Search results for: interlaminar damage model
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 18749

Search results for: interlaminar damage model

16409 Treatment of Histopathological Symptoms in N-Nitrosopyrrolidine Induced Changes in Lung Tissue by Isolated Flavonoid from Indigofera tinctoria

Authors: Aastha Agarwal, Veena Sharma

Abstract:

N-nitrosopyrollidine or NPYR is a tobacco-specific nitrosamine which upon intoxicated causes abnormal production of Reactive Oxygen Species disrupt the endogenous antioxidant system. The study was designed to evaluate the histological changes in lung tissue of Mus musculus in NPYR administered lungs and effect of isolated flavonoid 3,6-dihydroxy-(3’,4’,7’-trimethoxyphenyl)-chromen-4-one-7-glucoside (ITC) from experimental plant Indigofera tinctorial. Post treatment with isolated compound significantly restored the abnormal symptoms and changes in pulmonary tissue. Transverse section of mouse lung in control animals appeared as a thin lace. Histologically, most of the lung was arranged as alveoli which were thin walled structures made up of single layered squamous epithelial cells. In the transverse section of lung at 100 X will clearly show the component of alveoli, surround by a thin layer of connective tissue and blood vessels. Smaller bronchioles were lined by cuboidal epithelial cells while larger bronchioles were lined by ciliated columnar epithelium layer while in NPYR intoxicated lungs signs of vast pulmonary damages and carcinogenesis as alveolar damage, necrosis, DADs or defused alveolar damages hyperplasia, metaplasia, dysplasia and next stage of carcinogenesis were revealed. Treatment with ITC showed the significant positive changes in the lung tissue due to the side hydroxyl and methoxy groups in its structure which help in combating oxidative injuries and give protection from the free radicals generated during the metabolism of NPYR in body. Thus, histopathological analysis confirms the development of the cancerous conditions in the lung tissue in mice model and the protective effects of ITC.

Keywords: flavonoid, histopathology, Indigofera tinctoria, lung

Procedia PDF Downloads 299
16408 DenseNet and Autoencoder Architecture for COVID-19 Chest X-Ray Image Classification and Improved U-Net Lung X-Ray Segmentation

Authors: Jonathan Gong

Abstract:

Purpose AI-driven solutions are at the forefront of many pathology and medical imaging methods. Using algorithms designed to better the experience of medical professionals within their respective fields, the efficiency and accuracy of diagnosis can improve. In particular, X-rays are a fast and relatively inexpensive test that can diagnose diseases. In recent years, X-rays have not been widely used to detect and diagnose COVID-19. The under use of Xrays is mainly due to the low diagnostic accuracy and confounding with pneumonia, another respiratory disease. However, research in this field has expressed a possibility that artificial neural networks can successfully diagnose COVID-19 with high accuracy. Models and Data The dataset used is the COVID-19 Radiography Database. This dataset includes images and masks of chest X-rays under the labels of COVID-19, normal, and pneumonia. The classification model developed uses an autoencoder and a pre-trained convolutional neural network (DenseNet201) to provide transfer learning to the model. The model then uses a deep neural network to finalize the feature extraction and predict the diagnosis for the input image. This model was trained on 4035 images and validated on 807 separate images from the ones used for training. The images used to train the classification model include an important feature: the pictures are cropped beforehand to eliminate distractions when training the model. The image segmentation model uses an improved U-Net architecture. This model is used to extract the lung mask from the chest X-ray image. The model is trained on 8577 images and validated on a validation split of 20%. These models are calculated using the external dataset for validation. The models’ accuracy, precision, recall, f1-score, IOU, and loss are calculated. Results The classification model achieved an accuracy of 97.65% and a loss of 0.1234 when differentiating COVID19-infected, pneumonia-infected, and normal lung X-rays. The segmentation model achieved an accuracy of 97.31% and an IOU of 0.928. Conclusion The models proposed can detect COVID-19, pneumonia, and normal lungs with high accuracy and derive the lung mask from a chest X-ray with similarly high accuracy. The hope is for these models to elevate the experience of medical professionals and provide insight into the future of the methods used.

Keywords: artificial intelligence, convolutional neural networks, deep learning, image processing, machine learning

Procedia PDF Downloads 131
16407 The Impact of the Composite Expanded Graphite PCM on the PV Panel Whole Year Electric Output: Case Study Milan

Authors: Hasan A Al-Asadi, Ali Samir, Afrah Turki Awad, Ali Basem

Abstract:

Integrating the phase change material (PCM) with photovoltaic (PV) panels is one of the effective techniques to minimize the PV panel temperature and increase their electric output. In order to investigate the impact of the PCM on the electric output of the PV panels for a whole year, a lumped-distributed parameter model for the PV-PCM module has been developed. This development has considered the impact of the PCM density variation between the solid phase and liquid phase. This contribution will increase the assessment accuracy of the electric output of the PV-PCM module. The second contribution is to assess the impact of the expanded composite graphite-PCM on the PV electric output in Milan for a whole year. The novel one-dimensional model has been solved using MATLAB software. The results of this model have been validated against literature experiment work. The weather and the solar radiation data have been collected. The impact of expanded graphite-PCM on the electric output of the PV panel for a whole year has been investigated. The results indicate this impact has an enhancement rate of 2.39% for the electric output of the PV panel in Milan for a whole year.

Keywords: PV panel efficiency, PCM, numerical model, solar energy

Procedia PDF Downloads 174
16406 Analytical Solution for Stellar Distance Based on Photon Dominated Cosmic Expansion Model

Authors: Xiaoyun Li, Suoang Longzhou

Abstract:

This paper derives the analytical solution of stellar distance according to its redshift based on the photon-dominated universe expansion model. Firstly, it calculates stellar separation speed and the farthest distance of observable stars via simulation. Then the analytical solution of stellar distance according to its redshift is derived. It shows that when the redshift is large, the stellar distance (and its separation speed) is not proportional to its redshift due to the relativity effect. It also reveals the relationship between stellar age and its redshift. The correctness of the analytical solution is verified by the latest astronomic observations of Ia supernovas in 2020.

