Search results for: mobile performance monitoring
14257 Educational Attainment of Owner-Managers and Performance of Micro- and Small Informal Businesses in Nigeria
Authors: Isaiah Oluranti Olurinola, Michael Kayode Bolarinwa, Ebenezer Bowale, Ifeoluwa Ogunrinola
Abstract:
Abstract - While much literature exists on microfinancing and its impact on the development of micro, small and medium-scale enterprises (MSME), yet little is known in respect of the impact of different types of education of owner-managers on the performances as well as innovative possibilities of such enterprises. This paper aims at contributing to the understanding of the impact of different types of education (academic, technical, apprenticeship, etc) that influence the performance of micro, small and medium-sized enterprise (MSME). This study utilises a recent and larger data-set collected in six states and FCT Abuja, Nigeria in the year 2014. Furthermore, the study carries out a comparative analysis of business performance among the different geo-political zones in Nigeria, given the educational attainment of the owner-managers. The data set were enterprise-based and were collected by the Nigerian Institute for Social and Economic Research (NISER) in the year 2014. Six hundred and eighty eight enterprises were covered in the survey. The method of data analysis for this study is the use of basic descriptive statistics in addition to the Logistic Regression model used in the prediction of the log of odds of business performance in relation to any of the identified educational attainment of the owner-managers in the sampled enterprises. An OLS econometric technique is also used to determine the effects of owner-managers' different educational types on the performance of the sampled MSME. Policy measures that will further enhance the contributions of education to MSME performance will be put forward.Keywords: Business Performance, Education, Microfinancing, Micro, Small and Medium Scale Enterprises
Procedia PDF Downloads 52014256 Innovating Electronics Engineering for Smart Materials Marketing
Authors: Muhammad Awais Kiani
Abstract:
The field of electronics engineering plays a vital role in the marketing of smart materials. Smart materials are innovative, adaptive materials that can respond to external stimuli, such as temperature, light, or pressure, in order to enhance performance or functionality. As the demand for smart materials continues to grow, it is crucial to understand how electronics engineering can contribute to their marketing strategies. This abstract presents an overview of the role of electronics engineering in the marketing of smart materials. It explores the various ways in which electronics engineering enables the development and integration of smart features within materials, enhancing their marketability. Firstly, electronics engineering facilitates the design and development of sensing and actuating systems for smart materials. These systems enable the detection and response to external stimuli, providing valuable data and feedback to users. By integrating sensors and actuators into materials, their functionality and performance can be significantly enhanced, making them more appealing to potential customers. Secondly, electronics engineering enables the creation of smart materials with wireless communication capabilities. By incorporating wireless technologies such as Bluetooth or Wi-Fi, smart materials can seamlessly interact with other devices, providing real-time data and enabling remote control and monitoring. This connectivity enhances the marketability of smart materials by offering convenience, efficiency, and improved user experience. Furthermore, electronics engineering plays a crucial role in power management for smart materials. Implementing energy-efficient systems and power harvesting techniques ensures that smart materials can operate autonomously for extended periods. This aspect not only increases their market appeal but also reduces the need for constant maintenance or battery replacements, thus enhancing customer satisfaction. Lastly, electronics engineering contributes to the marketing of smart materials through innovative user interfaces and intuitive control mechanisms. By designing user-friendly interfaces and integrating advanced control systems, smart materials become more accessible to a broader range of users. Clear and intuitive controls enhance the user experience and encourage wider adoption of smart materials in various industries. In conclusion, electronics engineering significantly influences the marketing of smart materials by enabling the design of sensing and actuating systems, wireless connectivity, efficient power management, and user-friendly interfaces. The integration of electronics engineering principles enhances the functionality, performance, and marketability of smart materials, making them more adaptable to the growing demand for innovative and connected materials in diverse industries.Keywords: electronics engineering, smart materials, marketing, power management
Procedia PDF Downloads 5714255 Evaluating the Impact of Replacement Policies on the Cache Performance and Energy Consumption in Different Multicore Embedded Systems
Authors: Sajjad Rostami-Sani, Mojtaba Valinataj, Amir-Hossein Khojir-Angasi
Abstract:
The cache has an important role in the reduction of access delay between a processor and memory in high-performance embedded systems. In these systems, the energy consumption is one of the most important concerns, and it will become more important with smaller processor feature sizes and higher frequencies. Meanwhile, the cache system dissipates a significant portion of energy compared to the other components of a processor. There are some elements that can affect the energy consumption of the cache such as replacement policy and degree of associativity. Due to these points, it can be inferred that selecting an appropriate configuration for the cache is a crucial part of designing a system. In this paper, we investigate the effect of different cache replacement policies on both cache’s performance and energy consumption. Furthermore, the impact of different Instruction Set Architectures (ISAs) on cache’s performance and energy consumption has been investigated.Keywords: energy consumption, replacement policy, instruction set architecture, multicore processor
Procedia PDF Downloads 15214254 A Study on the False Alarm Rates of MEWMA and MCUSUM Control Charts When the Parameters Are Estimated
Authors: Umar Farouk Abbas, Danjuma Mustapha, Hamisu Idi
Abstract:
