and Dox-treated groups. Furthermore, the tumor volume of LipoDox-treated group was significantly lower than that of Dox-treated group, which implies that LipoDox has better therapeutic effect than Dox. The signal intensity of LipoDox-treated group is significantly lower than that of the other two groups, which implies that targeted therapeutic drug remained in the tumor tissue. This study provides a radiation-free and non-invasive MRI method for therapeutic monitoring of targeted liposome on an animal tumor model.

Keywords: doxorubicin, dynamic contrast-enhanced MRI, lipodox, magnetic resonance imaging, VX2 tumor model

Procedia PDF Downloads 457
3279 Joint Discrete Hartley Transform-Clipping for Peak to Average Power Ratio Reduction in Orthogonal Frequency Division Multiplexing System

Authors: Selcuk Comlekci, Mohammed Aboajmaa

Abstract:

Orthogonal frequency division multiplexing (OFDM) is promising technique for the modern wireless communications systems due to its robustness against multipath environment. The high peak to average power ratio (PAPR) of the transmitted signal is one of the major drawbacks of OFDM system, PAPR degrade the performance of bit error rate (BER) and effect on the linear characteristics of high power amplifier (HPA). In this paper, we proposed DHT-Clipping reduction technique to reduce the high PAPR by the combination between discrete Hartley transform (DHT) and Clipping techniques. From the simulation results, we notified that DHT-Clipping technique offers better PAPR reduction than DHT and Clipping, as well as DHT-Clipping introduce improved BER performance better than clipping.

Keywords: ISI, cyclic prefix, BER, PAPR, HPA, DHT, subcarrier

Procedia PDF Downloads 439
3278 Music Genre Classification Based on Non-Negative Matrix Factorization Features

Authors: Soyon Kim, Edward Kim

Abstract:

In order to retrieve information from the massive stream of songs in the music industry, music search by title, lyrics, artist, mood, and genre has become more important. Despite the subjectivity and controversy over the definition of music genres across different nations and cultures, automatic genre classification systems that facilitate the process of music categorization have been developed. Manual genre selection by music producers is being provided as statistical data for designing automatic genre classification systems. In this paper, an automatic music genre classification system utilizing non-negative matrix factorization (NMF) is proposed. Short-term characteristics of the music signal can be captured based on the timbre features such as mel-frequency cepstral coefficient (MFCC), decorrelated filter bank (DFB), octave-based spectral contrast (OSC), and octave band sum (OBS). Long-term time-varying characteristics of the music signal can be summarized with (1) the statistical features such as mean, variance, minimum, and maximum of the timbre features and (2) the modulation spectrum features such as spectral flatness measure, spectral crest measure, spectral peak, spectral valley, and spectral contrast of the timbre features. Not only these conventional basic long-term feature vectors, but also NMF based feature vectors are proposed to be used together for genre classification. In the training stage, NMF basis vectors were extracted for each genre class. The NMF features were calculated in the log spectral magnitude domain (NMF-LSM) as well as in the basic feature vector domain (NMF-BFV). For NMF-LSM, an entire full band spectrum was used. However, for NMF-BFV, only low band spectrum was used since high frequency modulation spectrum of the basic feature vectors did not contain important information for genre classification. In the test stage, using the set of pre-trained NMF basis vectors, the genre classification system extracted the NMF weighting values of each genre as the NMF feature vectors. A support vector machine (SVM) was used as a classifier. The GTZAN multi-genre music database was used for training and testing. It is composed of 10 genres and 100 songs for each genre. To increase the reliability of the experiments, 10-fold cross validation was used. For a given input song, an extracted NMF-LSM feature vector was composed of 10 weighting values that corresponded to the classification probabilities for 10 genres. An NMF-BFV feature vector also had a dimensionality of 10. Combined with the basic long-term features such as statistical features and modulation spectrum features, the NMF features provided the increased accuracy with a slight increase in feature dimensionality. The conventional basic features by themselves yielded 84.0% accuracy, but the basic features with NMF-LSM and NMF-BFV provided 85.1% and 84.2% accuracy, respectively. The basic features required dimensionality of 460, but NMF-LSM and NMF-BFV required dimensionalities of 10 and 10, respectively. Combining the basic features, NMF-LSM and NMF-BFV together with the SVM with a radial basis function (RBF) kernel produced the significantly higher classification accuracy of 88.3% with a feature dimensionality of 480.