Keywords: redshift, cosmic expansion model, analytical solution, stellar distance

Procedia PDF Downloads 162
16405 Knowledge Audit Model for Requirement Elicitation Process

Authors: Laleh Taheri, Noraini C. Pa, Rusli Abdullah, Salfarina Abdullah

Abstract:

Knowledge plays an important role to the success of any organization. Software development organizations are highly knowledge-intensive organizations especially in their Requirement Elicitation Process (REP). There are several problems regarding communicating and using the knowledge in REP such as misunderstanding, being out of scope, conflicting information and changes of requirements. All of these problems occurred in transmitting the requirements knowledge during REP. Several researches have been done in REP in order to solve the problem towards requirements. Knowledge Audit (KA) approaches were proposed in order to solve managing knowledge in human resources, financial, and manufacturing. There is lack of study applying the KA in requirements elicitation process. Therefore, this paper proposes a KA model for REP in supporting to acquire good requirements.

Keywords: knowledge audit, requirement elicitation process, KA model, knowledge in requirement elicitation

Procedia PDF Downloads 347
16404 Preference for Housing Services and Rational House Price Bubbles

Authors: Stefanie Jeanette Huber

Abstract:

This paper explores the relevance and implications of preferences for housing services on house price fluctuations through the lens of an overlapping generation’s model. The model implies that an economy whose agents have lower preferences for housing services is characterized with lower expenditure shares on housing services and will tend to experience more frequent and more volatile housing bubbles. These model predictions are tested empirically in the companion paper Housing Booms and Busts - Convergences and Divergences across OECD countries. Between 1970 - 2013, countries who spend less on housing services as a share of total income experienced significantly more housing cycles and the associated housing boom-bust cycles were more violent. Finally, the model is used to study the impact of rental subsidies and help-to-buy schemes on rational housing bubbles. Rental subsidies are found to contribute to the control of housing bubbles, whereas help-to- buy scheme makes the economy more bubble-prone.

Keywords: housing bubbles, housing booms and busts, preference for housing services, expenditure shares for housing services, rental and purchase subsidies

Procedia PDF Downloads 300
16403 Autonomous Quantum Competitive Learning

Authors: Mohammed A. Zidan, Alaa Sagheer, Nasser Metwally

Abstract:

Real-time learning is an important goal that most of artificial intelligence researches try to achieve it. There are a lot of problems and applications which require low cost learning such as learn a robot to be able to classify and recognize patterns in real time and real-time recall. In this contribution, we suggest a model of quantum competitive learning based on a series of quantum gates and additional operator. The proposed model enables to recognize any incomplete patterns, where we can increase the probability of recognizing the pattern at the expense of the undesired ones. Moreover, these undesired ones could be utilized as new patterns for the system. The proposed model is much better compared with classical approaches and more powerful than the current quantum competitive learning approaches.

Keywords: competitive learning, quantum gates, quantum gates, winner-take-all

Procedia PDF Downloads 473
16402 Predicting Indonesia External Debt Crisis: An Artificial Neural Network Approach

Authors: Riznaldi Akbar

Abstract:

In this study, we compared the performance of the Artificial Neural Network (ANN) model with back-propagation algorithm in correctly predicting in-sample and out-of-sample external debt crisis in Indonesia. We found that exchange rate, foreign reserves, and exports are the major determinants to experiencing external debt crisis. The ANN in-sample performance provides relatively superior results. The ANN model is able to classify correctly crisis of 89.12 per cent with reasonably low false alarms of 7.01 per cent. In out-of-sample, the prediction performance fairly deteriorates compared to their in-sample performances. It could be explained as the ANN model tends to over-fit the data in the in-sample, but it could not fit the out-of-sample very well. The 10-fold cross-validation has been used to improve the out-of-sample prediction accuracy. The results also offer policy implications. The out-of-sample performance could be very sensitive to the size of the samples, as it could yield a higher total misclassification error and lower prediction accuracy. The ANN model could be used to identify past crisis episodes with some accuracy, but predicting crisis outside the estimation sample is much more challenging because of the presence of uncertainty.

Keywords: debt crisis, external debt, artificial neural network, ANN

Procedia PDF Downloads 445
16401 Failure Inference and Optimization for Step Stress Model Based on Bivariate Wiener Model

Authors: Soudabeh Shemehsavar

Abstract:

In this paper, we consider the situation under a life test, in which the failure time of the test units are not related deterministically to an observable stochastic time varying covariate. In such a case, the joint distribution of failure time and a marker value would be useful for modeling the step stress life test. The problem of accelerating such an experiment is considered as the main aim of this paper. We present a step stress accelerated model based on a bivariate Wiener process with one component as the latent (unobservable) degradation process, which determines the failure times and the other as a marker process, the degradation values of which are recorded at times of failure. Parametric inference based on the proposed model is discussed and the optimization procedure for obtaining the optimal time for changing the stress level is presented. The optimization criterion is to minimize the approximate variance of the maximum likelihood estimator of a percentile of the products’ lifetime distribution.

Keywords: bivariate normal, Fisher information matrix, inverse Gaussian distribution, Wiener process

Procedia PDF Downloads 318
16400 The Effects of Different Parameters of Wood Floating Debris on Scour Rate Around Bridge Piers

Authors: Muhanad Al-Jubouri

Abstract:

A local scour is the most important of the several scours impacting bridge performance and security. Even though scour is widespread in bridges, especially during flood seasons, the experimental tests could not be applied to many standard highway bridges. A computational fluid dynamics numerical model was used to solve the problem of calculating local scouring and deposition for non-cohesive silt and clear water conditions near single and double cylindrical piers with the effect of floating debris. When FLOW-3D software is employed with the Rang turbulence model, the Nilsson bed-load transfer equation and fine mesh size are considered. The numerical findings of single cylindrical piers correspond pretty well with the physical model's results. Furthermore, after parameter effectiveness investigates the range of outcomes based on predicted user inputs such as the bed-load equation, mesh cell size, and turbulence model, the final numerical predictions are compared to experimental data. When the findings are compared, the error rate for the deepest point of the scour is equivalent to 3.8% for the single pier example.