It is now a known fact that quality is an important issue in manufacturing industries. A control chart is an integrated and powerful tool in statistical process control (SPC). The mean µ and standard deviation σ parameters are estimated. In general, the multivariate exponentially weighted moving average (MEWMA) and multivariate cumulative sum (MCUSUM) are used in the detection of small shifts in joint monitoring of several correlated variables; the charts used information from past data which makes them sensitive to small shifts. The aim of the paper is to compare the performance of Shewhart xbar, MEWMA, and MCUSUM control charts in terms of their false rates when parameters are estimated with autocorrelation. A simulation was conducted in R software to generate the average run length (ARL) values of each of the charts. After the analysis, the results show that a comparison of the false alarm rates of the charts shows that MEWMA chart has lower false alarm rates than the MCUSUM chart at various levels of parameter estimated to the number of ARL0 (in control) values. Also noticed was that the sample size has an advert effect on the false alarm of the control charts.Keywords: average run length, MCUSUM chart, MEWMA chart, false alarm rate, parameter estimation, simulation
Procedia PDF Downloads 22014253 Modeling Biomass and Biodiversity across Environmental and Management Gradients in Temperate Grasslands with Deep Learning and Sentinel-1 and -2
Authors: Javier Muro, Anja Linstadter, Florian Manner, Lisa Schwarz, Stephan Wollauer, Paul Magdon, Gohar Ghazaryan, Olena Dubovyk
Abstract:
Monitoring the trade-off between biomass production and biodiversity in grasslands is critical to evaluate the effects of management practices across environmental gradients. New generations of remote sensing sensors and machine learning approaches can model grasslands’ characteristics with varying accuracies. However, studies often fail to cover a sufficiently broad range of environmental conditions, and evidence suggests that prediction models might be case specific. In this study, biomass production and biodiversity indices (species richness and Fishers’ α) are modeled in 150 grassland plots for three sites across Germany. These sites represent a North-South gradient and are characterized by distinct soil types, topographic properties, climatic conditions, and management intensities. Predictors used are derived from Sentinel-1 & 2 and a set of topoedaphic variables. The transferability of the models is tested by training and validating at different sites. The performance of feed-forward deep neural networks (DNN) is compared to a random forest algorithm. While biomass predictions across gradients and sites were acceptable (r2 0.5), predictions of biodiversity indices were poor (r2 0.14). DNN showed higher generalization capacity than random forest when predicting biomass across gradients and sites (relative root mean squared error of 0.5 for DNN vs. 0.85 for random forest). DNN also achieved high performance when using the Sentinel-2 surface reflectance data rather than different combinations of spectral indices, Sentinel-1 data, or topoedaphic variables, simplifying dimensionality. This study demonstrates the necessity of training biomass and biodiversity models using a broad range of environmental conditions and ensuring spatial independence to have realistic and transferable models where plot level information can be upscaled to landscape scale.Keywords: ecosystem services, grassland management, machine learning, remote sensing
Procedia PDF Downloads 21814252 The Role of Human Resource Capabilities and Knowledge Management on Employees’ Performance in the Nuclear Energy Sector of Nigeria
Authors: Hakeem Ade Omokayode Idowu
Abstract:
The extent of the role played by human capabilities developments as well as knowledge management on employees’ performance in the nuclear energy sector of Nigeria remains unclear. This is in view of the important role which human resource capabilities could play in the desire to generate energy using nuclear resources. This study appraised the extent of human resource capabilities available in the nuclear energy sector of Nigeria. It further examined the relationship between knowledge management and employees’ performance in the nuclear energy sector. The study adopted a descriptive research design with a population that comprised all the 1736 members of staff of the selected centres, institutes, and the headquarters of the Nigeria Atomic Energy Commission (NAEC), Nigerian Nuclear Regulatory Authority (NNRA), and Energy Commission of Nigeria (ECN) and a sample size of 332 employees was selected using purposive and convenience sampling techniques. Data collected were subjected to analysis using frequency counts and simple regression. The results showed that majority of the employees perceived that they have to a high extent of availability of knowledge (118, 35.5%), credibility (134, 40.4%), alignment (130, 39.2%), performance (126, 38%) and innovation (138, 41.6%) The result of the hypothesis tested indicated that knowledge management has a positive and significant effect on employees’ performance (Beta weight = 0.336, R2 =0.113, F-value = 41.959, p-value = 0.000< 0.05). The study concluded that human resource capabilities and knowledge management could enhance employee performance within the nuclear energy sector of Nigeria.Keywords: human resource capabilities, knowledge management, employees productivity, national development
Procedia PDF Downloads 7114251 An Integrated Theoretical Framework on Mobile-Assisted Language Learning: User’s Acceptance Behavior
Authors: Gyoomi Kim, Jiyoung Bae
Abstract:
In the field of language education research, there are not many tries to empirically examine learners’ acceptance behavior and related factors of mobile-assisted language learning (MALL). This study is one of the few attempts to propose an integrated theoretical framework that explains MALL users’ acceptance behavior and potential factors. Constructs from technology acceptance model (TAM) and MALL research are tested in the integrated framework. Based on previous studies, a hypothetical model was developed. Four external variables related to the MALL user’s acceptance behavior were selected: subjective norm, content reliability, interactivity, self-regulation. The model was also composed of four other constructs: two latent variables, perceived ease of use and perceived usefulness, were considered as cognitive constructs; attitude toward MALL as an affective construct; behavioral intention to use MALL as a behavioral construct. The participants were 438 undergraduate students who enrolled in an intensive English program at one university in Korea. This particular program was held in January 2018 using the vacation period. The students were given eight hours of English classes each day from Monday to Friday for four weeks and asked to complete MALL courses for practice outside the classroom. Therefore, all participants experienced blended MALL environment. The instrument was a self-response questionnaire, and each construct was measured by five questions. Once the questionnaire was developed, it was distributed to the participants at the final ceremony of the intensive program in order to collect the data from a large number of the participants at a time. The data showed significant evidence to support the hypothetical model. The results confirmed through structural equation modeling analysis are as follows: First, four external variables such as subjective norm, content reliability, interactivity, and self-regulation significantly affected perceived ease of use. Second, subjective norm, content reliability, self-regulation, perceived ease of use significantly affected perceived usefulness. Third, perceived usefulness and perceived ease of use significantly affected attitude toward MALL. Fourth, attitude toward MALL and perceived usefulness significantly affected behavioral intention to use MALL. These results implied that the integrated framework from TAM and MALL could be useful when adopting MALL environment to university students or adult English learners. Key constructs except interactivity showed significant relationships with one another and had direct and indirect impacts on MALL user’s acceptance behavior. Therefore, the constructs and validated metrics is valuable for language researchers and educators who are interested in MALL.Keywords: blended MALL, learner factors/variables, mobile-assisted language learning, MALL, technology acceptance model, TAM, theoretical framework