Keywords: mel-frequency cepstral coefficient (MFCC), music genre classification, non-negative matrix factorization (NMF), support vector machine (SVM)

Procedia PDF Downloads 303
3277 Automatic Furrow Detection for Precision Agriculture

Authors: Manpreet Kaur, Cheol-Hong Min

Abstract:

The increasing advancement in the robotics equipped with machine vision sensors applied to precision agriculture is a demanding solution for various problems in the agricultural farms. An important issue related with the machine vision system concerns crop row and weed detection. This paper proposes an automatic furrow detection system based on real-time processing for identifying crop rows in maize fields in the presence of weed. This vision system is designed to be installed on the farming vehicles, that is, submitted to gyros, vibration and other undesired movements. The images are captured under image perspective, being affected by above undesired effects. The goal is to identify crop rows for vehicle navigation which includes weed removal, where weeds are identified as plants outside the crop rows. The images quality is affected by different lighting conditions and gaps along the crop rows due to lack of germination and wrong plantation. The proposed image processing method consists of four different processes. First, image segmentation based on HSV (Hue, Saturation, Value) decision tree. The proposed algorithm used HSV color space to discriminate crops, weeds and soil. The region of interest is defined by filtering each of the HSV channels between maximum and minimum threshold values. Then the noises in the images were eliminated by the means of hybrid median filter. Further, mathematical morphological processes, i.e., erosion to remove smaller objects followed by dilation to gradually enlarge the boundaries of regions of foreground pixels was applied. It enhances the image contrast. To accurately detect the position of crop rows, the region of interest is defined by creating a binary mask. The edge detection and Hough transform were applied to detect lines represented in polar coordinates and furrow directions as accumulations on the angle axis in the Hough space. The experimental results show that the method is effective.

Keywords: furrow detection, morphological, HSV, Hough transform

Procedia PDF Downloads 231
3276 Reduction of High-Frequency Planar Transformer Conduction Losses Using a Planar Litz Wire Structure

Authors: Hamed Belloumi, Amira Zouaoui, Ferid kourda

Abstract:

A new trend in power converters is to design planar transformer that aim for low profile. However, at high frequency, the planar transformer ac losses become significant due to the proximity and skin effects. In this paper, the design and implementation of a novel planar Litz conductor is presented in order to equalize the flux linkage and improving the current distribution. The developed PCB litz wire structure minimizes the losses in a similar way to the conventional multi stranded Litz wires. In order to further illustrate the eddy current effect in different arrangements, a Finite-Element Analysis (FEA) tool is used to analyze current distribution inside the conductors. Finally, the proposed planar transformer has been integrated in an electronic stage to test at high signal levels.

Keywords: planar transformer, finite-element analysis, winding losses, planar Litz wire

Procedia PDF Downloads 400
3275 Design of a Sliding Mode Control Using Nonlinear Sliding Surface and Nonlinear Observer Applied to the Trirotor Mini-Aircraft

Authors: Samir Zeghlache, Abderrahmen Bouguerra, Kamel Kara, Djamel Saigaa

Abstract:

The control of the trirotor helicopter includes nonlinearities, uncertainties and external perturbations that should be considered in the design of control laws. This paper presents a control strategy for an underactuated six degrees of freedom (6 DOF) trirotor helicopter, based on the coupling of the fuzzy logic control and sliding mode control (SMC). The main purpose of this work is to eliminate the chattering phenomenon. To achieve our purpose we have used a fuzzy logic control to generate the hitting control signal, also the non linear observer is then synthesized in order to estimate the unmeasured states. Finally simulation results are included to indicate the trirotor UAV with the proposed controller can greatly alleviate the chattering effect and remain robust to the external disturbances.