Keywords: local scouring, non-cohesive, clear water, computational fluid dynamics, turbulence model, bed-load equation, debris

Procedia PDF Downloads 70
16399 Ankaferd Blood Stopper (ABS) Has Protective Effect on Colonic Inflammation: An in Vitro Study in Raw 264.7 and Caco-2 Cells

Authors: Aysegul Alyamac, Sukru Gulec

Abstract:

Ankaferd Blood Stopper (ABS) is a plant extract used to stop bleeding caused by injuries and surgical interventions. ABS also involved in wound healing of intestinal mucosal damage due to oxidative stress and inflammation. Inflammatory Bowel Disease (IBD) is a common chronic disorder of the gastrointestinal tract that causes abdominal pain, diarrhea, and gastrointestinal bleeding, and increases the risk of colon cancer. Inflammation is an essential factor in the development of IBD. The various studies have been performed about the physiological effects of ABS; however, ABS dependent mechanism on colonic inflammation has not been elucidated. Thus, the protective effect of ABS on colonic inflammation was investigated in this study. The Caco-2 and RAW 264.7 murine macrophage cells were used as a model of in vitro colonic inflammation. RAW 264.7 cells were treated with lipopolysaccharide (LPS) for 12 hours to induce the inflammation, and a conditional medium was obtained. Caco-2 cells were treated with 15 µl/ml ABS for 4 hours, then incubated with conditional medium and the cells also were incubated with 15 µl/ml ABS and conditional medium together for 4 hours. Tumor necrosis factor alpha (TNF-α) protein levels were targeted in testing inflammatory condition and its level was significantly increased (25 fold, p<0.001) compared to the control group by using Enzyme-Linked Immunosorbent Assay (ELISA) method. The COX-2 mRNA level was used as a marker gene to show the possible anti-inflammatory effect of ABS in Caco-2 cells. RAW cells-derived conditional medium significantly (3.3 fold, p<0.001) induced cyclooxygenase-2 (COX-2) mRNA levels in Caco-2 cells. The pretreatment of Caco-2 cells caused a significant decrease (3.3 fold, p<0.001) in COX-2 mRNA levels relative to conditional medium given group. Furthermore, COX-2 mRNA level was significantly reduced (4,7 fold, p<0.001) in ABS and conditional medium treated group. These results suggest that ABS might have an anti-inflammatory effect in vitro.

Keywords: Ankaferd blood stopper, CaCo-2, colonic inflammation, RAW 264.7

Procedia PDF Downloads 147
16398 Liability of AI in Workplace: A Comparative Approach Between Shari’ah and Common Law

Authors: Barakat Adebisi Raji

Abstract:

In the workplace, Artificial Intelligence has, in recent years, emerged as a transformative technology that revolutionizes how organizations operate and perform tasks. It is a technology that has a significant impact on transportation, manufacturing, education, cyber security, robotics, agriculture, healthcare, and so many other organizations. By harnessing AI technology, workplaces can enhance productivity, streamline processes, and make more informed decisions. Given the potential of AI to change the way we work and its impact on the labor market in years to come, employers understand that it entails legal challenges and risks despite the advantages inherent in it. Therefore, as AI continues to integrate into various aspects of the workplace, understanding the legal and ethical implications becomes paramount. Also central to this study is the question of who is held liable where AI makes any defaults; the person (company) who created the AI, the person who programmed the AI algorithm or the person who uses the AI? Thus, the aim of this paper is to provide a detailed overview of how AI-related liabilities are addressed under each legal tradition and shed light on potential areas of accord and divergence between the two legal cultures. The objectives of this paper are to (i) examine the ability of Common law and Islamic law to accommodate the issues and damage caused by AI in the workplace and the legality of compensation for such injury sustained; (ii) to discuss the extent to which AI can be described as a legal personality to bear responsibility: (iii) examine the similarities and disparities between Common Law and Islamic Jurisprudence on the liability of AI in the workplace. The methodology adopted in this work was qualitative, and the method was purely a doctrinal research method where information is gathered from the primary and secondary sources of law, such as comprehensive materials found in journal articles, expert-authored books and online news sources. Comparative legal method was also used to juxtapose the approach of Islam and Common Law. The paper concludes that since AI, in its current legal state, is not recognized as a legal entity, operators or manufacturers of AI should be held liable for any damage that arises, and the determination of who bears the responsibility should be dependent on the circumstances surrounding each scenario. The study recommends the granting of legal personality to AI systems, the establishment of legal rights and liabilities for AI, the establishment of a holistic Islamic virtue-based AI ethics framework, and the consideration of Islamic ethics.

Keywords: AI, health- care, agriculture, cyber security, common law, Shari'ah

Procedia PDF Downloads 40
16397 The Role of Group Size, Public Employees’ Wages and Control Corruption Institutions in a Game-Theoretical Model of Public Corruption

Authors: Pablo J. Valverde, Jaime E. Fernandez

Abstract:

This paper shows under which conditions public corruption can emerge. The theoretical model includes variables such as the public employee wage (w), a control corruption parameter (c), and the group size of interactions (GS) between clusters of public officers and contractors. The system behavior is analyzed using phase diagrams based on combinations of such parameters (c, w, GS). Numerical simulations are implemented in order to contrast analytic results based on Nash equilibria of the theoretical model. Major findings include the functional relationship between wages and network topology, which attempts to reduce the emergence of corrupt behavior.