Procedia PDF Downloads 23714250 Multistage Data Envelopment Analysis Model for Malmquist Productivity Index Using Grey's System Theory to Evaluate Performance of Electric Power Supply Chain in Iran
Authors: Mesbaholdin Salami, Farzad Movahedi Sobhani, Mohammad Sadegh Ghazizadeh
Abstract:
Evaluation of organizational performance is among the most important measures that help organizations and entities continuously improve their efficiency. Organizations can use the existing data and results from the comparison of units under investigation to obtain an estimation of their performance. The Malmquist Productivity Index (MPI) is an important index in the evaluation of overall productivity, which considers technological developments and technical efficiency at the same time. This article proposed a model based on the multistage MPI, considering limited data (Grey’s theory). This model can evaluate the performance of units using limited and uncertain data in a multistage process. It was applied by the electricity market manager to Iran’s electric power supply chain (EPSC), which contains uncertain data, to evaluate the performance of its actors. Results from solving the model showed an improvement in the accuracy of future performance of the units under investigation, using the Grey’s system theory. This model can be used in all case studies, in which MPI is used and there are limited or uncertain data.Keywords: Malmquist Index, Grey's Theory, CCR Model, network data envelopment analysis, Iran electricity power chain
Procedia PDF Downloads 16314249 Effectiveness of the Use of Polycarboxylic Ether Superplasticizers in High Performance Concrete Containing Silica Fume
Authors: Alya Harichane, Badreddine Harichane
Abstract:
The incorporation of polycarboxylate ether superplasticizer (PCE) and silica fume (SF) in high-performance concretes (HPC) leads to the achievement of remarkable rheological and mechanical improvements. In the fresh state, PCEs are adsorbed on cement particles and dispersants, in turn promoting the workability of the concrete. Silica fume enables a very well compacted concrete to be obtained, which is characterized by high mechanical parameters in its hardened state. Some PCEs are incompatible with silica fume, which can result in the loss of slump and in poor rheological behavior. The main objective of the research is the study of the influence of three types of PCEs, which all have a different molecular architecture, on the rheological and mechanical behavior of high-performance concretes containing 10% of SF as a partial replacement of cement. The results show that the carboxylic density of PCE has an influence on its compatibility with SF.Keywords: polycarboxylate-ether superplasticizer, rheology, compressive strength, high-performance concrete, silica fume
Procedia PDF Downloads 7314248 Competence on Learning Delivery Modes and Performance of Physical Education Teachers in Senior High Schools in Davao
Authors: Juvanie C. Lapesigue
Abstract:
Worldwide school closures result from a significant public health crisis that has affected the nation and the entire world. It has affected students, educators, educational organizations globally, and many other aspects of society. Academic institutions worldwide teach students using diverse approaches of various learning delivery modes. This paper investigates the competence and performance of physical education teachers using various learning delivery modes, including Distance learning, Blended Learning, and Homeschooling during online distance education. To identify the Gap between their age generation using various learning delivery that affects teachers' preparation for distance learning and evaluates how these modalities impact teachers’ competence and performance in the case of a pandemic. The respondents were the Senior High School teachers of the Department of Education who taught in Davao City before and during the pandemic. Purposive sampling was utilized on 61 Senior High School Teachers in Davao City Philippines. The result indicated that teaching performance based on pedagogy and assessment has significantly affected teaching performance in teaching physical education, particularly those Non-PE teachers teaching physical education subjects. It should be supplied with enhancement training workshops to help them be more successful in preparation in terms of teaching pedagogy and assessment in the following norm. Hence, a proposed unique training design for non-P.E. Teachers has been created to improve the teachers’ performance in terms of pedagogy and assessment in teaching P.E subjects in various learning delivery modes in the next normal.Keywords: distance learning, learning delivery modes, P.E teachers, senior high school, teaching competence, teaching performance
Procedia PDF Downloads 9314247 Big Data for Local Decision-Making: Indicators Identified at International Conference on Urban Health 2017
Authors: Dana R. Thomson, Catherine Linard, Sabine Vanhuysse, Jessica E. Steele, Michal Shimoni, Jose Siri, Waleska Caiaffa, Megumi Rosenberg, Eleonore Wolff, Tais Grippa, Stefanos Georganos, Helen Elsey
Abstract:
The Sustainable Development Goals (SDGs) and Urban Health Equity Assessment and Response Tool (Urban HEART) identify dozens of key indicators to help local decision-makers prioritize and track inequalities in health outcomes. However, presentations and discussions at the International Conference on Urban Health (ICUH) 2017 suggested that additional indicators are needed to make decisions and policies. A local decision-maker may realize that malaria or road accidents are a top priority. However, s/he needs additional health determinant indicators, for example about standing water or traffic, to address the priority and reduce inequalities. Health determinants reflect the physical and social environments that influence health outcomes often at community- and societal-levels and include such indicators as access to quality health facilities, access to safe parks, traffic density, location of slum areas, air pollution, social exclusion, and social networks. Indicator identification and disaggregation are necessarily constrained by available datasets – typically collected about