Keywords: fuzzy sliding mode control, trirotor helicopter, dynamic modelling, underactuated systems

Procedia PDF Downloads 534
3274 Genetic Data of Deceased People: Solving the Gordian Knot

Authors: Inigo de Miguel Beriain

Abstract:

Genetic data of deceased persons are of great interest for both biomedical research and clinical use. This is due to several reasons. On the one hand, many of our diseases have a genetic component; on the other hand, we share genes with a good part of our biological family. Therefore, it would be possible to improve our response considerably to these pathologies if we could use these data. Unfortunately, at the present moment, the status of data on the deceased is far from being satisfactorily resolved by the EU data protection regulation. Indeed, the General Data Protection Regulation has explicitly excluded these data from the category of personal data. This decision has given rise to a fragmented legal framework on this issue. Consequently, each EU member state offers very different solutions. For instance, Denmark considers the data as personal data of the deceased person for a set period of time while some others, such as Spain, do not consider this data as such, but have introduced some specifically focused regulations on this type of data and their access by relatives. This is an extremely dysfunctional scenario from multiple angles, not least of which is scientific cooperation at the EU level. This contribution attempts to outline a solution to this dilemma through an alternative proposal. Its main hypothesis is that, in reality, health data are, in a sense, a rara avis within data in general because they do not refer to one person but to several. Hence, it is possible to think that all of them can be considered data subjects (although not all of them can exercise the corresponding rights in the same way). When the person from whom the data were obtained dies, the data remain as personal data of his or her biological relatives. Hence, the general regime provided for in the GDPR may apply to them. As these are personal data, we could go back to thinking in terms of a general prohibition of data processing, with the exceptions provided for in Article 9.2 and on the legal bases included in Article 6. This may be complicated in practice, given that, since we are dealing with data that refer to several data subjects, it may be complex to refer to some of these bases, such as consent. Furthermore, there are theoretical arguments that may oppose this hypothesis. In this contribution, it is shown, however, that none of these objections is of sufficient substance to delegitimize the argument exposed. Therefore, the conclusion of this contribution is that we can indeed build a general framework on the processing of personal data of deceased persons in the context of the GDPR. This would constitute a considerable improvement over the current regulatory framework, although it is true that some clarifications will be necessary for its practical application.

Keywords: collective data conceptual issues, data from deceased people, genetic data protection issues, GDPR and deceased people

Procedia PDF Downloads 154
3273 Analysis of Formation Methods of Range Profiles for an X-Band Coastal Surveillance Radar

Authors: Nguyen Van Loi, Le Thanh Son, Tran Trung Kien

Abstract:

The paper deals with the problem of the formation of range profiles (RPs) for an X-band coastal surveillance radar. Two popular methods, the difference operator method, and the window-based method, are reviewed and analyzed via two tests with different datasets. The test results show that although the original window-based method achieves a better performance than the difference operator method, it has three main drawbacks that are the use of 3 or 4 peaks of an RP for creating the windows, the extension of the window size using the power sum of three adjacent cells in the left and the right sides of the windows and the same threshold applied for all types of vessels to finish the formation process of RPs. These drawbacks lead to inaccurate RPs due to the low signal-to-clutter ratio. Therefore, some suggestions are proposed to improve the original window-based method.

Keywords: range profile, difference operator method, window-based method, automatic target recognition

Procedia PDF Downloads 127
3272 Field Saturation Flow Measurement Using Dynamic Passenger Car Unit under Mixed Traffic Condition

Authors: Ramesh Chandra Majhi

Abstract:

Saturation flow is a very important input variable for the design of signalized intersections. Saturation flow measurement is well established for homogeneous traffic. However, saturation flow measurement and modeling is a challenging task in heterogeneous characterized by multiple vehicle types and non-lane based movement. Present study focuses on proposing a field procedure for Saturation flow measurement and the effect of typical mixed traffic behavior at the signal as far as non-lane based traffic movement is concerned. Data collected during peak and off-peak hour from five intersections with varying approach width is used for validating the saturation flow model. The insights from the study can be used for modeling saturation flow and delay at signalized intersection in heterogeneous traffic conditions.

Keywords: optimization, passenger car unit, saturation flow, signalized intersection

Procedia PDF Downloads 327
3271 Impact Location From Instrumented Mouthguard Kinematic Data In Rugby

Authors: Jazim Sohail, Filipe Teixeira-Dias

Abstract:

Mild traumatic brain injury (mTBI) within non-helmeted contact sports is a growing concern due to the serious risk of potential injury. Extensive research is being conducted looking into head kinematics in non-helmeted contact sports utilizing instrumented mouthguards that allow researchers to record accelerations and velocities of the head during and after an impact. This does not, however, allow the location of the impact on the head, and its magnitude and orientation, to be determined. This research proposes and validates two methods to quantify impact locations from instrumented mouthguard kinematic data, one using rigid body dynamics, the other utilizing machine learning. The rigid body dynamics technique focuses on establishing and matching moments from Euler’s and torque equations in order to find the impact location on the head. The methodology is validated with impact data collected from a lab test with the dummy head fitted with an instrumented mouthguard. Additionally, a Hybrid III Dummy head finite element model was utilized to create synthetic kinematic data sets for impacts from varying locations to validate the impact location algorithm. The algorithm calculates accurate impact locations; however, it will require preprocessing of live data, which is currently being done by cross-referencing data timestamps to video footage. The machine learning technique focuses on eliminating the preprocessing aspect by establishing trends within time-series signals from instrumented mouthguards to determine the impact location on the head. An unsupervised learning technique is used to cluster together impacts within similar regions from an entire time-series signal. The kinematic signals established from mouthguards are converted to the frequency domain before using a clustering algorithm to cluster together similar signals within a time series that may span the length of a game. Impacts are clustered within predetermined location bins. The same Hybrid III Dummy finite element model is used to create impacts that closely replicate on-field impacts in order to create synthetic time-series datasets consisting of impacts in varying locations. These time-series data sets are used to validate the machine learning technique. The rigid body dynamics technique provides a good method to establish accurate impact location of impact signals that have already been labeled as true impacts and filtered out of the entire time series. However, the machine learning technique provides a method that can be implemented with long time series signal data but will provide impact location within predetermined regions on the head. Additionally, the machine learning technique can be used to eliminate false impacts captured by sensors saving additional time for data scientists using instrumented mouthguard kinematic data as validating true impacts with video footage would not be required.

Keywords: head impacts, impact location, instrumented mouthguard, machine learning, mTBI

Procedia PDF Downloads 217
3270 Radar Signal Detection Using Neural Networks in Log-Normal Clutter for Multiple Targets Situations

Authors: Boudemagh Naime

Abstract:

Automatic radar detection requires some methods of adapting to variations in the background clutter in order to control their false alarm rate. The problem becomes more complicated in non-Gaussian environment. In fact, the conventional approach in real time applications requires a complex statistical modeling and much computational operations. To overcome these constraints, we propose another approach based on artificial neural network (ANN-CMLD-CFAR) using a Back Propagation (BP) training algorithm. The considered environment follows a log-normal distribution in the presence of multiple Rayleigh-targets. To evaluate the performances of the considered detector, several situations, such as scale parameter and the number of interferes targets, have been investigated. The simulation results show that the ANN-CMLD-CFAR processor outperforms the conventional statistical one.

Keywords: radat detection, ANN-CMLD-CFAR, log-normal clutter, statistical modelling

Procedia PDF Downloads 364
3269 GPU Based Real-Time Floating Object Detection System

Authors: Jie Yang, Jian-Min Meng

Abstract:

A GPU-based floating object detection scheme is presented in this paper which is designed for floating mine detection tasks. This system uses contrast and motion information to eliminate as many false positives as possible while avoiding false negatives. The GPU computation platform is deployed to allow detecting objects in real-time. From the experimental results, it is shown that with certain configuration, the GPU-based scheme can speed up the computation up to one thousand times compared to the CPU-based scheme.

Keywords: object detection, GPU, motion estimation, parallel processing

Procedia PDF Downloads 474
3268 A Literature Review of Precision Agriculture: Applications of Diagnostic Diseases in Corn, Potato, and Rice Based on Artificial Intelligence

Authors: Carolina Zambrana, Grover Zurita

Abstract:

The food loss production that occurs in deficient agricultural production is one of the major problems worldwide. This puts the population's food security and the efficiency of farming investments at risk. It is to be expected that this food security will be achieved with the own and efficient production of each country. It will have an impact on the well-being of its population and, thus, also on food sovereignty. The production losses in quantity and quality occur due to the lack of efficient detection of diseases at an early stage. It is very difficult to solve the agriculture efficiency using traditional methods since it takes a long time to be carried out due to detection imprecision of the main diseases, especially when the production areas are extensive. Therefore, the main objective of this research study is to perform a systematic literature review, of the latest five years, of Precision Agriculture (PA) to be able to understand the state of the art of the set of new technologies, procedures, and optimization processes with Artificial Intelligence (AI). This study will focus on Corns, Potatoes, and Rice diagnostic diseases. The extensive literature review will be performed on Elsevier, Scopus, and IEEE databases. In addition, this research will focus on advanced digital imaging processing and the development of software and hardware for PA. The convolution neural network will be handling special attention due to its outstanding diagnostic results. Moreover, the studied data will be incorporated with artificial intelligence algorithms for the automatic diagnosis of crop quality. Finally, precision agriculture with technology applied to the agricultural sector allows the land to be exploited efficiently. This system requires sensors, drones, data acquisition cards, and global positioning systems. This research seeks to merge different areas of science, control engineering, electronics, digital image processing, and artificial intelligence for the development, in the near future, of a low-cost image measurement system that allows the optimization of crops with AI.

