Search results for: resolution digital data
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 27594

Search results for: resolution digital data

25254 Multimedia Data Fusion for Event Detection in Twitter by Using Dempster-Shafer Evidence Theory

Authors: Samar M. Alqhtani, Suhuai Luo, Brian Regan

Abstract:

Data fusion technology can be the best way to extract useful information from multiple sources of data. It has been widely applied in various applications. This paper presents a data fusion approach in multimedia data for event detection in twitter by using Dempster-Shafer evidence theory. The methodology applies a mining algorithm to detect the event. There are two types of data in the fusion. The first is features extracted from text by using the bag-ofwords method which is calculated using the term frequency-inverse document frequency (TF-IDF). The second is the visual features extracted by applying scale-invariant feature transform (SIFT). The Dempster - Shafer theory of evidence is applied in order to fuse the information from these two sources. Our experiments have indicated that comparing to the approaches using individual data source, the proposed data fusion approach can increase the prediction accuracy for event detection. The experimental result showed that the proposed method achieved a high accuracy of 0.97, comparing with 0.93 with texts only, and 0.86 with images only.

Keywords: data fusion, Dempster-Shafer theory, data mining, event detection

Procedia PDF Downloads 410
25253 Legal Issues of Collecting and Processing Big Health Data in the Light of European Regulation 679/2016

Authors: Ioannis Iglezakis, Theodoros D. Trokanas, Panagiota Kiortsi

Abstract:

This paper aims to explore major legal issues arising from the collection and processing of Health Big Data in the light of the new European secondary legislation for the protection of personal data of natural persons, placing emphasis on the General Data Protection Regulation 679/2016. Whether Big Health Data can be characterised as ‘personal data’ or not is really the crux of the matter. The legal ambiguity is compounded by the fact that, even though the processing of Big Health Data is premised on the de-identification of the data subject, the possibility of a combination of Big Health Data with other data circulating freely on the web or from other data files cannot be excluded. Another key point is that the application of some provisions of GPDR to Big Health Data may both absolve the data controller of his legal obligations and deprive the data subject of his rights (e.g., the right to be informed), ultimately undermining the fundamental right to the protection of personal data of natural persons. Moreover, data subject’s rights (e.g., the right not to be subject to a decision based solely on automated processing) are heavily impacted by the use of AI, algorithms, and technologies that reclaim health data for further use, resulting in sometimes ambiguous results that have a substantial impact on individuals. On the other hand, as the COVID-19 pandemic has revealed, Big Data analytics can offer crucial sources of information. In this respect, this paper identifies and systematises the legal provisions concerned, offering interpretative solutions that tackle dangers concerning data subject’s rights while embracing the opportunities that Big Health Data has to offer. In addition, particular attention is attached to the scope of ‘consent’ as a legal basis in the collection and processing of Big Health Data, as the application of data analytics in Big Health Data signals the construction of new data and subject’s profiles. Finally, the paper addresses the knotty problem of role assignment (i.e., distinguishing between controller and processor/joint controllers and joint processors) in an era of extensive Big Health data sharing. The findings are the fruit of a current research project conducted by a three-member research team at the Faculty of Law of the Aristotle University of Thessaloniki and funded by the Greek Ministry of Education and Religious Affairs.

Keywords: big health data, data subject rights, GDPR, pandemic

Procedia PDF Downloads 129
25252 Knowledge of Quality Assurance and Quality Control in Mammography; A Study among Radiographers of Mammography Settings in Sri Lanka

Authors: H. S. Niroshani, W. M. Ediri Arachchi, R. Tudugala, U. J. M. A. L. Jayasinghe, U. M. U. J. Jayasekara, P. B. Hewavithana

Abstract:

Mammography is used as a screening tool for early diagnosis of breast cancer. It is also useful in refining the diagnosis of breast cancer either by assessment or work up after a suspicious area in the breast has been detected. In order to detect breast cancer accurately and at the earliest possible stage, the image must have an optimum contrast to reveal mass densities and spiculated fibrous structures radiating from them. In addition, the spatial resolution must be adequate to reveal the suffusion of micro calcifications and their shape. The above factors can be optimized by implementing an effective QA programme to enhance the accurate diagnosis of mammographic imaging. Therefore, the radiographer’s knowledge on QA is greatly instrumental in routine mammographic practice. The aim of this study was to assess the radiographer’s knowledge on Quality Assurance and Quality Control programmes in relation to mammographic procedures. A cross-sectional study was carried out among all radiographers working in each mammography setting in Sri Lanka. Pre-tested, anonymous self-administered questionnaires were circulated among the study population and duly filled questionnaires returned within a period of three months were taken into the account. The data on demographical information, knowledge on QA programme and associated QC tests, overall knowledge on QA and QC programmes were obtained. Data analysis was performed using IBM SPSS statistical software (version 20.0). The total response rate was 59.6% and the average knowledge score was 54.15±11.29 SD out of 100. Knowledge was compared on the basis of education level, special training of mammography, and the years of working experience in a mammographic setting of the individuals. Out of 31 subjects, 64.5% (n=20) were graduate radiographers and 35.5% (n=11) were diploma holders while 83.9% (n=26) of radiographers have been specially trained for mammography and 16.1% (n=5) have not been attended for any special training for mammography. It is also noted that 58.1% (n=18) of individuals possessed their experience of less than one year and rest 41.9% (n=13) of them were greater than that. Further, the results found that there is a significant difference (P < 0.05) in the knowledge of QA and overall knowledge on QA and QC programme in the categories of education level and working experience. Also, results imply that there was a significant difference (P < 0.05) in the knowledge of QC test among the groups of trained and non-trained radiographers. This study reveals that education level, working experience and the training obtained particularly in the field of mammography have a significant impact on their knowledge on QA and QC in mammography.