households and individuals in surveys, censuses, and administrative records. Continued advancements in earth observation, data storage, computing and mobile technologies mean that new sources of health determinants indicators derived from 'big data' are becoming available at fine geographic scale. Big data includes high-resolution satellite imagery and aggregated, anonymized mobile phone data. While big data are themselves not representative of the population (e.g., satellite images depict the physical environment), they can provide information about population density, wealth, mobility, and social environments with tremendous detail and accuracy when combined with population-representative survey, census, administrative and health system data. The aim of this paper is to (1) flag to data scientists important indicators needed by health decision-makers at the city and sub-city scale - ideally free and publicly available, and (2) summarize for local decision-makers new datasets that can be generated from big data, with layperson descriptions of difficulties in generating them. We include SDGs and Urban HEART indicators, as well as indicators mentioned by decision-makers attending ICUH 2017.Keywords: health determinant, health outcome, mobile phone, remote sensing, satellite imagery, SDG, urban HEART
Procedia PDF Downloads 20914246 The Impact of Leadership Styles and Coordination on Employees Performance in the Nigerian Banking Sector
Authors: Temilola Akinbolade, Bukola Okunade, Karounwi Okunade
Abstract:
Leadership is a subject of direction. Direction entails ensuring that employees carryout the jobs assigned to them. In order to direct subordinates, a manager must lead, motivate, communicate and ensure effective co-ordination of activities so that enterprise objectives are achieved. The purpose of the study was to find out the impact of Leadership Styles on Employees Performance, Study of Wema Bank Plc. Leadership has been described as a tool used in influencing people in order to willingly get a particular or task done. The importance of leadership is followership. That is the willingness of people to follow what makes a person a leader. A sample size of 150 was systematically selected from the study population using the statistical packages for Social Science (SPSS) formula. Based on this, questionnaire was designed and administered. Out of the 105 copies of the questionnaire administered. 150 were recovered, 45 were discarded for improper filling and mutilation while the remaining 105 were used for statistical analysis. Chi-square was employed in testing the hypothesis. The following findings were discovered in the course of the study: how leadership enhances employee’s performance, 85.7% of the respondents were in agreement. Also how implementation of workers social welfare packages enhance the employees performance. 88.6 percent of the respondents in agreement. Over the years, some leadership styles adopted by managers and administrators have an impact on the level of employee’s performance in workplace and this has led to the inefficient and ineffective attainment of organizational goals and objectives. Due to the inability of employees to perform to set standard, this research work will also indicate some ways through which high employee performance will be attained most especially with regards to the leadership style adopted by the management that is managers and administrators. It was also discovered that collective intelligence of employees leads to high employee’s performance 82.9 percent of the respondent in agreement.Keywords: leadership, employees, performance, banking sector
Procedia PDF Downloads 24014245 Influence of Bed Depth on Performance of Wire Screen Packed Bed Solar Air Heater
Authors: Vimal Kumar Chouksey, S. P. Sharma
Abstract:
This paper deals with theoretical analysis of performance of solar air collector having its duct packed with blackened wire screen matrices. The heat transfer equations for two-dimensional fully developed fluid flows under quasi-steady-state conditions have been developed in order to analyze the effect of bed depth on performance. A computer programme is developed in C++ language to estimate the temperature rise of entering air for evaluation of performance by solving the governing equations numerically using relevant correlations for heat transfer coefficient for packed bed systems. Results of air temperature rise and thermal efficiency obtained from the analysis have been compared with available experimental results and results have been found fairly in closed agreement. It has been found that there is considerable enhancement in performance with packed bed collector upto a certain total bed depth. Effect of total bed depth on efficiency show that there is an upper limiting value of total bed depth beyond which the thermal efficiency begins to fall again and this type of characteristics behavior is observed at all mass flow rate.Keywords: plane collector, solar air heater, solar energy, wire screen packed bed
Procedia PDF Downloads 23514244 SEAWIZARD-Multiplex AI-Enabled Graphene Based Lab-On-Chip Sensing Platform for Heavy Metal Ions Monitoring on Marine Water
Authors: M. Moreno, M. Alique, D. Otero, C. Delgado, P. Lacharmoise, L. Gracia, L. Pires, A. Moya
Abstract:
Marine environments are increasingly threatened by heavy metal contamination, including mercury (Hg), lead (Pb), and cadmium (Cd), posing significant risks to ecosystems and human health. Traditional monitoring techniques often fail to provide the spatial and temporal resolution needed for real-time detection of these contaminants, especially in remote or harsh environments. SEAWIZARD addresses these challenges by leveraging the flexibility, adaptability, and cost-effectiveness of printed electronics, with the integration of microfluidics to develop a compact, portable, and reusable sensor platform designed specifically for real-time monitoring of heavy metal ions in seawater. The SEAWIZARD sensor is a multiparametric Lab-on-Chip (LoC) device, a miniaturized system that integrates several laboratory functions into a single chip, drastically reducing sample volumes and improving adaptability. This platform integrates three printed graphene electrodes for the simultaneous detection of Hg, Cd and Pb via square wave voltammetry. These electrodes share the reference and the counter electrodes to improve space efficiency. Additionally, it integrates printed pH and temperature sensors to correct environmental interferences that may impact the accuracy of metal detection. The pH sensor is based on a carbon electrode with iridium oxide electrodeposited while the temperature sensor is graphene based. A protective dielectric layer is printed on top of the sensor to safeguard it in harsh marine conditions. The use of flexible polyethylene terephthalate (PET) as the substrate enables the sensor to conform to various surfaces and operate in challenging environments. One of the key innovations of SEAWIZARD is its integrated microfluidic layer, fabricated from cyclic olefin copolymer (COC). This microfluidic component allows a controlled flow of