Keywords: precision agriculture, convolutional neural network, deep learning, artificial intelligence

Procedia PDF Downloads 79
3267 Developing Oral Communication Competence in a Second Language: The Communicative Approach

Authors: Ikechi Gilbert

Abstract:

Oral communication is the transmission of ideas or messages through the speech process. Acquiring competence in this area which, by its volatile nature, is prone to errors and inaccuracies would require the adoption of a well-suited teaching methodology. Efficient oral communication facilitates exchange of ideas and easy accomplishment of day-to-day tasks, by means of a demonstrated mastery of oral expression and the making of fine presentations to audiences or individuals while recognizing verbal signals and body language of others and interpreting them correctly. In Anglophone states such as Nigeria, Ghana, etc., the French language, for instance, is studied as a foreign language, being used majorly in teaching learners who have their own mother tongue different from French. The same applies to Francophone states where English is studied as a foreign language by people whose official language or mother tongue is different from English. The ideal approach would be to teach these languages in these environments through a pedagogical approach that properly takes care of the oral perspective for effective understanding and application by the learners. In this article, we are examining the communicative approach as a methodology for teaching oral communication in a foreign language. This method is a direct response to the communicative needs of the learner involving the use of appropriate materials and teaching techniques that meet those needs. It is also a vivid improvement to the traditional grammatical and audio-visual adaptations. Our contribution will focus on the pedagogical component of oral communication improvement, highlighting its merits and also proposing diverse techniques including aspects of information and communication technology that would assist the second language learner communicate better orally.

Keywords: communication, competence, methodology, pedagogical component

Procedia PDF Downloads 266
3266 The Use of Haar Wavelet Mother Signal Tool for Performance Analysis Response of Distillation Column (Application to Moroccan Case Study)

Authors: Mahacine Amrani

Abstract:

This paper aims at reviewing some Moroccan industrial applications of wavelet especially in the dynamic identification of a process model using Haar wavelet mother response. Two recent Moroccan study cases are described using dynamic data originated by a distillation column and an industrial polyethylene process plant. The purpose of the wavelet scheme is to build on-line dynamic models. In both case studies, a comparison is carried out between the Haar wavelet mother response model and a linear difference equation model. Finally it concludes, on the base of the comparison of the process performances and the best responses, which may be useful to create an estimated on-line internal model control and its application towards model-predictive controllers (MPC). All calculations were implemented using AutoSignal Software.

Keywords: process performance, model, wavelets, Haar, Moroccan

Procedia PDF Downloads 317
3265 Experimental Demonstration of Broadband Erbium-Doped Fiber Amplifier

Authors: Belloui Bouzid

Abstract:

In this paper, broadband design of erbium doped fiber amplifier (EDFA) is demonstrated and proved experimentally. High and broad gain is covered in C and L bands. The used technique combines, in one configuration, two double passes with split band structure for the amplification of two traveled signals one for the C band and the other for L band. This new topology is to investigate the trends of high gain and wide amplification at different status of pumping power, input wavelength, and input signal power. The presented paper is to explore the performance of EDFA gain using what it can be called double pass double branch wide band amplification configuration. The obtained results show high gain and wide broadening range of 44.24 dB and 80 nm amplification respectively.

Keywords: erbium doped fiber amplifier, erbium doped fiber laser, optical amplification, fiber laser

Procedia PDF Downloads 254
3264 Toward Subtle Change Detection and Quantification in Magnetic Resonance Neuroimaging

Authors: Mohammad Esmaeilpour

Abstract:

One of the important open problems in the field of medical image processing is detection and quantification of small changes. In this poster, we try to investigate that, how the algebraic decomposition techniques can be used for semiautomatically detecting and quantifying subtle changes in Magnetic Resonance (MR) neuroimaging volumes. We mostly focus on the low-rank values of the matrices achieved from decomposing MR image pairs during a period of time. Besides, a skillful neuroradiologist will help the algorithm to distinguish between noises and small changes.