Keywords: public corruption, game theory, complex systems, Nash equilibrium.

Procedia PDF Downloads 243
16396 Lung Tissue Damage under Diesel Exhaust Exposure: Modification of Proteins, Cells and Functions in Just 14 Days

Authors: Ieva Bruzauskaite, Jovile Raudoniute, Karina Poliakovaite, Danguole Zabulyte, Daiva Bironaite, Ruta Aldonyte

Abstract:

Introduction: Air pollution is a growing global problem which has been shown to be responsible for various adverse health outcomes. Immunotoxicity, such as dysregulated inflammation, has been proposed as one of the main mechanisms in air pollution-associated diseases. Chronic obstructive pulmonary disease (COPD) is among major morbidity and mortality causes worldwide and is characterized by persistent airflow limitation caused by the small airways disease (obstructive bronchiolitis) and irreversible parenchymal destruction (emphysema). Exact pathways explaining the air pollution induced and mediated disease states are still not clear. However, modern societies understand dangers of polluted air, seek to mitigate such effects and are in need for reliable biomarkers of air pollution. We hypothesise that post-translational modifications of structural proteins, e.g. citrullination, might be a good candidate biomarker. Thus, we have designed this study, where mice were exposed to diesel exhaust and the ongoing protein modifications and inflammation in lungs and other tissues were assessed. Materials And Methods: To assess the effects of diesel exhaust a in vivo study was designed. Mice (n=10) were subjected to everyday 2-hour exposure to diesel exhaust for 14 days. Control mice were treated the same way without diesel exhaust. The effects within lung and other tissues were assessed by immunohistochemistry of formalin-fixed and paraffin-embedded tissues. Levels of inflammation and citrullination related markers were investigated. Levels of parenchymal damage were also measured. Results: In vivo study corroborates our own data from in vitro and reveals diesel exhaust initiated inflammatory shift and modulation of lung peptidyl arginine deiminase 4 (PAD4), citrullination associated enzyme, levels. In addition, high levels of citrulline were observed in exposed lung tissue sections co-localising with increased parenchymal destruction. Conclusions: Subacute exposure to diesel exhaust renders mice lungs inflammatory and modifies certain structural proteins. Such structural changes of proteins may pave a pathways to lost/gain function of affected molecules and also propagate autoimmune processes within the lung and systemically.

Keywords: air pollution, citrullination, in vivo, lungs

Procedia PDF Downloads 156
16395 Evaluating the Suitability and Performance of Dynamic Modulus Predictive Models for North Dakota’s Asphalt Mixtures

Authors: Duncan Oteki, Andebut Yeneneh, Daba Gedafa, Nabil Suleiman

Abstract:

Most agencies lack the equipment required to measure the dynamic modulus (|E*|) of asphalt mixtures, necessitating the need to use predictive models. This study compared measured |E*| values for nine North Dakota asphalt mixes using the original Witczak, modified Witczak, and Hirsch models. The influence of temperature on the |E*| models was investigated, and Pavement ME simulations were conducted using measured |E*| and predictions from the most accurate |E*| model. The results revealed that the original Witczak model yielded the lowest Se/Sy and highest R² values, indicating the lowest bias and highest accuracy, while the poorest overall performance was exhibited by the Hirsch model. Using predicted |E*| as inputs in the Pavement ME generated conservative distress predictions compared to using measured |E*|. The original Witczak model was recommended for predicting |E*| for low-reliability pavements in North Dakota.

Keywords: asphalt mixture, binder, dynamic modulus, MEPDG, pavement ME, performance, prediction

Procedia PDF Downloads 50
16394 Efficiency of Secondary Schools by ICT Intervention in Sylhet Division of Bangladesh

Authors: Azizul Baten, Kamrul Hossain, Abdullah-Al-Zabir

Abstract:

The objective of this study is to develop an appropriate stochastic frontier secondary schools efficiency model by ICT Intervention and to examine the impact of ICT challenges on secondary schools efficiency in the Sylhet division in Bangladesh using stochastic frontier analysis. The Translog stochastic frontier model was found an appropriate than the Cobb-Douglas model in secondary schools efficiency by ICT Intervention. Based on the results of the Cobb-Douglas model, it is found that the coefficient of the number of teachers, the number of students, and teaching ability had a positive effect on increasing the level of efficiency. It indicated that these are related to technical efficiency. In the case of inefficiency effects for both Cobb-Douglas and Translog models, the coefficient of the ICT lab decreased secondary school inefficiency, but the online class in school was found to increase the level of inefficiency. The coefficients of teacher’s preference for ICT tools like multimedia projectors played a contributor role in decreasing the secondary school inefficiency in the Sylhet division of Bangladesh. The interaction effects of the number of teachers and the classrooms, and the number of students and the number of classrooms, the number of students and teaching ability, and the classrooms and teaching ability of the teachers were recorded with the positive values and these have a positive impact on increasing the secondary school efficiency. The overall mean efficiency of urban secondary schools was found at 84.66% for the Translog model, while it was 83.63% for the Cobb-Douglas model. The overall mean efficiency of rural secondary schools was found at 80.98% for the Translog model, while it was 81.24% for the Cobb-Douglas model. So, the urban secondary schools performed better than the rural secondary schools in the Sylhet division. It is observed from the results of the Tobit model that the teacher-student ratio had a positive influence on secondary school efficiency. The teaching experiences of those who have 1 to 5 years and 10 years above, MPO type school, conventional teaching method have had a negative and significant influence on secondary school efficiency. The estimated value of σ-square (0.0625) was different from Zero, indicating a good fit. The value of γ (0.9872) was recorded as positive and it can be interpreted as follows: 98.72 percent of random variation around in secondary school outcomes due to inefficiency.