seawater over the sensing area, allowing for significant improved detection limits compared to direct water sampling. The system’s dual-channel design separates the detection of heavy metals from the measurement of pH and temperature, ensuring that each parameter is measured under optimal conditions. In addition, the temperature sensor is finely tuned with a serpentine-shaped microfluidic channel to ensure precise thermal measurements. SEAWIZARD also incorporates custom electronics that allow for wireless data transmission via Bluetooth, facilitating rapid data collection and user interface integration. Embedded artificial intelligence further enhances the platform by providing an automated alarm system, capable of detecting predefined metal concentration thresholds and issuing warnings when limits are exceeded. This predictive feature enables early warnings of potential environmental disasters, such as industrial spills or toxic levels of heavy metal pollutants, making SEAWIZARD not just a detection tool, but a comprehensive monitoring and early intervention system. In conclusion, SEAWIZARD represents a significant advancement in printed electronics applied to environmental sensing. By combining flexible, low-cost materials with advanced microfluidics, custom electronics, and AI-driven intelligence, SEAWIZARD offers a highly adaptable and scalable solution for real-time, high-resolution monitoring of heavy metals in marine environments. Its compact and portable design makes it an accessible, user-friendly tool with the potential to transform water quality monitoring practices and provide critical data to protect marine ecosystems from contamination-related risks.Keywords: lab-on-chip, printed electronics, real-time monitoring, microfluidics, heavy metal contamination
Procedia PDF Downloads 2714243 The Comparation of Limits of Detection of Lateral Flow Immunochromatographic Strips of Different Types of Mycotoxins
Authors: Xinyi Zhao, Furong Tian
Abstract:
Mycotoxins are secondary metabolic products of fungi. These are poisonous, carcinogens and mutagens in nature and pose a serious health threat to both humans and animals, causing severe illnesses and even deaths. The rapid, simple and cheap detection methods of mycotoxins are of immense importance and in great demand in the food and beverage industry as well as in agriculture and environmental monitoring. Lateral flow immunochromatographic strips (ICSTs) have been widely used in food safety, environment monitoring. Forty-six papers were identified and reviewed on Google Scholar and Scopus for their limit of detection and nanomaterial on Lateral flow immunochromatographic strips on different types of mycotoxins. The papers were dated 2001-2021. Twenty five papers were compared to identify the lowest limit of detection of among different mycotoxins (Aflatoxin B1: 10, Zearalenone:5, Fumonisin B1: 5, Trichothecene-A: 5). Most of these highly sensitive strips are competitive. Sandwich structure are usually used in large scale detection. In conclusion, the mycotoxin receives that most researches is aflatoxin B1 and its limit of detection is the lowest. Gold-nanopaticle based immunochromatographic test strips has the lowest limit of detection. Five papers involve smartphone detection and they all detect aflatoxin B1 with gold nanoparticles. In these papers, quantitative concentration results can be obtained when the user uploads the photograph of test lines using the smartphone application.Keywords: aflatoxin B1, limit of detection, gold nanoparticle, lateral flow immunochromatographic strips, mycotoxins
Procedia PDF Downloads 19314242 Analysis of the Effective Components on the Performance of the Public Sector in Iran
Authors: Mahsa Habibzadeh
Abstract:
The function is defined as the process of systematic and systematic measurement of the components of how each task is performed and determining their potential for improvement in accordance with the specific standards of each component. Hence, evaluation is the basis for the improvement of organizations' functional excellence and the move towards performance excellence depends on performance improvement planning. Because of the past two decades, the public sector system has undergone dramatic changes. The purpose of such developments is often to overcome the barriers of the bureaucratic system, which impedes the efficient use of limited resources. Implementing widespread changes in the public sector of developed and even developing countries has led the process of developments to be addressed by many researchers. In this regard, the present paper has been carried out with the approach of analyzing the components that affect the performance of the public sector in Iran. To achieve this goal, indicators that affect the performance of the public sector and the factors affecting the improvement of its accountability have been identified. The research method in this research is descriptive and analytical. A statistical population of 120 people consists of managers and employees of the public sector in Iran. The questionnaires were distributed among them and analyzed using SPSS and LISREL software. The obtained results indicate that the results of the research findings show that between responsibilities there is a significant relationship between participation of managers and employees, legality, justice and transparency of specialty and competency, participation in public sector functions. Also, the significant coefficient for the liability variable is 3.31 for justice 2.89 for transparency 1.40 for legality of 2.27 for specialty and competence 2.13 and 5.17 for participation 5.17. Implementing indicators that affect the performance of the public sector can lead to satisfaction of the audience.Keywords: performance, accountability system, public sector, components
Procedia PDF Downloads 22614241 Optimization of Samarium Extraction via Nanofluid-Based Emulsion Liquid Membrane Using Cyanex 272 as Mobile Carrier
Authors: Maliheh Raji, Hossein Abolghasemi, Jaber Safdari, Ali Kargari
Abstract:
Samarium as a rare-earth element is playing a growing important role in high technology. Traditional methods for extraction of rare earth metals such as ion exchange and solvent extraction have disadvantages of high investment and high energy consumption. Emulsion liquid membrane (ELM) as an improved solvent extraction technique is an effective transport method for separation of various compounds from aqueous solutions. In this work, the extraction of samarium from aqueous solutions by ELM was investigated using response surface methodology (RSM). The organic membrane phase of the ELM was a nanofluid consisted of multiwalled carbon nanotubes (MWCNT), Span80 as surfactant, Cyanex 272 as mobile carrier, and kerosene as base fluid. 1 M nitric acid solution was used as internal aqueous phase. The effects of the important process parameters on samarium extraction were investigated, and the values of these parameters were optimized using the Central Composition Design (CCD) of RSM. These parameters were the concentration of MWCNT in nanofluid, the carrier concentration, and the volume ratio of organic membrane phase to internal phase (Roi). The three-dimensional (3D) response surfaces of samarium extraction efficiency were obtained to visualize the individual and interactive effects of the process variables. A regression model for % extraction was developed, and its adequacy was evaluated. The result shows that % extraction improves by using MWCNT nanofluid in organic membrane phase and extraction efficiency of 98.92% can be achieved under the optimum conditions. In addition, demulsification was successfully performed and the recycled membrane phase was proved to be effective in the optimum condition.Keywords: Cyanex 272, emulsion liquid membrane, MWCNT nanofluid, response surface methology, Samarium