Keywords: knowledge, mammography, quality assurance, quality control

Procedia PDF Downloads 330
25251 Challenges for IoT Adoption in India: A Study Based on Foresight Analysis for 2025

Authors: Shruti Chopra, Vikas Rao Vadi

Abstract:

In the era of the digital world, the Internet of Things (IoT) has been receiving significant attention. Its ubiquitous connectivity between humans, machines to machines (M2M) and machines to humans provides it a potential to transform the society and establish an ecosystem to serve new dimensions to the economy of the country. Thereby, this study has attempted to identify the challenges that seem prevalent in IoT adoption in India through the literature survey. Further, the data has been collected by taking the opinions of experts to conduct the foresight analysis and it has been analyzed with the help of scenario planning process – Micmac, Mactor, Multipol, and Smic-Prob. As a methodology, the study has identified the relationship between variables through variable analysis using Micmac and actor analysis using Mactor, this paper has attempted to generate the entire field of possibilities in terms of hypotheses and construct various scenarios through Multipol. And lastly, the findings of the study include final scenarios that are selected using Smic-Prob by assigning the probability to all the scenarios (including the conditional probability). This study may help the practitioners and policymakers to remove the obstacles to successfully implement the IoT in India.

Keywords: Internet of Thing (IoT), foresight analysis, scenario planning, challenges, policymaking

Procedia PDF Downloads 147
25250 Soil Salinity from Wastewater Irrigation in Urban Greenery

Authors: H. Nouri, S. Chavoshi Borujeni, S. Anderson, S. Beecham, P. Sutton

Abstract:

The potential risk of salt leaching through wastewater irrigation is of concern for most local governments and city councils. Despite the necessity of salinity monitoring and management in urban greenery, most attention has been on agricultural fields. This study was defined to investigate the capability and feasibility of monitoring and predicting soil salinity using near sensing and remote sensing approaches using EM38 surveys, and high-resolution multispectral image of WorldView3. Veale Gardens within the Adelaide Parklands was selected as the experimental site. The results of the near sensing investigation were validated by testing soil salinity samples in the laboratory. Over 30 band combinations forming salinity indices were tested using image processing techniques. The outcomes of the remote sensing and near sensing approaches were compared to examine whether remotely sensed salinity indicators could map and predict the spatial variation of soil salinity through a potential statistical model. Statistical analysis was undertaken using the Stata 13 statistical package on over 52,000 points. Several regression models were fitted to the data, and the mixed effect modelling was selected the most appropriate one as it takes to account the systematic observation-specific unobserved heterogeneity. Results showed that SAVI (Soil Adjusted Vegetation Index) was the only salinity index that could be considered as a predictor for soil salinity but further investigation is needed. However, near sensing was found as a rapid, practical and realistically accurate approach for salinity mapping of heterogeneous urban vegetation.

Keywords: WorldView3, remote sensing, EM38, near sensing, urban green spaces, green smart cities

Procedia PDF Downloads 162
25249 National Plans for Recovery and Resilience between National Recovery and EU Cohesion Objectives: Insights from European Countries

Authors: Arbolino Roberta, Boffardi Raffaele

Abstract:

Achieving the highest effectiveness for the National Plans for Recovery and Resilience (NPRR) while strengthening the objectives of cohesion and reduction of intra-EU unbalances is only possible by means of strategic, coordinated, and coherent policy planning. Therefore, the present research aims at assessing and quantifying the potential impact of NPRRs across the twenty-seven European Member States in terms of economic convergence, considering disaggregated data on industrial, construction, and service sectors. The first step of the research involves a performance analysis of the main macroeconomic indicators describing the trends of twenty-seven EU economies before the pandemic outbreak. Subsequently, in order to define the potential effect of the resources allocated, we perform an impact analysis of previous similar EU investment policies, estimating national-level sectoral elasticity associated with the expenditure of the 2007-2013 and 2014-2020 Cohesion programmes funds. These coefficients are then exploited to construct adjustment scenarios. Finally, convergence analysis is performed on the data used for constructing scenarios in order to understand whether the expenditure of funds might be useful to foster economic convergence besides driving recovery. The results of our analysis show that the allocation of resources largely mirrors the aims of the policy framework underlying the NPRR, thus reporting the largest investments in both those sectors most affected by the economic shock (services) and those considered fundamental for the digital and green transition. Notwithstanding an overall positive effect, large differences exist among European countries, while no convergence process seems to be activated or fostered by these interventions.

Keywords: NPRR, policy evaluation, cohesion policy, scenario Nalsysi

Procedia PDF Downloads 83
25248 Measuring Quality of Participation Processes: A Literature Review and Case Study to Determine Criteria for the Influence of Digital Tools

Authors: Michaela Kaineder, Beate Bartlmae, Stefan Gaebler, Miriam Gutleder, Marlene Wuerfl

Abstract:

Digital tools and e-participation processes have seen a steady increase in popularity in recent years. While online trends come with the premise of new opportunities and easier participatory possibilities, there are still manifold challenges that smart city initiators and developers need to face. In this paper, innovative quality criteria of citizen participation processes was suggested by defining meaningful and measurable evaluation categories. Considering various developments, including the global megatrend of connectivity, a need for a fundamental examination of the basic structure of citizen participation processes was identified. To this end, the application of methods and tools through different points in the policy cycle is required. In order to provide an overview of the current challenges and problems in the field of participation, this paper analyzes those issues by carrying out a literature review that also focuses on disparities in the civic sector that might hinder residents in their desire for engagement. Additionally, a case study was chosen to demonstrate the potential that e-participation tools offer to planning experts and public authorities when integrating citizen’s creativity and experience at a large scale. This online co-creation process finally leads to offline events – such as local co-design workshops - with professional planners. The findings of this paper subsequently suggest a combination of e-participation and analogue forms to merge the benefits of both worlds, resulting in a broader audience and higher quality for participation processes.