Keywords: efficiency, secondary schools, ICT, stochastic frontier analysis

Procedia PDF Downloads 152
16393 Distangling Biological Noise in Cellular Images with a Focus on Explainability

Authors: Manik Sharma, Ganapathy Krishnamurthi

Abstract:

The cost of some drugs and medical treatments has risen in recent years, that many patients are having to go without. A classification project could make researchers more efficient. One of the more surprising reasons behind the cost is how long it takes to bring new treatments to market. Despite improvements in technology and science, research and development continues to lag. In fact, finding new treatment takes, on average, more than 10 years and costs hundreds of millions of dollars. If successful, we could dramatically improve the industry's ability to model cellular images according to their relevant biology. In turn, greatly decreasing the cost of treatments and ensure these treatments get to patients faster. This work aims at solving a part of this problem by creating a cellular image classification model which can decipher the genetic perturbations in cell (occurring naturally or artificially). Another interesting question addressed is what makes the deep-learning model decide in a particular fashion, which can further help in demystifying the mechanism of action of certain perturbations and paves a way towards the explainability of the deep-learning model.

Keywords: cellular images, genetic perturbations, deep-learning, explainability

Procedia PDF Downloads 114
16392 Cognitive Model of Analogy Based on Operation of the Brain Cells: Glial, Axons and Neurons

Authors: Ozgu Hafizoglu

Abstract:

Analogy is an essential tool of human cognition that enables connecting diffuse and diverse systems with attributional, deep structural, casual relations that are essential to learning, to innovation in artificial worlds, and to discovery in science. Cognitive Model of Analogy (CMA) leads and creates information pattern transfer within and between domains and disciplines in science. This paper demonstrates the Cognitive Model of Analogy (CMA) as an evolutionary approach to scientific research. The model puts forward the challenges of deep uncertainty about the future, emphasizing the need for flexibility of the system in order to enable reasoning methodology to adapt to changing conditions. In this paper, the model of analogical reasoning is created based on brain cells, their fractal, and operational forms within the system itself. Visualization techniques are used to show correspondences. Distinct phases of the problem-solving processes are divided thusly: encoding, mapping, inference, and response. The system is revealed relevant to brain activation considering each of these phases with an emphasis on achieving a better visualization of the brain cells: glial cells, axons, axon terminals, and neurons, relative to matching conditions of analogical reasoning and relational information. It’s found that encoding, mapping, inference, and response processes in four-term analogical reasoning are corresponding with the fractal and operational forms of brain cells: glial, axons, and neurons.

Keywords: analogy, analogical reasoning, cognitive model, brain and glials

Procedia PDF Downloads 186
16391 Component Test of Martensitic/Ferritic Steels and Nickel-Based Alloys and Their Welded Joints under Creep and Thermo-Mechanical Fatigue Loading

Authors: Daniel Osorio, Andreas Klenk, Stefan Weihe, Andreas Kopp, Frank Rödiger

Abstract:

Future power plants currently face high design requirements due to worsening climate change and environmental restrictions, which demand high operational flexibility, superior thermal performance, minimal emissions, and higher cyclic capability. The aim of the paper is, therefore, to investigate the creep and thermo-mechanical material behavior of improved materials experimentally and welded joints at component scale under near-to-service operating conditions, which are promising for application in highly efficient and flexible future power plants. These materials promise an increase in flexibility and a reduction in manufacturing costs by providing enhanced creep strength and, therefore, the possibility for wall thickness reduction. At the temperature range between 550°C and 625°C, the investigation focuses on the in-phase thermo-mechanical fatigue behavior of dissimilar welded joints of conventional materials (ferritic and martensitic material T24 and T92) to nickel-based alloys (A617B and HR6W) by means of membrane test panels. The temperature and external load are varied in phase during the test, while the internal pressure remains constant. At the temperature range between 650°C and 750°C, it focuses on the creep behavior under multiaxial stress loading of similar and dissimilar welded joints of high temperature resistant nickel-based alloys (A740H, A617B, and HR6W) by means of a thick-walled-component test. In this case, the temperature, the external axial load, and the internal pressure remain constant during testing. Numerical simulations are used for the estimation of the axial component load in order to induce a meaningful damage evolution without causing a total component failure. Metallographic investigations after testing will provide support for understanding the damage mechanism and the influence of the thermo-mechanical load and multiaxiality on the microstructure change and on the creep and TMF- strength.

Keywords: creep, creep-fatigue, component behaviour, weld joints, high temperature material behaviour, nickel-alloys, high temperature resistant steels

Procedia PDF Downloads 120
16390 Hepatoprotective Action of Emblica officinalis Linn. against Radiation and Lead Induced Changes in Swiss Albino Mice

Authors: R. K. Purohit

Abstract:

Ionizing radiation induces cellular damage through direct ionization of DNA and other cellular targets and indirectly via reactive oxygen species which may include effects from epigenetic changes. So there is a need of hour is to search for an ideal radioprotector which could minimize the deleterious and damaging effects caused by ionizing radiation. Radioprotectors are agents which reduce the radiation effects on cell when applied prior to exposure of radiation. The aim of this study was to access the efficacy of Emblica officinalis in reducing radiation and lead induced changes in mice liver. For the present experiment, healthy male Swiss albino mice (6-8 weeks) were selected and maintained under standard conditions of temperature and light. Fruit extract of Emblica was fed orally at the dose of 0.01 ml/animal/day. The animal were divided into seven groups according to the treatment i.e. lead acetate solution as drinking water (group-II) or exposed to 3.5 or 7.0 Gy gamma radiation (group-III) or combined treatment of radiation and lead acetate (group-IV). The animals of experimental groups were administered Emblica extract seven days prior to radiation or lead acetate treatment (group V, VI and VII) respectively. The animals from all the groups were sacrificed by cervical dislocation at each post-treatment intervals of 1, 2, 4, 7, 14 and 28 days. After sacrificing the animals pieces of liver were taken out and some of them were kept at -20°C for different biochemical parameters. The histopathological changes included cytoplasmic degranulation, vacuolation, hyperaemia, pycnotic and crenated nuclei. The changes observed in the control groups were compared with the respective experimental groups. An increase in the value of total proteins, glycogen, acid phosphtase, alkaline phosphatase activity and RNA was observed up to day-14 in the non drug treated group and day 7 in the Emblica treated groups, thereafter value declined up to day-28 without reaching to normal. The value of cholesterol and DNA showed a decreasing trend up to day -14 in non drug treated groups and day-7 in drug treated groups, thereafter value elevated up to day-28. The biochemical parameters were observed in the form of increase or decrease in the values. The changes were found dose dependent. After combined treatment of radiation and lead acetate synergistic effect were observed. The liver of Emblica treated animals exhibited less severe damage as compared to non-drug treated animals at all the corresponding intervals. An early and fast recovery was also noticed in Emblica pretreated animals. Thus, it appears that Emblica is potent enough to check lead and radiation induced heptic lesion in Swiss albino mice.