Procedia PDF Downloads 42314240 Performance Analysis of the Time-Based and Periodogram-Based Energy Detector for Spectrum Sensing
Authors: Sadaf Nawaz, Adnan Ahmed Khan, Asad Mahmood, Chaudhary Farrukh Javed
Abstract:
Classically, an energy detector is implemented in time domain (TD). However, frequency domain (FD) based energy detector has demonstrated an improved performance. This paper presents a comparison between the two approaches as to analyze their pros and cons. A detailed performance analysis of the classical TD energy-detector and the periodogram based detector is performed. Exact and approximate mathematical expressions for probability of false alarm (Pf) and probability of detection (Pd) are derived for both approaches. The derived expressions naturally lead to an analytical as well as intuitive reasoning for the improved performance of (Pf) and (Pd) in different scenarios. Our analysis suggests the dependence improvement on buffer sizes. Pf is improved in FD, whereas Pd is enhanced in TD based energy detectors. Finally, Monte Carlo simulations results demonstrate the analysis reached by the derived expressions.Keywords: cognitive radio, energy detector, periodogram, spectrum sensing
Procedia PDF Downloads 37514239 A Method for False Alarm Recognition Based on Multi-Classification Support Vector Machine
Authors: Weiwei Cui, Dejian Lin, Leigang Zhang, Yao Wang, Zheng Sun, Lianfeng Li
Abstract:
Built-in test (BIT) is an important technology in testability field, and it is widely used in state monitoring and fault diagnosis. With the improvement of modern equipment performance and complexity, the scope of BIT becomes larger, and it leads to the emergence of false alarm problem. The false alarm makes the health assessment unstable, and it reduces the effectiveness of BIT. The conventional false alarm suppression methods such as repeated test and majority voting cannot meet the requirement for a complicated system, and the intelligence algorithms such as artificial neural networks (ANN) are widely studied and used. However, false alarm has a very low frequency and small sample, yet a method based on ANN requires a large size of training sample. To recognize the false alarm, we propose a method based on multi-classification support vector machine (SVM) in this paper. Firstly, we divide the state of a system into three states: healthy, false-alarm, and faulty. Then we use multi-classification with '1 vs 1' policy to train and recognize the state of a system. Finally, an example of fault injection system is taken to verify the effectiveness of the proposed method by comparing ANN. The result shows that the method is reasonable and effective.Keywords: false alarm, fault diagnosis, SVM, k-means, BIT
Procedia PDF Downloads 15514238 'When 2 + 2 = 5: Synergistic Effects of HRM Practices on the Organizational Performance'
Authors: Qura-tul-aain Khair, Mohtsham Saeed
Abstract:
Synergy is a main characteristic of human resource management (HRM) system. It highlights the hidden characteristics of HRM system. This research paper has empirically tested that internally consistent and complementary HR practices/components in the HR system are more able to predict and enhance the organizational performance than the sum of individual practice. The data was collected from the sample of 109 firm respondents of service industry through convenience sampling technique. The major finding of this research highlighted that configurational approach to synergy or the HRM system as a whole has an ability to enhance the organizational performance more than by the sum of individual HRM practices of HRM system. Hence, confirming that the whole is greater than the sum of individual parts.Keywords: internally consistant HRM practices, synergistic effects, horizontal fit, vertical fit
Procedia PDF Downloads 35214237 Esports: A Biomechanics and Performance Perspective
Authors: Alex S. Talan
Abstract:
The introduction of scientific terms for esports can directly affect the quality of the training process. This is a critically important scientific task since esports is a rapidly developing global sport that has only recently begun to receive scientific and methodological consideration. In this report, we evaluate esports from a biomechanical perspective. First, we examine the relationship between physical performance and esports gaming techniques, with consideration toward engineering more effective physical and in-game training methodologies for amateur and professional esports competitors. In addition, we advocate that applying biomechanical research methodologies has the added potential to improve physical performance and endurance in esports athletes. With the budding attention on the esports enterprise globally, scientific research into esports would benefit from standardizing terminologies and methodological approaches that are specifically tailored to assess esports training efficacy to enhance individual and team performance within the esports community.Keywords: cybersport, esports, biomechanics, sports technique, training standards, dental occlusion, sports engineering, sitting pose
Procedia PDF Downloads 8614236 Antecedents of MNE Performance and Managing Firm-Specific and Country-Specific Advantages: An Empirical Study of Optoelectronics Industry in Taiwan
Authors: Jyh-Yi Shih, Chie-Bein Chen, Kuang-Yi Lin, Yu-Wei Huang
Abstract:
Because of the trend toward globalization, Taiwanese companies have gradually focused more on overseas market operations. Overseas market performance has gradually increased as a proportion of Taiwanese companies’ total business revenues. Existing international investment theories cannot explain numerous new phenomena in this domain. Opinions are inconsistent, and contradictory positions exist regarding the antecedents of multinational enterprise (MNE) performance. This study applied contemporary internalization theory to establish and extend approaches adopted by previous relevant studies. In the context of the overseas market, the influence that MNE investment in research and development (R&D) and marketing has on enterprise performance was investigated from the firm-specific advantages (FSAs) and country-specific advantages (CSAs) perspectives. CSAs and internationalization speed were addressed as moderators, and hypotheses regarding how internationalization and performance were achieved through MNE overseas market operation were explored to ensure the completeness of the investigation. The list of enterprises was sourced from the Taiwan Economic Journal. After examining the relevant data, the following conclusions were obtained: (a) The relationship between the level of FSAs in R&D and enterprise performance exhibited an S-shaped curve. (b) The relationship between the level of FSAs in marketing and enterprise performance displayed a U-shaped curve. (c) The extent to which potential CFAs were obtained positively moderated the relationship between enterprise investment in R&D to gain FSAs and MNE performance. (d) Internationalization speed positively moderated the relationship between MNEs and enterprise investment in R&D and marketing to gain FSAs.Keywords: multinational corporation, firm-specific advantages, country-specific advantages, international speed