Keywords: citizen participation, disparities, e-participation, integrated urban development, sustainable development goals, sustainable urban development

Procedia PDF Downloads 143
25247 Approach-Avoidance and Intrinsic-Extrinsic Motivation of Adolescent Computer Games Players

Authors: Monika Paleczna, Barbara Szmigielska

Abstract:

The period of adolescence is a time when young people are becoming more and more active and conscious users of the digital world. One of the most frequently undertaken activities by them is computer games. Young players can choose from a wide range of games, including action, adventure, strategy, and logic games. The main aim of this study is to answer the question about the motivation of teenage players. The basic question is what motivates young players to play computer games and what motivates them to play a particular game. Fifty adolescents aged 15-17 participated in the study. They completed a questionnaire in which they determined what motivates them to play, how often they play computer games, and what type of computer games they play most often. It was found that entertainment and learning English are among the most important motives. The most important specific features related to a given game are the knowledge of its previous parts and the ability to play for free. The motives chosen by the players will be described in relation to the concepts of internal and external as well as approach and avoidance motivation. An additional purpose of this study is to present data concerning preferences regarding the type of games and the amount of time they spend playing.

Keywords: computer games, motivation, game preferences, adolescence

Procedia PDF Downloads 184
25246 Impact of an Instructional Design Model in a Mathematics Game for Enhancing Students’ Motivation in Developing Countries

Authors: Shafaq Rubab

Abstract:

One of the biggest reasons of dropouts from schools is lack of motivation and interest among the students, particularly in mathematics. Many developing countries are facing this problem and this issue is lowering the literacy rate in these developing countries. The best solution for increasing motivation level and interest among the students is using tablet game-based learning. However, a pedagogically sound game required a well-planned instructional design model to enhance learner’s attention and confidence otherwise effectiveness of the learning games suffers badly. This research aims to evaluate the impact of the pedagogically sound instructional design model on students’ motivation by using tablet game-based learning. This research was conducted among the out-of-school-students having an age range from 7 to 12 years and the sample size of two hundred students was purposively selected without any gender discrimination. Qualitative research was conducted by using a survey tool named Instructional Material Motivational Survey (IMMS) adapted from Keller Arcs model. A comparison of results from both groups’ i.e. experimental group and control group revealed that motivation level of the students taught by the game was higher than the students instructed by using conventional methodologies. Experimental group’s students were more attentive, confident and satisfied as compared to the control group’s students. This research work not only promoted the trend of digital game-based learning in developing countries but also supported that a pedagogically sound instructional design model utilized in an educational game can increase the motivation level of the students and can make the learning process a totally immersive and interactive fun loving activity.

Keywords: digital game-based learning, student’s motivation, instructional design model, learning process

Procedia PDF Downloads 432
25245 Cities Simulation and Representation in Locative Games from the Perspective of Cultural Studies

Authors: B. A. A. Paixão, J. V. B. Gomide

Abstract:

This work aims to analyze the locative structure used by the locative games of the company Niantic. To fulfill this objective, a literature review on the representation and simulation of cities was developed; interviews with Ingress players and playing Ingress. Relating these data, it was possible to deepen the relationship between the virtual and the real to create the simulation of cities and their cultural objects in locative games. Cities representation associates geo-location provided by the Global Positioning System (GPS), with augmented reality and digital image, and provides a new paradigm in the city interaction with its parts and real and virtual world elements, homeomorphic to real world. Bibliographic review of papers related to the representation and simulation study and their application in locative games was carried out and is presented in the present paper. The cities representation and simulation concepts in locative games, and how this setting enables the flow and immersion in urban space, are analyzed. Some examples of games are discussed for this new setting development, which is a mix of real and virtual world. Finally, it was proposed a Locative Structure for electronic games using the concepts of heterotrophic representations and isotropic representations conjoined with immediacy and hypermediacy.

Keywords: cities representation, cities simulation, games simulation, immersion, locative games

Procedia PDF Downloads 210
25244 Real-Time Visualization Using GPU-Accelerated Filtering of LiDAR Data

Authors: Sašo Pečnik, Borut Žalik

Abstract:

This paper presents a real-time visualization technique and filtering of classified LiDAR point clouds. The visualization is capable of displaying filtered information organized in layers by the classification attribute saved within LiDAR data sets. We explain the used data structure and data management, which enables real-time presentation of layered LiDAR data. Real-time visualization is achieved with LOD optimization based on the distance from the observer without loss of quality. The filtering process is done in two steps and is entirely executed on the GPU and implemented using programmable shaders.

Keywords: filtering, graphics, level-of-details, LiDAR, real-time visualization

Procedia PDF Downloads 308
25243 Study on Intensity Modulated Non-Contact Optical Fiber Vibration Sensors of Different Configurations

Authors: Dinkar Dantala, Kishore Putha, Padmavathi Manchineelu

Abstract:

Optical fibers are widely used in the measurement of several physical parameters like temperature, pressure, vibrations etc. Measurement of vibrations plays a vital role in machines. In this paper, three fiber optic non-contact vibration sensors were discussed, which are designed based on the principle of light intensity modulation. The Dual plastic optical fiber, Fiber optic fused 1x2 coupler and Fiber optic fused 2x2 coupler vibration sensors are compared based on range of frequency, resolution and sensitivity. It is to conclude that 2x2 coupler configuration shows better response than other two sensors.

Keywords: fiber optic, PMMA, vibration sensor, intensity-modulated

Procedia PDF Downloads 370
25242 Removal of Perchloroethylene, a Common Pollutant, in Groundwater Using Activated Carbon

Authors: Marianne Miguet, Gaël Plantard, Yves Jaeger, Vincent Goetz

Abstract:

The contamination of groundwater is a major concern. A common pollutant, the perchloroethylene, is the target contaminant. Water treatment process as Granular Activated Carbons are very efficient but requires pilot-scale testing to determine the full-scale GAC performance. First, the batch mode was used to get a reliable experimental method to estimate the adsorption capacity of a common volatile compound is settled. The Langmuir model is acceptable to fit the isotherms. Dynamic tests were performed with three columns and different operating conditions. A database of concentration profiles and breakthroughs were obtained. The resolution of the set of differential equations is acceptable to fit the dynamics tests and could be used for a full-scale adsorber.