Keywords: radiation, lead , emblica, mice, liver

Procedia PDF Downloads 322
16389 Efficient Model Selection in Linear and Non-Linear Quantile Regression by Cross-Validation

Authors: Yoonsuh Jung, Steven N. MacEachern

Abstract:

Check loss function is used to define quantile regression. In the prospect of cross validation, it is also employed as a validation function when underlying truth is unknown. However, our empirical study indicates that the validation with check loss often leads to choosing an over estimated fits. In this work, we suggest a modified or L2-adjusted check loss which rounds the sharp corner in the middle of check loss. It has a large effect of guarding against over fitted model in some extent. Through various simulation settings of linear and non-linear regressions, the improvement of check loss by L2 adjustment is empirically examined. This adjustment is devised to shrink to zero as sample size grows.

Keywords: cross-validation, model selection, quantile regression, tuning parameter selection

Procedia PDF Downloads 438
16388 Uncertainty in Risk Modeling

Authors: Mueller Jann, Hoffmann Christian Hugo

Abstract:

Conventional quantitative risk management in banking is a risk factor of its own, because it rests on assumptions such as independence and availability of data which do not hold when rare events of extreme consequences are involved. There is a growing recognition of the need for alternative risk measures that do not make these assumptions. We propose a novel method for modeling the risk associated with investment products, in particular derivatives, by using a formal language for specifying financial contracts. Expressions in this language are interpreted in the category of values annotated with (a formal representation of) uncertainty. The choice of uncertainty formalism thus becomes a parameter of the model, so it can be adapted to the particular application and it is not constrained to classical probabilities. We demonstrate our approach using a simple logic-based uncertainty model and a case study in which we assess the risk of counter party default in a portfolio of collateralized loans.

Keywords: risk model, uncertainty monad, derivatives, contract algebra

Procedia PDF Downloads 577
16387 Comparison Analysis of CFD Turbulence Fluid Numerical Study for Quick Coupling

Authors: JoonHo Lee, KyoJin An, JunSu Kim, Young-Chul Park

Abstract:

In this study, the fluid flow characteristics and performance numerical study through CFD model of the Non-split quick coupling for flow control in hydraulic system equipment for the aerospace business group focused to predict. In this study, we considered turbulence models for the application of Computational Fluid Dynamics for the CFD model of the Non-split Quick Coupling for aerospace business. In addition to this, the adequacy of the CFD model were verified by comparing with standard value. Based on this analysis, accurate the fluid flow characteristics can be predicted. It is, therefore, the design of the fluid flow characteristic contribute the reliability for the Quick Coupling which is required in industries on the basis of research results.

Keywords: CFD, FEM, quick coupling, turbulence

Procedia PDF Downloads 384
16386 Deepfake Detection for Compressed Media

Authors: Sushil Kumar Gupta, Atharva Joshi, Ayush Sonawale, Sachin Naik, Rajshree Khande

Abstract:

The usage of artificially created videos and audio by deep learning is a major problem of the current media landscape, as it pursues the goal of misinformation and distrust. In conclusion, the objective of this work targets generating a reliable deepfake detection model using deep learning that will help detect forged videos accurately. In this work, CelebDF v1, one of the largest deepfake benchmark datasets in the literature, is adopted to train and test the proposed models. The data includes authentic and synthetic videos of high quality, therefore allowing an assessment of the model’s performance against realistic distortions.

Keywords: deepfake detection, CelebDF v1, convolutional neural network (CNN), xception model, data augmentation, media manipulation

Procedia PDF Downloads 13
16385 Designing a Model for Preparing Reports on the Automatic Earned Value Management Progress by the Integration of Primavera P6, SQL Database, and Power BI: A Case Study of a Six-Storey Concrete Building in Mashhad, Iran

Authors: Hamed Zolfaghari, Mojtaba Kord

Abstract:

Project planners and controllers are frequently faced with the challenge of inadequate software for the preparation of automatic project progress reports based on actual project information updates. They usually make dashboards in Microsoft Excel, which is local and not applicable online. Another shortcoming is that it is not linked to planning software such as Microsoft Project, which lacks the database required for data storage. This study aimed to propose a model for the preparation of reports on automatic online project progress based on actual project information updates by the integration of Primavera P6, SQL database, and Power BI for a construction project. The designed model could be applicable to project planners and controller agents by enabling them to prepare project reports automatically and immediately after updating the project schedule using actual information. To develop the model, the data were entered into P6, and the information was stored on the SQL database. The proposed model could prepare a wide range of reports, such as earned value management, HR reports, and financial, physical, and risk reports automatically on the Power BI application. Furthermore, the reports could be published and shared online.