Keywords: magnetic resonance neuroimaging, subtle change detection and quantification, algebraic decomposition, basis functions

Procedia PDF Downloads 474
3263 Characteristic and Prevalence of Cleft Lip and Palate Patient in Bandung Cleft Lip and Palate Center: A Descriptive Study

Authors: Kusmayadi Ita Nursita, Sundoro Ali

Abstract:

Cleft lip and palate are one of the most common congenital abnormalities in the face. It could happen to anyone, but mostly affect Asian population including Indonesia. Factors that influence the occurrence of cleft lip and palate vary from genetic to environmental factors. Children with cleft lip and palate will often have various problems such as airway disorders, eating disorders, speech and language developmental disorders, hearing disorders and psycho-social disorders, one of which is caused by appearance disorders. During his life, the child will experience multidisciplinary surgery and non-surgical treatment and can be accompanied by a psychological and financial burden on himself and his family. In Indonesia, there are no detailed scientific data on the prevalence and characteristic of cleft lip and palate patients. It was mainly caused by the absence of a national level organization, differences in geographical location, and the absence of national guidelines. This study aimed to describe the characteristic and prevalence of cleft lip and palate patients in Bandung Cleft Lip and Palate Center from 1 January 2016 to 31 December 2017. A total of 560 patients were included in the study. The highest percentage of cases are left unilateral cleft lip and palate with higher number of female patient and labioplasty as the most often surgical procedure to be conducted in Bandung Cleft Lip and Palate Center. In order to improve quality of life in patients with cleft lip and palate, early recognition and early treatment based on actual comprehensive data should be conducted. The data from Bandung Cleft Lip and Palate Center as one of the largest center of cleft lip and palate in West Java Indonesia hopefully could provide a big step of further comprehensive data collection in Indonesia and for the better overall management of cleft lip and palate in the future.

Keywords: cleft lip, cleft palate, characteristic, prevalence

Procedia PDF Downloads 137
3262 Comparative Investigation of Two Non-Contact Prototype Designs Based on a Squeeze-Film Levitation Approach

Authors: A. Almurshedi, M. Atherton, C. Mares, T. Stolarski, M. Miyatake

Abstract:

Transportation and handling of delicate and lightweight objects is currently a significant issue in some industries. Two common contactless movement prototype designs, ultrasonic transducer design and vibrating plate design, are compared. Both designs are based on the method of squeeze-film levitation, and this study aims to identify the limitations, and challenges of each. The designs are evaluated in terms of levitation capabilities, and characteristics. To this end, theoretical and experimental explorations are made. It is demonstrated that the ultrasonic transducer prototype design is better suited to the terms of levitation capabilities. However, the design has some operating and mechanical designing difficulties. For making accurate industrial products in micro-fabrication and nanotechnology contexts, such as semiconductor silicon wafers, micro-components and integrated circuits, non-contact oil-free, ultra-precision and low wear transport along the production line is crucial for enabling. One of the designs (design A) is called the ultrasonic chuck, for which an ultrasonic transducer (Langevin, FBI 28452 HS) comprises the main part. Whereas the other (design B), is a vibrating plate design, which consists of a plain rectangular plate made of Aluminium firmly fastened at both ends. The size of the rectangular plate is 200x100x2 mm. In addition, four rounded piezoelectric actuators of size 28 mm diameter with 0.5 mm thickness are glued to the underside of the plate. The vibrating plate is clamped at both ends in the horizontal plane through a steel supporting structure. In addition, the dynamic of levitation using the designs (A and B) has been investigated based on the squeeze film levitation (SFL). The input apparatus that is used with designs consist of a sine wave signal generator connected to an amplifier type ENP-1-1U (Echo Electronics). The latter has to be utilised to magnify the sine wave voltage that is produced by the signal generator. The measurements of the maximum levitation for three different semiconductor wafers of weights 52, 70 and 88 [g] for design A are 240, 205 and 187 [um], respectively. Whereas the physical results show that the average separation distance for a disk of 5 [g] weight for design B reaches 70 [um]. By using the methodology of squeeze film levitation, it is possible to hold an object in a non-contact manner. The analyses of the investigation outcomes signify that the non-contact levitation of design A provides more improvement than design B. However, design A is more complicated than design B in terms of its manufacturing. In order to identify an adequate non-contact SFL design, a comparison between two common such designs has been adopted for the current investigation. Specifically, the study will involve making comparisons in terms of the following issues: floating component geometries and material type constraints; final created pressure distributions; dangerous interactions with the surrounding space; working environment constraints; and complication and compactness of the mechanical design. Considering all these matters is essential for proficiently distinguish the better SFL design.