Keywords: activated carbon, groundwater, perchloroethylene, full-scale

Procedia PDF Downloads 426
25241 Revolutionizing Oil Palm Replanting: Geospatial Terrace Design for High-precision Ground Implementation Compared to Conventional Methods

Authors: Nursuhaili Najwa Masrol, Nur Hafizah Mohammed, Nur Nadhirah Rusyda Rosnan, Vijaya Subramaniam, Sim Choon Cheak

Abstract:

Replanting in oil palm cultivation is vital to enable the introduction of planting materials and provides an opportunity to improve the road, drainage, terrace design, and planting density. Oil palm replanting is fundamentally necessary every 25 years. The adoption of the digital replanting blueprint is imperative as it can assist the Malaysia Oil Palm industry in addressing challenges such as labour shortages and limited expertise related to replanting tasks. Effective replanting planning should commence at least 6 months prior to the actual replanting process. Therefore, this study will help to plan and design the replanting blueprint with high-precision translation on the ground. With the advancement of geospatial technology, it is now feasible to engage in thoroughly researched planning, which can help maximize the potential yield. A blueprint designed before replanting is to enhance management’s ability to optimize the planting program, address manpower issues, or even increase productivity. In terrace planting blueprints, geographic tools have been utilized to design the roads, drainages, terraces, and planting points based on the ARM standards. These designs are mapped with location information and undergo statistical analysis. The geospatial approach is essential in precision agriculture and ensuring an accurate translation of design to the ground by implementing high-accuracy technologies. In this study, geospatial and remote sensing technologies played a vital role. LiDAR data was employed to determine the Digital Elevation Model (DEM), enabling the precise selection of terraces, while ortho imagery was used for validation purposes. Throughout the designing process, Geographical Information System (GIS) tools were extensively utilized. To assess the design’s reliability on the ground compared with the current conventional method, high-precision GPS instruments like EOS Arrow Gold and HIPER VR GNSS were used, with both offering accuracy levels between 0.3 cm and 0.5cm. Nearest Distance Analysis was generated to compare the design with actual planting on the ground. The analysis revealed that it could not be applied to the roads due to discrepancies between actual roads and the blueprint design, which resulted in minimal variance. In contrast, the terraces closely adhered to the GPS markings, with the most variance distance being less than 0.5 meters compared to actual terraces constructed. Considering the required slope degrees for terrace planting, which must be greater than 6 degrees, the study found that approximately 65% of the terracing was constructed at a 12-degree slope, while over 50% of the terracing was constructed at slopes exceeding the minimum degrees. Utilizing blueprint replanting promising strategies for optimizing land utilization in agriculture. This approach harnesses technology and meticulous planning to yield advantages, including increased efficiency, enhanced sustainability, and cost reduction. From this study, practical implementation of this technique can lead to tangible and significant improvements in agricultural sectors. In boosting further efficiencies, future initiatives will require more sophisticated techniques and the incorporation of precision GPS devices for upcoming blueprint replanting projects besides strategic progression aims to guarantee the precision of both blueprint design stages and its subsequent implementation on the field. Looking ahead, automating digital blueprints are necessary to reduce time, workforce, and costs in commercial production.

Keywords: replanting, geospatial, precision agriculture, blueprint

Procedia PDF Downloads 83
25240 Application of a Confirmatory Composite Model for Assessing the Extent of Agricultural Digitalization: A Case of Proactive Land Acquisition Strategy (PLAS) Farmers in South Africa

Authors: Mazwane S., Makhura M. N., Ginege A.

Abstract:

Digitalization in South Africa has received considerable attention from policymakers. The support for the development of the digital economy by the South African government has been demonstrated through the enactment of various national policies and strategies. This study sought to develop an index for agricultural digitalization by applying composite confirmatory analysis (CCA). Another aim was to determine the factors that affect the development of digitalization in PLAS farms. Data on the indicators of the three dimensions of digitalization were collected from 300 Proactive Land Acquisition Strategy (PLAS) farms in South Africa using semi-structured questionnaires. Confirmatory composite analysis (CCA) was employed to reduce the items into three digitalization dimensions and ultimately to a digitalization index. Standardized digitalization index scores were extracted and fitted to a linear regression model to determine the factors affecting digitalization development. The results revealed that the model shows practical validity and can be used to measure digitalization development as measures of fit (geodesic distance, standardized root mean square residual, and squared Euclidean distance) were all below their respective 95%quantiles of bootstrap discrepancies (HI95 values). Therefore, digitalization is an emergent variable that can be measured using CCA. The average level of digitalization in PLAS farms was 0.2 and varied significantly across provinces. The factors that significantly influence digitalization development in PLAS land reform farms were age, gender, farm type, network type, and cellular data type. This should enable researchers and policymakers to understand the level of digitalization and patterns of development, as well as correctly attribute digitalization development to the contributing factors.

Keywords: agriculture, digitalization, confirmatory composite model, land reform, proactive land acquisition strategy, South Africa

Procedia PDF Downloads 63
25239 High-Efficiency Comparator for Low-Power Application

Authors: M. Yousefi, N. Nasirzadeh

Abstract:

In this paper, dynamic comparator structure employing two methods for power consumption reduction with applications in low-power high-speed analog-to-digital converters have been presented. The proposed comparator has low consumption thanks to power reduction methods. They have the ability for offset adjustment. The comparator consumes 14.3 μW at 100 MHz which is equal to 11.8 fJ. The comparator has been designed and simulated in 180 nm CMOS. Layouts occupy 210 μm2.