Keywords: primavera P6, SQL, Power BI, EVM, integration management

Procedia PDF Downloads 110
16384 Artificial Neural Network Based Parameter Prediction of Miniaturized Solid Rocket Motor

Authors: Hao Yan, Xiaobing Zhang

Abstract:

The working mechanism of miniaturized solid rocket motors (SRMs) is not yet fully understood. It is imperative to explore its unique features. However, there are many disadvantages to using common multi-objective evolutionary algorithms (MOEAs) in predicting the parameters of the miniaturized SRM during its conceptual design phase. Initially, the design variables and objectives are constrained in a lumped parameter model (LPM) of this SRM, which leads to local optima in MOEAs. In addition, MOEAs require a large number of calculations due to their population strategy. Although the calculation time for simulating an LPM just once is usually less than that of a CFD simulation, the number of function evaluations (NFEs) is usually large in MOEAs, which makes the total time cost unacceptably long. Moreover, the accuracy of the LPM is relatively low compared to that of a CFD model due to its assumptions. CFD simulations or experiments are required for comparison and verification of the optimal results obtained by MOEAs with an LPM. The conceptual design phase based on MOEAs is a lengthy process, and its results are not precise enough due to the above shortcomings. An artificial neural network (ANN) based parameter prediction is proposed as a way to reduce time costs and improve prediction accuracy. In this method, an ANN is used to build a surrogate model that is trained with a 3D numerical simulation. In design, the original LPM is replaced by a surrogate model. Each case uses the same MOEAs, in which the calculation time of the two models is compared, and their optimization results are compared with 3D simulation results. Using the surrogate model for the parameter prediction process of the miniaturized SRMs results in a significant increase in computational efficiency and an improvement in prediction accuracy. Thus, the ANN-based surrogate model does provide faster and more accurate parameter prediction for an initial design scheme. Moreover, even when the MOEAs converge to local optima, the time cost of the ANN-based surrogate model is much lower than that of the simplified physical model LPM. This means that designers can save a lot of time during code debugging and parameter tuning in a complex design process. Designers can reduce repeated calculation costs and obtain accurate optimal solutions by combining an ANN-based surrogate model with MOEAs.

Keywords: artificial neural network, solid rocket motor, multi-objective evolutionary algorithm, surrogate model

Procedia PDF Downloads 91
16383 The Effects of Periostin in a Rat Model of Isoproterenol-Mediated Cardiotoxicity

Authors: Mahmut Sozmen, Alparslan Kadir Devrim, Yonca Betil Kabak, Tuba Devrim

Abstract:

Acute myocardial infarction is the leading cause of deaths in the worldwide. Mature cardiomyocytes do not have the ability to regenerate instead fibrous tissue proliferate and granulation tissue to fill out. Periostin is an extracellular matrix protein from fasciclin family and it plays an important role in the cell adhesion, migration, and growth of the organism. Periostin prevents apoptosis while stimulating cardiomyocytes. The main objective of this project is to investigate the effects of the recombinant murine periostin peptide administration for the cardiomyocyte regeneration in a rat model of acute myocardial infarction. The experiment was performed on 84 male rats (6 months old) in 4 group each contains 21 rats. Saline applied subcutaneously (1 ml/kg) two times with 24 hours intervals to the rats in control group (Group 1). Recombinant periostin peptide (1 μg/kg) dissolved in saline applied intraperitoneally in group 2 on 1, 3, 7, 14 and 21. days on same dates in group 4. Isoproterenol dissolved in saline applied intraperitoneally (85mg/kg/day) two times with 24 hours intervals to the groups 3 and 4. Rats in group 4 further received recombinant periostin peptide (1 μg/kg) dissolved in saline intraperitoneally starting one day after the final isoproterenol administration on days 1, 3, 7, 14 and 21. Following the final application of periostin rats continued to feed routinely with pelleted chow and water ad libitum for further seven days. At the end of 7th day rats sacrificed, blood and heart tissue samples collected for the immunohistochemical and biochemical analysis. Angiogenesis in response to tissue damage, is a highly dynamic process regulated by signals from the surrounding extracellular matrix and blood serum. In this project, VEGF, ANGPT, bFGF, TGFβ are the key factors that contribute to cardiomyocyte regeneration were investigated. Additionally, the relationship between mitosis and apoptosis (Bcl-2, Bax, PCNA, Ki-67, Phopho-Histone H3), cell cycle activators and inhibitors (Cyclin D1, D2, A2, Cdc2), the origin of regenerating cells (cKit and CD45) were examined. Present results revealed that periostin stimulated cardiomyocye cell-cycle re-entry in both normal and MCA damaged cardiomyocytes and increased angiogenesis. Thus, periostin contributes to cardiomyocyte regeneration during the healing period following myocardial infarction which provides a better understanding of its role of this mechanism, improving recovery rates and it is expected to contribute the lack of literature on this subject. Acknowledgement: This project was financially supported by Turkish Scientific Research Council- Agriculture, Forestry and Veterinary Research Support Group (TUBİTAK-TOVAG; Project No: 114O734), Ankara, TURKEY.

Keywords: cardiotoxicity, immunohistochemistry, isoproterenol, periostin

Procedia PDF Downloads 237
16382 Targeting Matrix Metalloprotease-9 to Reduce Coronary Artery Manifestations of Kawasaki’s Disease

Authors: Mohammadjavad Sotoudeheian, Navid Farahmandian

Abstract:

Kawasaki disease (KD) is the primary cause of acquired pediatric heart disease as an acute vasculitis. In children with prolonged fever, rash, and inflammation of the mucosa KD must be considered as a clinical diagnosis. There is a persuasive suggestion of immune-mediated damage as the pathophysiologic cascade of KD. For example, the invasion of cytotoxic T-cells supports a viral etiology and the inflammasome of the innate immune system is a critical component in the vasculitis formation in KD. Animal models of KD propose the cytokine profiles, such as increased IL-1 and GM-CSF, which cause vascular damage. CRP and IFN-γ elevated expression and the upregulation of IL-6, and IL-10 production are also described in previous studies. Untreated KD is a critical risk factor for coronary artery diseases and myocardial infarction. Vascular damage may encompass amplified T-cell activity. SMAD3 is an essential molecule in down-regulating T-cells and increasing expression of FoxP3. It has a critical effect in the differentiation of regulatory T-cells. The discrepancy of regulatory T-cells and pro-inflammatory Th17 has been studied in acute coronary syndrome during KD. However in the coronary artery damaged lymphocytes and IgA plasma cells are seen at the lesion locations, the major immune cells in the coronary lesions are monocytes/macrophages and neutrophils. These cells secrete TNF-α, and activates matrix metalloprotease (MMP)-9, reducing the integrity of vessels and prompting patients to arise aneurysm. MMPs can break down the components of the extracellular matrix and assist immune cell movement. IVIG as an effective form of treatment clarified the role of the immune system, which may target pathogenic antigens and regulate cytokine production. Several reports have revealed that in the coronary arteries, high expression of MMP-9 in monocyte/macrophage results in pathologic cascades. Curcumin is a potent antioxidant and anti-inflammatory molecule. Curcumin decreases the production of reactive oxygen and nitrogen species and inhibits transcription factors like AP-1 and NF-κB. Curcumin also contains the characteristics of inhibitory effects on MMPs, especially MMP-9. The upregulation of MMP-9 is an important cellular response. Curcumin treatment caused a reverse effect and down-regulates MMP-9 gene expression which may fund the anti-inflammatory effect. Curcumin inhibits MMP-9 expression via PKC and AMPK-dependent pathways in Human monocytes cells. Elevated expression and activity of MMP-9 are correlated with advanced vascular lesions. AMPK controls lipid metabolism and oxidation, and protein synthesis. AMPK is also necessary for the MMP-9 activity and THP-1 cell adhesion to endothelial cells. Curcumin was shown to inhibit the activation of AMPKα. Compound C (AMPK inhibitor) inhibits MMP-9 expression level. Therefore, through inactivating AMPKs and PKC, curcumin decreases the MMP-9 level, which results in inhibiting monocyte/macrophage differentiation. Compound C also suppress the phosphorylation of three major classes of MAP kinase signaling, suggesting that curcumin may suppress MMP-9 level by inactivation of MAPK pathways. MAPK cascades are activated to induce the expression of MMP-9. Curcumin inhibits MAPKs phosphorylation, which contributes to the down-regulation of MMP-9. This study demonstrated that the potential inhibitory properties of curcumin over MMP-9 lead to a therapeutic strategy to reduce the risk of coronary artery involvement during KD.

Keywords: MMP-9, coronary artery aneurysm, Kawasaki’s disease, curcumin, AMPK, immune system, NF-κB, MAPK

Procedia PDF Downloads 305
16381 Verification of a Simple Model for Rolling Isolation System Response

Authors: Aarthi Sridhar, Henri Gavin, Karah Kelly

Abstract:

Rolling Isolation Systems (RISs) are simple and effective means to mitigate earthquake hazards to equipment in critical and precious facilities, such as hospitals, network collocation facilities, supercomputer centers, and museums. The RIS works by isolating components acceleration the inertial forces felt by the subsystem. The RIS consists of two platforms with counter-facing concave surfaces (dishes) in each corner. Steel balls lie inside the dishes and allow the relative motion between the top and bottom platform. Formerly, a mathematical model for the dynamics of RISs was developed using Lagrange’s equations (LE) and experimentally validated. A new mathematical model was developed using Gauss’s Principle of Least Constraint (GPLC) and verified by comparing impulse response trajectories of the GPLC model and the LE model in terms of the peak displacements and accelerations of the top platform. Mathematical models for the RIS are tedious to derive because of the non-holonomic rolling constraints imposed on the system. However, using Gauss’s Principle of Least constraint to find the equations of motion removes some of the obscurity and yields a system that can be easily extended. Though the GPLC model requires more state variables, the equations of motion are far simpler. The non-holonomic constraint is enforced in terms of accelerations and therefore requires additional constraint stabilization methods in order to avoid the possibility that numerical integration methods can cause the system to go unstable. The GPLC model allows the incorporation of more physical aspects related to the RIS, such as contribution of the vertical velocity of the platform to the kinetic energy and the mass of the balls. This mathematical model for the RIS is a tool to predict the motion of the isolation platform. The ability to statistically quantify the expected responses of the RIS is critical in the implementation of earthquake hazard mitigation.

Keywords: earthquake hazard mitigation, earthquake isolation, Gauss’s Principle of Least Constraint, nonlinear dynamics, rolling isolation system

Procedia PDF Downloads 252
16380 Assessment of Modern RANS Models for the C3X Vane Film Cooling Prediction

Authors: Mikhail Gritskevich, Sebastian Hohenstein

Abstract:

The paper presents the results of a detailed assessment of several modern Reynolds Averaged Navier-Stokes (RANS) turbulence models for prediction of C3X vane film cooling at various injection regimes. Three models are considered, namely the Shear Stress Transport (SST) model, the modification of the SST model accounting for the streamlines curvature (SST-CC), and the Explicit Algebraic Reynolds Stress Model (EARSM). It is shown that all the considered models face with a problem in prediction of the adiabatic effectiveness in the vicinity of the cooling holes; however, accounting for the Reynolds stress anisotropy within the EARSM model noticeably increases the solution accuracy. On the other hand, further downstream all the models provide a reasonable agreement with the experimental data for the adiabatic effectiveness and among the considered models the most accurate results are obtained with the use EARMS.

Keywords: discrete holes film cooling, Reynolds Averaged Navier-Stokes (RANS), Reynolds stress tensor anisotropy, turbulent heat transfer

Procedia PDF Downloads 420