Keywords: ANSYS, floating, piezoelectric, squeeze-film

Procedia PDF Downloads 149
3261 Depolymerised Natural Polysaccharides Enhance the Production of Medicinal and Aromatic Plants and Their Active Constituents

Authors: M. Masroor Akhtar Khan, Moin Uddin, Lalit Varshney

Abstract:

Recently, there has been a rapidly expanding interest in finding applications of natural polymers in view of value addition to agriculture. It is now being realized that radiation processing of natural polysaccharides can be beneficially utilized either to improve the existing methodologies used for processing the natural polymers or to impart value addition to agriculture by converting them into more useful form. Gamma-ray irradiation is employed to degrade and lower the molecular weight of some of the natural polysaccharides like alginates, chitosan and carrageenan into small sized oligomers. When these oligomers are applied to plants as foliar sprays, they elicit various kinds of biological and physiological activities, including promotion of plant growth, seed germination, shoot elongation, root growth, flower production, suppression of heavy metal stress, etc. Furthermore, application of these oligomers can shorten the harvesting period of various crops and help in reducing the use of insecticides and chemical fertilizers. In recent years, the oligomers of sodium alginate obtained by irradiating the latter with gamma-rays at 520 kGy dose are being employed. It was noticed that the oligomers derived from the natural polysaccharides could induce growth, photosynthetic efficiency, enzyme activities and most importantly the production of secondary metabolite in the plants like Artemisia annua, Beta vulgaris, Catharanthus roseus, Chrysopogon zizanioides, Cymbopogon flexuosus, Eucalyptus citriodora, Foeniculum vulgare, Geranium sp., Mentha arvensis, Mentha citrata, Mentha piperita, Mentha virdis, Papaver somniferum and Trigonella foenum-graecum. As a result of the application of these oligomers, the yield and/or contents of the active constituents of the aforesaid plants were significantly enhanced. The productivity, as well as quality of medicinal and aromatic plants, may be ameliorated by this novel technique in an economical way as a very little quantity of these irradiated (depolymerised) polysaccharides is needed. Further, this is a very safe technique, as we did not expose the plants directly to radiation. The radiation was used to depolymerize the polysaccharides into oligomers.

Keywords: essential oil, medicinal and aromatic plants, plant production, radiation processed polysaccharides, active constituents

Procedia PDF Downloads 444
3260 An Interactive Voice Response Storytelling Model for Learning Entrepreneurial Mindsets in Media Dark Zones

Authors: Vineesh Amin, Ananya Agrawal

Abstract:

In a prolonged period of uncertainty and disruptions in the pre-said normal order, non-cognitive skills, especially entrepreneurial mindsets, have become a pillar that can reform the educational models to inform the economy. Dreamverse Learning Lab’s IVR-based storytelling program -Call-a-Kahaani- is an evolving experiment with an aim to kindle entrepreneurial mindsets in the remotest locations of India in an accessible and engaging manner. At the heart of this experiment is the belief that at every phase in our life’s story, we have a choice which brings us closer to achieving our true potential. This interactive program is thus designed using real-time storytelling principles to empower learners, ages 24 and below, to make choices and take decisions as they become more self-aware, practice grit, try new things through stories, guided activities, and interactions, simply over a phone call. This research paper highlights the framework behind an ongoing scalable, data-oriented, low-tech program to kindle entrepreneurial mindsets in media dark zones supported by iterative design and prototyping to reach 13700+ unique learners who made 59000+ calls for 183900+min listening duration to listen to content pieces of around 3 to 4 min, with the last monitored (March 2022) record of 34% serious listenership, within one and a half years of its inception. The paper provides an in-depth account of the technical development, content creation, learning, and assessment frameworks, as well as mobilization models which have been leveraged to build this end-to-end system.

Keywords: non-cognitive skills, entrepreneurial mindsets, speech interface, remote learning, storytelling

Procedia PDF Downloads 209