Keywords: efficiency, comparator, power, low

Procedia PDF Downloads 358
25238 Vertical Structure and Frequencies of Deep Convection during Active Periods of the West African Monsoon Season

Authors: Balogun R. Ayodeji, Adefisan E. Adesanya, Adeyewa Z. Debo, E. C. Okogbue

Abstract:

Deep convective systems during active periods of the West African monsoon season have not been properly investigated over better temporal and spatial resolution in West Africa. Deep convective systems are investigated over seven climatic zones of the West African sub-region, which are; west-coast rainforest, dry rainforest, Nigeria-Cameroon rainforest, Nigeria savannah, Central African and South Sudan (CASS) Savannah, Sudano-Sahel, and Sahel, using data from Tropical Rainfall Measurement Mission (TRMM) Precipitation Feature (PF) database. The vertical structure of the convective systems indicated by the presence of at least one 40 dBZ and reaching (attaining) at least 1km in the atmosphere showed strong core (highest frequency (%)) of reflectivity values around 2 km which is below the freezing level (4-5km) for all the zones. Echoes are detected above the 15km altitude much more frequently in the rainforest and Savannah zones than the Sudano and Sahel zones during active periods in March-May (MAM), whereas during active periods in June-September (JJAS) the savannahs, Sudano and Sahel zones convections tend to reach higher altitude more frequently than the rainforest zones. The percentage frequencies of deep convection indicated that the occurrences of the systems are within the range of 2.3-2.8% during both March-May (MAM) and June-September (JJAS) active periods in the rainforest and savannah zones. On the contrary, the percentage frequencies were found to be less than 2% in the Sudano and Sahel zones, except during the active-JJAS period in the Sudano zone.

Keywords: active periods, convective system, frequency, reflectivity

Procedia PDF Downloads 152
25237 Subjective Quality Assessment for Impaired Videos with Varying Spatial and Temporal Information

Authors: Muhammad Rehan Usman, Muhammad Arslan Usman, Soo Young Shin

Abstract:

The new era of digital communication has brought up many challenges that network operators need to overcome. The high demand of mobile data rates require improved networks, which is a challenge for the operators in terms of maintaining the quality of experience (QoE) for their consumers. In live video transmission, there is a sheer need for live surveillance of the videos in order to maintain the quality of the network. For this purpose objective algorithms are employed to monitor the quality of the videos that are transmitted over a network. In order to test these objective algorithms, subjective quality assessment of the streamed videos is required, as the human eye is the best source of perceptual assessment. In this paper we have conducted subjective evaluation of videos with varying spatial and temporal impairments. These videos were impaired with frame freezing distortions so that the impact of frame freezing on the quality of experience could be studied. We present subjective Mean Opinion Score (MOS) for these videos that can be used for fine tuning the objective algorithms for video quality assessment.

Keywords: frame freezing, mean opinion score, objective assessment, subjective evaluation

Procedia PDF Downloads 494
25236 Estimating Destinations of Bus Passengers Using Smart Card Data

Authors: Hasik Lee, Seung-Young Kho

Abstract:

Nowadays, automatic fare collection (AFC) system is widely used in many countries. However, smart card data from many of cities does not contain alighting information which is necessary to build OD matrices. Therefore, in order to utilize smart card data, destinations of passengers should be estimated. In this paper, kernel density estimation was used to forecast probabilities of alighting stations of bus passengers and applied to smart card data in Seoul, Korea which contains boarding and alighting information. This method was also validated with actual data. In some cases, stochastic method was more accurate than deterministic method. Therefore, it is sufficiently accurate to be used to build OD matrices.

Keywords: destination estimation, Kernel density estimation, smart card data, validation

Procedia PDF Downloads 352
25235 The Artificial Intelligence Driven Social Work

Authors: Avi Shrivastava

Abstract:

Our world continues to grapple with a lot of social issues. Economic growth and scientific advancements have not completely eradicated poverty, homelessness, discrimination and bias, gender inequality, health issues, mental illness, addiction, and other social issues. So, how do we improve the human condition in a world driven by advanced technology? The answer is simple: we will have to leverage technology to address some of the most important social challenges of the day. AI, or artificial intelligence, has emerged as a critical tool in the battle against issues that deprive marginalized and disadvantaged groups of the right to enjoy benefits that a society offers. Social work professionals can transform their lives by harnessing it. The lack of reliable data is one of the reasons why a lot of social work projects fail. Social work professionals continue to rely on expensive and time-consuming primary data collection methods, such as observation, surveys, questionnaires, and interviews, instead of tapping into AI-based technology to generate useful, real-time data and necessary insights. By leveraging AI’s data-mining ability, we can gain a deeper understanding of how to solve complex social problems and change lives of people. We can do the right work for the right people and at the right time. For example, AI can enable social work professionals to focus their humanitarian efforts on some of the world’s poorest regions, where there is extreme poverty. An interdisciplinary team of Stanford scientists, Marshall Burke, Stefano Ermon, David Lobell, Michael Xie, and Neal Jean, used AI to spot global poverty zones – identifying such zones is a key step in the fight against poverty. The scientists combined daytime and nighttime satellite imagery with machine learning algorithms to predict poverty in Nigeria, Uganda, Tanzania, Rwanda, and Malawi. In an article published by Stanford News, Stanford researchers use dark of night and machine learning, Ermon explained that they provided the machine-learning system, an application of AI, with the high-resolution satellite images and asked it to predict poverty in the African region. “The system essentially learned how to solve the problem by comparing those two sets of images [daytime and nighttime].” This is one example of how AI can be used by social work professionals to reach regions that need their aid the most. It can also help identify sources of inequality and conflict, which could reduce inequalities, according to Nature’s study, titled The role of artificial intelligence in achieving the Sustainable Development Goals, published in 2020. The report also notes that AI can help achieve 79 percent of the United Nation’s (UN) Sustainable Development Goals (SDG). AI is impacting our everyday lives in multiple amazing ways, yet some people do not know much about it. If someone is not familiar with this technology, they may be reluctant to use it to solve social issues. So, before we talk more about the use of AI to accomplish social work objectives, let’s put the spotlight on how AI and social work can complement each other.