Procedia PDF Downloads 39314235 Effect of Sulphur Concentration on Microbial Population and Performance of a Methane Biofilter
Authors: Sonya Barzgar, J. Patrick, A. Hettiaratchi
Abstract:
Methane (CH4) is reputed as the second largest contributor to greenhouse effect with a global warming potential (GWP) of 34 related to carbon dioxide (CO2) over the 100-year horizon, so there is a growing interest in reducing the emissions of this gas. Methane biofiltration (MBF) is a cost effective technology for reducing low volume point source emissions of methane. In this technique, microbial oxidation of methane is carried out by methane-oxidizing bacteria (methanotrophs) which use methane as carbon and energy source. MBF uses a granular medium, such as soil or compost, to support the growth of methanotrophic bacteria responsible for converting methane to carbon dioxide (CO₂) and water (H₂O). Even though the biofiltration technique has been shown to be an efficient, practical and viable technology, the design and operational parameters, as well as the relevant microbial processes have not been investigated in depth. In particular, limited research has been done on the effects of sulphur on methane bio-oxidation. Since bacteria require a variety of nutrients for growth, to improve the performance of methane biofiltration, it is important to establish the input quantities of nutrients to be provided to the biofilter to ensure that nutrients are available to sustain the process. The study described in this paper was conducted with the aim of determining the influence of sulphur on methane elimination in a biofilter. In this study, a set of experimental measurements has been carried out to explore how the conversion of elemental sulphur could affect methane oxidation in terms of methanotrophs growth and system pH. Batch experiments with different concentrations of sulphur were performed while keeping the other parameters i.e. moisture content, methane concentration, oxygen level and also compost at their optimum level. The study revealed the tolerable limit of sulphur without any interference to the methane oxidation as well as the particular sulphur concentration leading to the greatest methane elimination capacity. Due to the sulphur oxidation, pH varies in a transient way which affects the microbial growth behavior. All methanotrophs are incapable of growth at pH values below 5.0 and thus apparently are unable to oxidize methane. Herein, the certain pH for the optimal growth of methanotrophic bacteria is obtained. Finally, monitoring methane concentration over time in the presence of sulphur is also presented for laboratory scale biofilters.Keywords: global warming, methane biofiltration (MBF), methane oxidation, methanotrophs, pH, sulphur
Procedia PDF Downloads 23414234 Treatment Performance of Waste Stabilization Ponds: A Look at Physic-Chemical Parameters in Ghana
Authors: Emmanuel Adu-Ofori, Richard Amfo-Otu, Isaac O. A. Hodgson
Abstract:
The study was conducted to determine the treatment performance of waste stabilization ponds in Akosombo. A total of 15 samples were taken for four consecutive months from the inlet, facultative pond and outlet of maturation pond. The samples were preserved and transported to Water Research Institute for laboratory analysis. The wastewater quality parameters analysed to assess the treatment performance were total suspended solids (TSS), biochemical oxygen demand (BOD), chemical oxygen demand (COD), ammonia and phosphate. The results of the laboratory analysis showed that the ponds achieved TSS, BOD and COD removals of about 30, 82 and 75 per cent respectively. Statistically, the BOD (t = 10.27, p = 6.68 x 10-6) and COD (t = 4.23, p = 0.0029) of the raw sewage were significantly different from the total effluent at 95% confidence interval. The ammonia and phosphate removal was as high as 92% and 84% respectively. The quality parameters analysed for the final effluent from the Waste Stabilisation Pond was within the EPA guideline values. The general treatment performances were very good with respect to the parameters studied and does not pose threat to the receiving water body. A further study to examine the bacteriological treatment performance was recommended.Keywords: waste stabilization pond, wast water, treatment performance, nutrient, Ghana
Procedia PDF Downloads 31714233 Reliability Enhancement by Parameter Design in Ferrite Magnet Process
Abstract:
Ferrite magnet is widely used in many automotive components such as motors and alternators. Magnets used inside the components must be in good quality to ensure the high level of performance. The purpose of this study is to design input parameters that optimize the ferrite magnet production process to ensure the quality and reliability of manufactured products. Design of Experiments (DOE) and Statistical Process Control (SPC) are used as mutual supplementations to optimize the process. DOE and SPC are quality tools being used in the industry to monitor and improve the manufacturing process condition. These tools are practically used to maintain the process on target and within the limits of natural variation. A mixed Taguchi method is utilized for optimization purpose as a part of DOE analysis. SPC with proportion data is applied to assess the output parameters to determine the optimal operating conditions. An example of case involving the monitoring and optimization of ferrite magnet process was presented to demonstrate the effectiveness of this approach. Through the utilization of these tools, reliable magnets can be produced by following the step by step procedures of proposed framework. One of the main contributions of this study was producing the crack free magnets by applying the proposed parameter design.Keywords: ferrite magnet, crack, reliability, process optimization, Taguchi method
Procedia PDF Downloads 51714232 Feasibility Study for the Implementation of a Condition-Based Maintenance System in the UH-60 Helicopters
Authors: Santos Cabrera, Halbert Yesid, Moncada Nino, Alvaro Fernando, Rincon Cuta, Yeisson Alexis
Abstract:
The present work evaluates the feasibility of implementing a health and use monitoring system (HUMS), based on vibration analysis as a condition-based maintenance program for the UH60L 'Blackhawk' helicopters. The mixed approach used consists of contributions from national and international experts, the analysis of data extracted from the software (Meridium), the correlation of variables derived from the diagnosis of availability, the development, and application of the HUMS system, the evaluation of the latter through of the use of instruments designed for the collection of information using the DELPHI method and data capture with the device installed in the helicopter studied. The results obtained in the investigation reflect the context of maintenance in aerial operations, a reduction of operation and maintenance costs of over 2%, better use of human resources, improvement in availability (5%), and fulfillment of the aircraft’s security standards, enabling the implementation of the monitoring system (HUMS) in the condition-based maintenance program. New elements are added to the study of maintenance based on condition -specifically, in the determination of viability based on qualitative and quantitative data according to the methodology. The use of condition-based maintenance will allow organizations to adjust and reconfigure their strategic, logistical, and maintenance capabilities, aligning them with their strategic objectives of responding quickly and adequately to changes in the environment and operational requirements.Keywords: air transportation sustainability, HUMS, maintenance based condition, maintenance blackhawk capability
Procedia PDF Downloads 15614231 The Impact of Window Opening Occupant Behavior Models on Building Energy Performance
Authors: Habtamu Tkubet Ebuy
Abstract:
Purpose Conventional dynamic energy simulation tools go beyond the static dimension of simplified methods by providing better and more accurate prediction of building performance. However, their ability to forecast actual performance is undermined by a low representation of human interactions. The purpose of this study is to examine the potential benefits of incorporating information on occupant diversity into occupant behavior models used to simulate building performance. The co-simulation of the stochastic behavior of the occupants substantially increases the accuracy of the simulation. Design/methodology/approach In this article, probabilistic models of the "opening and closing" behavior of the window of inhabitants have been developed in a separate multi-agent platform, SimOcc, and implemented in the building simulation, TRNSYS, in such a way that the behavior of the window with the interconnectivity can be reflected in the simulation analysis of the building. Findings The results of the study prove that the application of complex behaviors is important to research in predicting actual building performance. The results aid in the identification of the gap between reality and existing simulation methods. We hope this study and its results will serve as a guide for researchers interested in investigating occupant behavior in the future. Research limitations/implications Further case studies involving multi-user behavior for complex commercial buildings need to more understand the impact of the occupant behavior on building performance. Originality/value This study is considered as a good opportunity to achieve the national strategy by showing a suitable tool to help stakeholders in the design phase of new or retrofitted buildings to improve the performance of office buildings.Keywords: occupant behavior, co-simulation, energy consumption, thermal comfort
Procedia PDF Downloads 10214230 Real-Time Online Tracking Platform
Authors: Denis Obrul, Borut Žalik
Abstract:
We present an extendable online real-time tracking platform that can be used to track a wide variety of location-aware devices. These can range from GPS devices mounted inside a vehicle, closed and secure systems such as Teltonika and to mobile phones running multiple platforms. Special consideration is given to decentralized approach, security and flexibility. A number of different use cases are presented as a proof of concept.Keywords: real-time, online, gps, tracking, web application
Procedia PDF Downloads 35214229 Application of Voltammetry as a Non-Destructive Tool to Quantify Cathodic Protection of Steel in Simulated Soil Solution
Authors: Mandlenkosi G. R. Mahlobo, Peter A. Olubambi
Abstract:
Cathodic protection (CP) has been widely considered as a suitable technique for mitigating corrosion of steel structures buried in soil. Plenty of efforts have been made in developing techniques, in particular non-destructive techniques, for monitoring and quantifying the effectiveness of CP to ensure the sustainability and performance of buried steel structures. This study was aimed at using a specifically modified voltammetry approach as a non-destructive tool to monitor and quantify the effectiveness of CP of steel in simulated soil. Carbon steel was subjected to electrochemical tests with NS4 solution used as simulated soil conditions for four days before applying CP for further 11 days. A specifically modified voltammetry technique was applied at various time intervals of the experiment to monitor the corrosion behaviour and therefore reflect CP effectiveness. The voltammetry results revealed that the application of CP reduced the corrosion rate from the highest value of 410 µm/yr to 8 µm/yr between days 5 and 14 of the experiments. The microstructural analysis of the steel surface performed using x-ray diffraction identified calcareous deposit as the dominant phase protecting the surface from corrosion. It was deduced that the formation of calcareous deposits was linked with the effectiveness of CP of steel.Keywords: carbon steel, cathodic protection, NS4 solution, voltammetry, XRD
Procedia PDF Downloads 6614228 Machine Learning Assisted Performance Optimization in Memory Tiering
Authors: Derssie Mebratu
Abstract:
As a large variety of micro services, web services, social graphic applications, and media applications are continuously developed, it is substantially vital to design and build a reliable, efficient, and faster memory tiering system. Despite limited design, implementation, and deployment in the last few years, several techniques are currently developed to improve a memory tiering system in a cloud. Some of these techniques are to develop an optimal scanning frequency; improve and track pages movement; identify pages that recently accessed; store pages across each tiering, and then identify pages as a hot, warm, and cold so that hot pages can store in the first tiering Dynamic Random Access Memory (DRAM) and warm pages store in the second tiering Compute Express Link(CXL) and cold pages store in the third tiering Non-Volatile Memory (NVM). Apart from the current proposal and implementation, we also develop a new technique based on a machine learning algorithm in that the throughput produced 25% improved performance compared to the performance produced by the baseline as well as the latency produced 95% improved performance compared to the performance produced by the baseline.Keywords: machine learning, bayesian optimization, memory tiering, CXL, DRAM
Procedia PDF Downloads 94