Keywords: social work, artificial intelligence, AI based social work, machine learning, technology

Procedia PDF Downloads 102
25234 Machine Learning Based Digitalization of Validated Traditional Cognitive Tests and Their Integration to Multi-User Digital Support System for Alzheimer’s Patients

Authors: Ramazan Bakir, Gizem Kayar

Abstract:

It is known that Alzheimer and Dementia are the two most common types of Neurodegenerative diseases and their visibility is getting accelerated for the last couple of years. As the population sees older ages all over the world, researchers expect to see the rate of this acceleration much higher. However, unfortunately, there is no known pharmacological cure for both, although some help to reduce the rate of cognitive decline speed. This is why we encounter with non-pharmacological treatment and tracking methods more for the last five years. Many researchers, including well-known associations and hospitals, lean towards using non-pharmacological methods to support cognitive function and improve the patient’s life quality. As the dementia symptoms related to mind, learning, memory, speaking, problem-solving, social abilities and daily activities gradually worsen over the years, many researchers know that cognitive support should start from the very beginning of the symptoms in order to slow down the decline. At this point, life of a patient and caregiver can be improved with some daily activities and applications. These activities include but not limited to basic word puzzles, daily cleaning activities, taking notes. Later, these activities and their results should be observed carefully and it is only possible during patient/caregiver and M.D. in-person meetings in hospitals. These meetings can be quite time-consuming, exhausting and financially ineffective for hospitals, medical doctors, caregivers and especially for patients. On the other hand, digital support systems are showing positive results for all stakeholders of healthcare systems. This can be observed in countries that started Telemedicine systems. The biggest potential of our system is setting the inter-user communication up in the best possible way. In our project, we propose Machine Learning based digitalization of validated traditional cognitive tests (e.g. MOCA, Afazi, left-right hemisphere), their analyses for high-quality follow-up and communication systems for all stakeholders. R. Bakir and G. Kayar are with Gefeasoft, Inc, R&D – Software Development and Health Technologies company. Emails: ramazan, gizem @ gefeasoft.com This platform has a high potential not only for patient tracking but also for making all stakeholders feel safe through all stages. As the registered hospitals assign corresponding medical doctors to the system, these MDs are able to register their own patients and assign special tasks for each patient. With our integrated machine learning support, MDs are able to track the failure and success rates of each patient and also see general averages among similarly progressed patients. In addition, our platform also supports multi-player technology which helps patients play with their caregivers so that they feel much safer at any point they are uncomfortable. By also gamifying the daily household activities, the patients will be able to repeat their social tasks and we will provide non-pharmacological reminiscence therapy (RT – life review therapy). All collected data will be mined by our data scientists and analyzed meaningfully. In addition, we will also add gamification modules for caregivers based on Naomi Feil’s Validation Therapy. Both are behaving positively to the patient and keeping yourself mentally healthy is important for caregivers. We aim to provide a therapy system based on gamification for them, too. When this project accomplishes all the above-written tasks, patients will have the chance to do many tasks at home remotely and MDs will be able to follow them up very effectively. We propose a complete platform and the whole project is both time and cost-effective for supporting all stakeholders.

Keywords: alzheimer’s, dementia, cognitive functionality, cognitive tests, serious games, machine learning, artificial intelligence, digitalization, non-pharmacological, data analysis, telemedicine, e-health, health-tech, gamification

Procedia PDF Downloads 137
25233 Evaluated Nuclear Data Based Photon Induced Nuclear Reaction Model of GEANT4

Authors: Jae Won Shin

Abstract:

We develop an evaluated nuclear data based photonuclear reaction model of GEANT4 for a more accurate simulation of photon-induced neutron production. The evaluated photonuclear data libraries from the ENDF/B-VII.1 are taken as input. Incident photon energies up to 140 MeV which is the threshold energy for the pion production are considered. For checking the validity of the use of the data-based model, we calculate the photoneutron production cross-sections and yields and compared them with experimental data. The results obtained from the developed model are found to be in good agreement with the experimental data for (γ,xn) reactions.

Keywords: ENDF/B-VII.1, GEANT4, photoneutron, photonuclear reaction

Procedia PDF Downloads 275
25232 Optimizing Communications Overhead in Heterogeneous Distributed Data Streams

Authors: Rashi Bhalla, Russel Pears, M. Asif Naeem

Abstract:

In this 'Information Explosion Era' analyzing data 'a critical commodity' and mining knowledge from vertically distributed data stream incurs huge communication cost. However, an effort to decrease the communication in the distributed environment has an adverse influence on the classification accuracy; therefore, a research challenge lies in maintaining a balance between transmission cost and accuracy. This paper proposes a method based on Bayesian inference to reduce the communication volume in a heterogeneous distributed environment while retaining prediction accuracy. Our experimental evaluation reveals that a significant reduction in communication can be achieved across a diverse range of dataset types.

Keywords: big data, bayesian inference, distributed data stream mining, heterogeneous-distributed data

Procedia PDF Downloads 161
25231 Upsouth: Digitally Empowering Rangatahi (Youth) and Whaanau (Families) to Build Skills in Critical and Creative Thinking to Achieve More Active Citizenship in Aotearoa New Zealand

Authors: Ayla Hoeta

Abstract:

In a post-colonial Aotearoa New Zealand, solutions by rangatahi (youth) for rangatahi are essential as is civic participation and building economic agency in an increasingly tough economic climate. Upsouth was an online community crowdsourcing platform developed by The Southern Initiative, in collaboration with Itsnoon that provides rangatahi and whānau (family) a safe space to share lived experience, thoughts and ideas about local kaupapa (issues/topics) of importance to them. The target participants were Māori indigenous peoples and Pacifica groups, aged 14 - 21 years. In the Aotearoa New Zealand context, this participant group is not likely to engage in traditional consultation processes despite being an essential constituent in helping shape better local communities, whānau and futures. The Upsouth platform was active for two years from 2018-2019 where it completed 42 callups with 4300+ participants. The web platform collates the ideas, voices, feedback, and content of users around a callup that has been commissioned by a sponsor, such as Auckland Council, Z Energy or Auckland Transport. A callup may be about a pressing challenge in a community such as climate change, a new housing development, homelessness etc. Each callup was funded by the sponsor with Upsouths main point of difference being that participants are given koha (money donation) through digital wallets for their ideas. Depending on the quality of what participants upload, the koha varies between small micropayments and larger payments. This encouraged participants to develop creative and critical thinking - upskilling for future focussed jobs, enterprise and democratic skills while earning pocket money at the same time. Upsouth enables youth-led action and voice, and empowers them to be a part of a reciprocal and creative economy. Rangatahi are encouraged to express themselves culturally, creatively, freely and in a way they are free to choose - for example, spoken word, song, dance, video, drawings, and/or poems. This challenges and changes what is considered acceptable as community engagement feedback by the local government. Many traditional engagement platforms are not as consultative, do not accept diverse types of feedback, nor incentivise this valuable expression of feedback. Upsouth is also empowering for rangatahi, since it allows them the opportunity to express their opinions directly to the government. Upsouth gained national and international recognition for the way it engages with youth: winning the Supreme Award and the Accessibility and Transparency Award at Auckland Council’s 2018 Engagement Awards, becoming a finalist in the 2018 Digital Equity and Accessibility category of International Data Corporation’s Smart City Asia and Pacific Awards. This paper will fully contextualize the challenges of rangatahi and whānau civic engagement in Aotearoa New Zealand and then present a reflective case study of the Upsouth project, with examples from some of the callups. This is intended to form part of the Divided Cities 22 conference New Ground sub-theme as a critical reflection on a design intervention, which was conceived and implemented by the lead author to overcome the post-colonial divisions of Māori, Pacifica and minority ethnic rangatahi in Aotearoa New Zealand.

Keywords: rangatahi, youth empowerment, civic engagement, enabling, relating, digital platform, participation

Procedia PDF Downloads 81
25230 Risk Assessment of Heavy Metals in Soils at Electronic Waste Activity Sites within the Vicinity of Alaba International Market, Nigeria

Authors: A. A. Adebayo, A. O. Ogunkeyede, A. O. Adeigbe

Abstract:

Digital globalisation and yarn of Nigeria society to overcome the digital divide have resulted in contamination of soil by heavy metals (HMs) from e-waste activities at Alaba international market, Lagos, Nigeria. The aim of this research was to determine the concentration of various metals {Cadmium (Cd), Chromium (Cr), Copper (Cu), and Lead (Pb)} and identify their ecological and health risks for the people within the study area. A total of 60 soil samples were collected at Alaba market study area. Two types of samples were collected from each sampling points: topsoil (0-15 cm), subsoil (15 -30 cm). The metal concentration results showed that the soils were heavily contaminated by HMs at topsoil and subsoil. The geoaccummulation and ecological risk indices revealed high pollution level from all studied site. The health risk assessment results suggested that there is high possibility of carcinogenic risk to humans because the carcinogenic risk via corresponding exposure pathways exceeded the safety limit of 10-6 (the acceptable level of carcinogenic risk for human). Furthermore, inhalation of soil particles is the main exposure pathway for Cr to enter the human body for all ages. Children in the vicinity are exposed more to ingestion of Pb since they tend to eat earth (pica) and repeatedly suck their fingers. This study provides basic information to create awareness for a need to introduce pollution control measures and the need to protect the ecosystem and human health within the study area at Alaba international market.

Keywords: contaminated soil, ecological risk, hazard index, risk factor, exposure pathways, heavy metals

Procedia PDF Downloads 253
25229 Social and Digital Transformation of the Saudi Education System: A Cyberconflict Analysis

Authors: Mai Alshareef

Abstract:

The Saudi government considers the modernisation of the education system as a critical component of the national development plan, Saudi Vision 2030; however, this sudden reform creates tension amongst Saudis. This study examines first the reflection of the social and digital education reform on stakeholders and the general Saudi public, and second, the influence of information and communication technologies (ICTs) on the ethnoreligious conflict in Saudi Arabia. This study employs Cyberconflict theory to examine conflicts in the real world and cyberspace. The findings are based on a qualitative case study methodology that uses netnography, an analysis of 3,750 Twitter posts and semi-structural interviews with 30 individuals, including key actors in the Saudi education sector and Twitter activists during 2019\2020. The methods utilised are guided by thematic analysis to map an understanding of factors that influence societal conflicts in Saudi Arabia, which in this case include religious, national, and gender identity. Elements of Cyberconflict theory are used to better understand how conflicting groups build their identities in connection to their ethnic/religious/cultural differences and competing national identities. The findings correspond to the ethnoreligious components of the Cyberconflict theory. Twitter became a battleground for liberals, conservatives, the Saudi public and elites, and it is used in a novel way to influence public opinion and to challenge the media monopoly. Opposing groups relied heavily on a discourse of exclusion and inclusion and showed ethnic and religious affiliations, national identity, and chauvinism. The findings add to existing knowledge in the cyberconflict field of study, and they also reveal outcomes that are critical to the Saudi Arabian national context.

Keywords: education, cyberconflict, Twitter, national identity

Procedia PDF Downloads 174
25228 Classification of Coughing and Breathing Activities Using Wearable and a Light-Weight DL Model

Authors: Subham Ghosh, Arnab Nandi

Abstract:

Background: The proliferation of Wireless Body Area Networks (WBAN) and Internet of Things (IoT) applications demonstrates the potential for continuous monitoring of physical changes in the body. These technologies are vital for health monitoring tasks, such as identifying coughing and breathing activities, which are necessary for disease diagnosis and management. Monitoring activities such as coughing and deep breathing can provide valuable insights into a variety of medical issues. Wearable radio-based antenna sensors, which are lightweight and easy to incorporate into clothing or portable goods, provide continuous monitoring. This mobility gives it a substantial advantage over stationary environmental sensors like as cameras and radar, which are constrained to certain places. Furthermore, using compressive techniques provides benefits such as reduced data transmission speeds and memory needs. These wearable sensors offer more advanced and diverse health monitoring capabilities. Methodology: This study analyzes the feasibility of using a semi-flexible antenna operating at 2.4 GHz (ISM band) and positioned around the neck and near the mouth to identify three activities: coughing, deep breathing, and idleness. Vector network analyzer (VNA) is used to collect time-varying complex reflection coefficient data from perturbed antenna nearfield. The reflection coefficient (S11) conveys nuanced information caused by simultaneous variations in the nearfield radiation of three activities across time. The signatures are sparsely represented with gaussian windowed Gabor spectrograms. The Gabor spectrogram is used as a sparse representation approach, which reassigns the ridges of the spectrogram images to improve their resolution and focus on essential components. The antenna is biocompatible in terms of specific absorption rate (SAR). The sparsely represented Gabor spectrogram pictures are fed into a lightweight deep learning (DL) model for feature extraction and classification. Two antenna locations are investigated in order to determine the most effective localization for three different activities. Findings: Cross-validation techniques were used on data from both locations. Due to the complex form of the recorded S11, separate analyzes and assessments were performed on the magnitude, phase, and their combination. The combination of magnitude and phase fared better than the separate analyses. Various sliding window sizes, ranging from 1 to 5 seconds, were tested to find the best window for activity classification. It was discovered that a neck-mounted design was effective at detecting the three unique behaviors.

Keywords: activity recognition, antenna, deep-learning, time-frequency

Procedia PDF Downloads 10
25227 Data Privacy: Stakeholders’ Conflicts in Medical Internet of Things

Authors: Benny Sand, Yotam Lurie, Shlomo Mark

Abstract:

Medical Internet of Things (MIoT), AI, and data privacy are linked forever in a gordian knot. This paper explores the conflicts of interests between the stakeholders regarding data privacy in the MIoT arena. While patients are at home during healthcare hospitalization, MIoT can play a significant role in improving the health of large parts of the population by providing medical teams with tools for collecting data, monitoring patients’ health parameters, and even enabling remote treatment. While the amount of data handled by MIoT devices grows exponentially, different stakeholders have conflicting understandings and concerns regarding this data. The findings of the research indicate that medical teams are not concerned by the violation of data privacy rights of the patients' in-home healthcare, while patients are more troubled and, in many cases, are unaware that their data is being used without their consent. MIoT technology is in its early phases, and hence a mixed qualitative and quantitative research approach will be used, which will include case studies and questionnaires in order to explore this issue and provide alternative solutions.

Keywords: MIoT, data privacy, stakeholders, home healthcare, information privacy, AI

Procedia PDF Downloads 102
25226 An Event-Related Potentials Study on the Processing of English Subjunctive Mood by Chinese ESL Learners

Authors: Yan Huang

Abstract:

Event-related potentials (ERPs) technique helps researchers to make continuous measures on the whole process of language comprehension, with an excellent temporal resolution at the level of milliseconds. The research on sentence processing has developed from the behavioral level to the neuropsychological level, which brings about a variety of sentence processing theories and models. However, the applicability of these models to L2 learners is still under debate. Therefore, the present study aims to investigate the neural mechanisms underlying English subjunctive mood processing by Chinese ESL learners. To this end, English subject clauses with subjunctive moods are used as the stimuli, all of which follow the same syntactic structure, “It is + adjective + that … + (should) do + …” Besides, in order to examine the role that language proficiency plays on L2 processing, this research deals with two groups of Chinese ESL learners (18 males and 22 females, mean age=21.68), namely, high proficiency group (Group H) and low proficiency group (Group L). Finally, the behavioral and neurophysiological data analysis reveals the following findings: 1) Syntax and semantics interact with each other on the SECOND phase (300-500ms) of sentence processing, which is partially in line with the Three-phase Sentence Model; 2) Language proficiency does affect L2 processing. Specifically, for Group H, it is the syntactic processing that plays the dominant role in sentence processing while for Group L, semantic processing also affects the syntactic parsing during the THIRD phase of sentence processing (500-700ms). Besides, Group H, compared to Group L, demonstrates a richer native-like ERPs pattern, which further demonstrates the role of language proficiency in L2 processing. Based on the research findings, this paper also provides some enlightenment for the L2 pedagogy as well as the L2 proficiency assessment.

Keywords: Chinese ESL learners, English subjunctive mood, ERPs, L2 processing

Procedia PDF Downloads 131
25225 Optimizing Data Integration and Management Strategies for Upstream Oil and Gas Operations

Authors: Deepak Singh, Rail Kuliev

Abstract:

The abstract highlights the critical importance of optimizing data integration and management strategies in the upstream oil and gas industry. With its complex and dynamic nature generating vast volumes of data, efficient data integration and management are essential for informed decision-making, cost reduction, and maximizing operational performance. Challenges such as data silos, heterogeneity, real-time data management, and data quality issues are addressed, prompting the proposal of several strategies. These strategies include implementing a centralized data repository, adopting industry-wide data standards, employing master data management (MDM), utilizing real-time data integration technologies, and ensuring data quality assurance. Training and developing the workforce, “reskilling and upskilling” the employees and establishing robust Data Management training programs play an essential role and integral part in this strategy. The article also emphasizes the significance of data governance and best practices, as well as the role of technological advancements such as big data analytics, cloud computing, Internet of Things (IoT), and artificial intelligence (AI) and machine learning (ML). To illustrate the practicality of these strategies, real-world case studies are presented, showcasing successful implementations that improve operational efficiency and decision-making. In present study, by embracing the proposed optimization strategies, leveraging technological advancements, and adhering to best practices, upstream oil and gas companies can harness the full potential of data-driven decision-making, ultimately achieving increased profitability and a competitive edge in the ever-evolving industry.

Keywords: master data management, IoT, AI&ML, cloud Computing, data optimization

Procedia PDF Downloads 70